Properties

Label 840.2.u.d.629.8
Level $840$
Weight $2$
Character 840.629
Analytic conductor $6.707$
Analytic rank $0$
Dimension $8$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(629,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.629"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.u (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,16,0,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2517630976.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 11x^{4} + 4x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 629.8
Root \(0.435132 - 0.629640i\) of defining polynomial
Character \(\chi\) \(=\) 840.629
Dual form 840.2.u.d.629.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{2} +(1.48563 + 0.890446i) q^{3} +2.00000 q^{4} +(-0.615370 - 2.14973i) q^{5} +(2.10100 + 1.25928i) q^{6} -2.64575i q^{7} +2.82843 q^{8} +(1.41421 + 2.64575i) q^{9} +(-0.870264 - 3.04017i) q^{10} +(2.97127 + 1.78089i) q^{12} +0.737669i q^{13} -3.74166i q^{14} +(1.00000 - 3.74166i) q^{15} +4.00000 q^{16} +(2.00000 + 3.74166i) q^{18} -5.43275 q^{19} +(-1.23074 - 4.29945i) q^{20} +(2.35590 - 3.93062i) q^{21} +6.00000 q^{23} +(4.20201 + 2.51856i) q^{24} +(-4.24264 + 2.64575i) q^{25} +1.04322i q^{26} +(-0.254894 + 5.18990i) q^{27} -5.29150i q^{28} +(1.41421 - 5.29150i) q^{30} +5.65685 q^{32} +(-5.68764 + 1.62811i) q^{35} +(2.82843 + 5.29150i) q^{36} -7.68306 q^{38} +(-0.656854 + 1.09591i) q^{39} +(-1.74053 - 6.08034i) q^{40} +(3.33174 - 5.55873i) q^{42} +(4.81738 - 4.66829i) q^{45} +8.48528 q^{46} +(5.94253 + 3.56178i) q^{48} -7.00000 q^{49} +(-6.00000 + 3.74166i) q^{50} +1.47534i q^{52} +(-0.360475 + 7.33962i) q^{54} -7.48331i q^{56} +(-8.07107 - 4.83756i) q^{57} +13.9416i q^{59} +(2.00000 - 7.48331i) q^{60} -10.6543 q^{61} +(7.00000 - 3.74166i) q^{63} +8.00000 q^{64} +(1.58579 - 0.453939i) q^{65} +(8.91380 + 5.34267i) q^{69} +(-8.04354 + 2.30250i) q^{70} +15.8745i q^{71} +(4.00000 + 7.48331i) q^{72} +(-8.65891 + 0.152776i) q^{75} -10.8655 q^{76} +(-0.928932 + 1.54985i) q^{78} -16.9706 q^{79} +(-2.46148 - 8.59890i) q^{80} +(-5.00000 + 7.48331i) q^{81} +13.8368 q^{83} +(4.71179 - 7.86123i) q^{84} +(6.81280 - 6.60195i) q^{90} +1.95169 q^{91} +12.0000 q^{92} +(3.34315 + 11.6789i) q^{95} +(8.40401 + 5.03712i) q^{96} -9.89949 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} + 8 q^{15} + 32 q^{16} + 16 q^{18} + 48 q^{23} + 40 q^{39} - 56 q^{49} - 48 q^{50} - 8 q^{57} + 16 q^{60} + 56 q^{63} + 64 q^{64} + 24 q^{65} + 32 q^{72} - 64 q^{78} - 40 q^{81} + 96 q^{92}+ \cdots + 72 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 1.00000
\(3\) 1.48563 + 0.890446i 0.857731 + 0.514099i
\(4\) 2.00000 1.00000
\(5\) −0.615370 2.14973i −0.275202 0.961387i
\(6\) 2.10100 + 1.25928i 0.857731 + 0.514099i
\(7\) 2.64575i 1.00000i
\(8\) 2.82843 1.00000
\(9\) 1.41421 + 2.64575i 0.471405 + 0.881917i
\(10\) −0.870264 3.04017i −0.275202 0.961387i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 2.97127 + 1.78089i 0.857731 + 0.514099i
\(13\) 0.737669i 0.204593i 0.994754 + 0.102296i \(0.0326190\pi\)
−0.994754 + 0.102296i \(0.967381\pi\)
\(14\) 3.74166i 1.00000i
\(15\) 1.00000 3.74166i 0.258199 0.966092i
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 2.00000 + 3.74166i 0.471405 + 0.881917i
\(19\) −5.43275 −1.24636 −0.623179 0.782080i \(-0.714159\pi\)
−0.623179 + 0.782080i \(0.714159\pi\)
\(20\) −1.23074 4.29945i −0.275202 0.961387i
\(21\) 2.35590 3.93062i 0.514099 0.857731i
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 4.20201 + 2.51856i 0.857731 + 0.514099i
\(25\) −4.24264 + 2.64575i −0.848528 + 0.529150i
\(26\) 1.04322i 0.204593i
\(27\) −0.254894 + 5.18990i −0.0490545 + 0.998796i
\(28\) 5.29150i 1.00000i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 1.41421 5.29150i 0.258199 0.966092i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 5.65685 1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) −5.68764 + 1.62811i −0.961387 + 0.275202i
\(36\) 2.82843 + 5.29150i 0.471405 + 0.881917i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −7.68306 −1.24636
\(39\) −0.656854 + 1.09591i −0.105181 + 0.175485i
\(40\) −1.74053 6.08034i −0.275202 0.961387i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 3.33174 5.55873i 0.514099 0.857731i
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 4.81738 4.66829i 0.718132 0.695907i
\(46\) 8.48528 1.25109
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 5.94253 + 3.56178i 0.857731 + 0.514099i
\(49\) −7.00000 −1.00000
\(50\) −6.00000 + 3.74166i −0.848528 + 0.529150i
\(51\) 0 0
\(52\) 1.47534i 0.204593i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −0.360475 + 7.33962i −0.0490545 + 0.998796i
\(55\) 0 0
\(56\) 7.48331i 1.00000i
\(57\) −8.07107 4.83756i −1.06904 0.640751i
\(58\) 0 0
\(59\) 13.9416i 1.81504i 0.420010 + 0.907519i \(0.362026\pi\)
−0.420010 + 0.907519i \(0.637974\pi\)
\(60\) 2.00000 7.48331i 0.258199 0.966092i
\(61\) −10.6543 −1.36415 −0.682073 0.731284i \(-0.738922\pi\)
−0.682073 + 0.731284i \(0.738922\pi\)
\(62\) 0 0
\(63\) 7.00000 3.74166i 0.881917 0.471405i
\(64\) 8.00000 1.00000
\(65\) 1.58579 0.453939i 0.196693 0.0563042i
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 8.91380 + 5.34267i 1.07310 + 0.643182i
\(70\) −8.04354 + 2.30250i −0.961387 + 0.275202i
\(71\) 15.8745i 1.88396i 0.335673 + 0.941979i \(0.391036\pi\)
−0.335673 + 0.941979i \(0.608964\pi\)
\(72\) 4.00000 + 7.48331i 0.471405 + 0.881917i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) −8.65891 + 0.152776i −0.999844 + 0.0176411i
\(76\) −10.8655 −1.24636
\(77\) 0 0
\(78\) −0.928932 + 1.54985i −0.105181 + 0.175485i
\(79\) −16.9706 −1.90934 −0.954669 0.297670i \(-0.903790\pi\)
−0.954669 + 0.297670i \(0.903790\pi\)
\(80\) −2.46148 8.59890i −0.275202 0.961387i
\(81\) −5.00000 + 7.48331i −0.555556 + 0.831479i
\(82\) 0 0
\(83\) 13.8368 1.51878 0.759391 0.650635i \(-0.225497\pi\)
0.759391 + 0.650635i \(0.225497\pi\)
\(84\) 4.71179 7.86123i 0.514099 0.857731i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 6.81280 6.60195i 0.718132 0.695907i
\(91\) 1.95169 0.204593
\(92\) 12.0000 1.25109
\(93\) 0 0
\(94\) 0 0
\(95\) 3.34315 + 11.6789i 0.343000 + 1.19823i
\(96\) 8.40401 + 5.03712i 0.857731 + 0.514099i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −9.89949 −1.00000
\(99\) 0 0
\(100\) −8.48528 + 5.29150i −0.848528 + 0.529150i
\(101\) 6.38589i 0.635420i −0.948188 0.317710i \(-0.897086\pi\)
0.948188 0.317710i \(-0.102914\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 2.08644i 0.204593i
\(105\) −9.89949 2.64575i −0.966092 0.258199i
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −0.509789 + 10.3798i −0.0490545 + 0.998796i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 10.5830i 1.00000i
\(113\) −14.1421 −1.33038 −0.665190 0.746674i \(-0.731650\pi\)
−0.665190 + 0.746674i \(0.731650\pi\)
\(114\) −11.4142 6.84135i −1.06904 0.640751i
\(115\) −3.69222 12.8984i −0.344301 1.20278i
\(116\) 0 0
\(117\) −1.95169 + 1.04322i −0.180434 + 0.0964459i
\(118\) 19.7164i 1.81504i
\(119\) 0 0
\(120\) 2.82843 10.5830i 0.258199 0.966092i
\(121\) −11.0000 −1.00000
\(122\) −15.0675 −1.36415
\(123\) 0 0
\(124\) 0 0
\(125\) 8.29843 + 7.49240i 0.742234 + 0.670141i
\(126\) 9.89949 5.29150i 0.881917 0.471405i
\(127\) 22.4499i 1.99211i −0.0887357 0.996055i \(-0.528283\pi\)
0.0887357 0.996055i \(-0.471717\pi\)
\(128\) 11.3137 1.00000
\(129\) 0 0
\(130\) 2.24264 0.641967i 0.196693 0.0563042i
\(131\) 22.5405i 1.96937i −0.174341 0.984685i \(-0.555779\pi\)
0.174341 0.984685i \(-0.444221\pi\)
\(132\) 0 0
\(133\) 14.3737i 1.24636i
\(134\) 0 0
\(135\) 11.3137 2.64575i 0.973729 0.227710i
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 12.6060 + 7.55568i 1.07310 + 0.643182i
\(139\) 23.2603 1.97292 0.986458 0.164012i \(-0.0524434\pi\)
0.986458 + 0.164012i \(0.0524434\pi\)
\(140\) −11.3753 + 3.25623i −0.961387 + 0.275202i
\(141\) 0 0
\(142\) 22.4499i 1.88396i
\(143\) 0 0
\(144\) 5.65685 + 10.5830i 0.471405 + 0.881917i
\(145\) 0 0
\(146\) 0 0
\(147\) −10.3994 6.23312i −0.857731 0.514099i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) −12.2455 + 0.216058i −0.999844 + 0.0176411i
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) −15.3661 −1.24636
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.31371 + 2.19181i −0.105181 + 0.175485i
\(157\) 25.0590i 1.99993i −0.00842626 0.999964i \(-0.502682\pi\)
0.00842626 0.999964i \(-0.497318\pi\)
\(158\) −24.0000 −1.90934
\(159\) 0 0
\(160\) −3.48106 12.1607i −0.275202 0.961387i
\(161\) 15.8745i 1.25109i
\(162\) −7.07107 + 10.5830i −0.555556 + 0.831479i
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 19.5681 1.51878
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 6.66348 11.1175i 0.514099 0.857731i
\(169\) 12.4558 0.958142
\(170\) 0 0
\(171\) −7.68306 14.3737i −0.587538 1.09918i
\(172\) 0 0
\(173\) 23.9813 1.82326 0.911632 0.411007i \(-0.134823\pi\)
0.911632 + 0.411007i \(0.134823\pi\)
\(174\) 0 0
\(175\) 7.00000 + 11.2250i 0.529150 + 0.848528i
\(176\) 0 0
\(177\) −12.4142 + 20.7121i −0.933109 + 1.55681i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 9.63475 9.33657i 0.718132 0.695907i
\(181\) −25.0009 −1.85830 −0.929150 0.369703i \(-0.879460\pi\)
−0.929150 + 0.369703i \(0.879460\pi\)
\(182\) 2.76011 0.204593
\(183\) −15.8284 9.48710i −1.17007 0.701307i
\(184\) 16.9706 1.25109
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 13.7312 + 0.674387i 0.998796 + 0.0490545i
\(190\) 4.72792 + 16.5165i 0.343000 + 1.19823i
\(191\) 15.8745i 1.14864i −0.818631 0.574320i \(-0.805267\pi\)
0.818631 0.574320i \(-0.194733\pi\)
\(192\) 11.8851 + 7.12356i 0.857731 + 0.514099i
\(193\) 26.4575i 1.90445i 0.305392 + 0.952227i \(0.401213\pi\)
−0.305392 + 0.952227i \(0.598787\pi\)
\(194\) 0 0
\(195\) 2.76011 + 0.737669i 0.197655 + 0.0528256i
\(196\) −14.0000 −1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −12.0000 + 7.48331i −0.848528 + 0.529150i
\(201\) 0 0
\(202\) 9.03102i 0.635420i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.48528 + 15.8745i 0.589768 + 1.10335i
\(208\) 2.95068i 0.204593i
\(209\) 0 0
\(210\) −14.0000 3.74166i −0.966092 0.258199i
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) −14.1354 + 23.5837i −0.968541 + 1.61593i
\(214\) 0 0
\(215\) 0 0
\(216\) −0.720950 + 14.6792i −0.0490545 + 0.998796i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 14.9666i 1.00000i
\(225\) −13.0000 7.48331i −0.866667 0.498888i
\(226\) −20.0000 −1.33038
\(227\) 29.2029 1.93826 0.969132 0.246544i \(-0.0792950\pi\)
0.969132 + 0.246544i \(0.0792950\pi\)
\(228\) −16.1421 9.67513i −1.06904 0.640751i
\(229\) −14.5577 −0.962000 −0.481000 0.876720i \(-0.659726\pi\)
−0.481000 + 0.876720i \(0.659726\pi\)
\(230\) −5.22158 18.2410i −0.344301 1.20278i
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) −2.76011 + 1.47534i −0.180434 + 0.0964459i
\(235\) 0 0
\(236\) 27.8832i 1.81504i
\(237\) −25.2120 15.1114i −1.63770 0.981588i
\(238\) 0 0
\(239\) 7.48331i 0.484055i −0.970269 0.242028i \(-0.922188\pi\)
0.970269 0.242028i \(-0.0778125\pi\)
\(240\) 4.00000 14.9666i 0.258199 0.966092i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −15.5563 −1.00000
\(243\) −14.0917 + 6.66524i −0.903980 + 0.427575i
\(244\) −21.3087 −1.36415
\(245\) 4.30759 + 15.0481i 0.275202 + 0.961387i
\(246\) 0 0
\(247\) 4.00757i 0.254995i
\(248\) 0 0
\(249\) 20.5563 + 12.3209i 1.30271 + 0.780804i
\(250\) 11.7358 + 10.5959i 0.742234 + 0.670141i
\(251\) 1.16979i 0.0738362i 0.999318 + 0.0369181i \(0.0117541\pi\)
−0.999318 + 0.0369181i \(0.988246\pi\)
\(252\) 14.0000 7.48331i 0.881917 0.471405i
\(253\) 0 0
\(254\) 31.7490i 1.99211i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 3.17157 0.907878i 0.196693 0.0563042i
\(261\) 0 0
\(262\) 31.8771i 1.96937i
\(263\) 28.2843 1.74408 0.872041 0.489432i \(-0.162796\pi\)
0.872041 + 0.489432i \(0.162796\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 20.3275i 1.24636i
\(267\) 0 0
\(268\) 0 0
\(269\) 19.4108i 1.18350i 0.806122 + 0.591749i \(0.201562\pi\)
−0.806122 + 0.591749i \(0.798438\pi\)
\(270\) 16.0000 3.74166i 0.973729 0.227710i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 2.89949 + 1.73787i 0.175485 + 0.105181i
\(274\) −25.4558 −1.53784
\(275\) 0 0
\(276\) 17.8276 + 10.6853i 1.07310 + 0.643182i
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 32.8951 1.97292
\(279\) 0 0
\(280\) −16.0871 + 4.60500i −0.961387 + 0.275202i
\(281\) 14.9666i 0.892834i −0.894825 0.446417i \(-0.852700\pi\)
0.894825 0.446417i \(-0.147300\pi\)
\(282\) 0 0
\(283\) 29.6640i 1.76334i 0.471863 + 0.881672i \(0.343582\pi\)
−0.471863 + 0.881672i \(0.656418\pi\)
\(284\) 31.7490i 1.88396i
\(285\) −5.43275 + 20.3275i −0.321808 + 1.20410i
\(286\) 0 0
\(287\) 0 0
\(288\) 8.00000 + 14.9666i 0.471405 + 0.881917i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −11.6739 −0.681997 −0.340998 0.940064i \(-0.610765\pi\)
−0.340998 + 0.940064i \(0.610765\pi\)
\(294\) −14.7070 8.81496i −0.857731 0.514099i
\(295\) 29.9706 8.57922i 1.74495 0.499502i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.42602i 0.255963i
\(300\) −17.3178 + 0.305553i −0.999844 + 0.0176411i
\(301\) 0 0
\(302\) 14.1421 0.813788
\(303\) 5.68629 9.48710i 0.326669 0.545020i
\(304\) −21.7310 −1.24636
\(305\) 6.55635 + 22.9039i 0.375415 + 1.31147i
\(306\) 0 0
\(307\) 32.6147i 1.86142i 0.365758 + 0.930710i \(0.380810\pi\)
−0.365758 + 0.930710i \(0.619190\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −1.85786 + 3.09969i −0.105181 + 0.175485i
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 35.4388i 1.99993i
\(315\) −12.3511 12.7456i −0.695907 0.718132i
\(316\) −33.9411 −1.90934
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −4.92296 17.1978i −0.275202 0.961387i
\(321\) 0 0
\(322\) 22.4499i 1.25109i
\(323\) 0 0
\(324\) −10.0000 + 14.9666i −0.555556 + 0.831479i
\(325\) −1.95169 3.12967i −0.108260 0.173603i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 27.6735 1.51878
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 9.42359 15.7225i 0.514099 0.857731i
\(337\) 26.4575i 1.44123i −0.693334 0.720616i \(-0.743859\pi\)
0.693334 0.720616i \(-0.256141\pi\)
\(338\) 17.6152 0.958142
\(339\) −21.0100 12.5928i −1.14111 0.683947i
\(340\) 0 0
\(341\) 0 0
\(342\) −10.8655 20.3275i −0.587538 1.09918i
\(343\) 18.5203i 1.00000i
\(344\) 0 0
\(345\) 6.00000 22.4499i 0.323029 1.20866i
\(346\) 33.9147 1.82326
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) −3.26989 −0.175033 −0.0875167 0.996163i \(-0.527893\pi\)
−0.0875167 + 0.996163i \(0.527893\pi\)
\(350\) 9.89949 + 15.8745i 0.529150 + 0.848528i
\(351\) −3.82843 0.188028i −0.204346 0.0100362i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) −17.5563 + 29.2913i −0.933109 + 1.55681i
\(355\) 34.1258 9.76869i 1.81121 0.518468i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 37.4166i 1.97477i −0.158334 0.987386i \(-0.550612\pi\)
0.158334 0.987386i \(-0.449388\pi\)
\(360\) 13.6256 13.2039i 0.718132 0.695907i
\(361\) 10.5147 0.553406
\(362\) −35.3566 −1.85830
\(363\) −16.3420 9.79490i −0.857731 0.514099i
\(364\) 3.90338 0.204593
\(365\) 0 0
\(366\) −22.3848 13.4168i −1.17007 0.701307i
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 24.0000 1.25109
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 5.65685 + 18.5203i 0.292119 + 0.956382i
\(376\) 0 0
\(377\) 0 0
\(378\) 19.4188 + 0.953728i 0.998796 + 0.0490545i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 6.68629 + 23.3578i 0.343000 + 1.19823i
\(381\) 19.9905 33.3524i 1.02414 1.70869i
\(382\) 22.4499i 1.14864i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 16.8080 + 10.0742i 0.857731 + 0.514099i
\(385\) 0 0
\(386\) 37.4166i 1.90445i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 3.90338 + 1.04322i 0.197655 + 0.0528256i
\(391\) 0 0
\(392\) −19.7990 −1.00000
\(393\) 20.0711 33.4869i 1.01245 1.68919i
\(394\) 0 0
\(395\) 10.4432 + 36.4821i 0.525453 + 1.83561i
\(396\) 0 0
\(397\) 35.7444i 1.79396i −0.442072 0.896980i \(-0.645756\pi\)
0.442072 0.896980i \(-0.354244\pi\)
\(398\) 0 0
\(399\) −12.7990 + 21.3540i −0.640751 + 1.06904i
\(400\) −16.9706 + 10.5830i −0.848528 + 0.529150i
\(401\) 15.8745i 0.792735i 0.918092 + 0.396368i \(0.129729\pi\)
−0.918092 + 0.396368i \(0.870271\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 12.7718i 0.635420i
\(405\) 19.1639 + 6.14362i 0.952263 + 0.305279i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) −26.7414 16.0280i −1.31906 0.790604i
\(412\) 0 0
\(413\) 36.8859 1.81504
\(414\) 12.0000 + 22.4499i 0.589768 + 1.10335i
\(415\) −8.51472 29.7452i −0.417971 1.46014i
\(416\) 4.17289i 0.204593i
\(417\) 34.5563 + 20.7121i 1.69223 + 1.01427i
\(418\) 0 0
\(419\) 18.3676i 0.897316i −0.893704 0.448658i \(-0.851902\pi\)
0.893704 0.448658i \(-0.148098\pi\)
\(420\) −19.7990 5.29150i −0.966092 0.258199i
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −19.9905 + 33.3524i −0.968541 + 1.61593i
\(427\) 28.1887i 1.36415i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 37.4166i 1.80229i 0.433515 + 0.901146i \(0.357273\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(432\) −1.01958 + 20.7596i −0.0490545 + 0.998796i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −32.5965 −1.55930
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −9.89949 18.5203i −0.471405 0.881917i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 21.1660i 1.00000i
\(449\) 29.9333i 1.41264i −0.707894 0.706319i \(-0.750354\pi\)
0.707894 0.706319i \(-0.249646\pi\)
\(450\) −18.3848 10.5830i −0.866667 0.498888i
\(451\) 0 0
\(452\) −28.2843 −1.33038
\(453\) 14.8563 + 8.90446i 0.698011 + 0.418368i
\(454\) 41.2991 1.93826
\(455\) −1.20101 4.19560i −0.0563042 0.196693i
\(456\) −22.8284 13.6827i −1.06904 0.640751i
\(457\) 5.29150i 0.247526i −0.992312 0.123763i \(-0.960504\pi\)
0.992312 0.123763i \(-0.0394963\pi\)
\(458\) −20.5877 −0.962000
\(459\) 0 0
\(460\) −7.38443 25.7967i −0.344301 1.20278i
\(461\) 25.6701i 1.19558i −0.801654 0.597789i \(-0.796046\pi\)
0.801654 0.597789i \(-0.203954\pi\)
\(462\) 0 0
\(463\) 26.4575i 1.22958i 0.788689 + 0.614792i \(0.210760\pi\)
−0.788689 + 0.614792i \(0.789240\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −8.48528 −0.393073
\(467\) 21.2212 0.982000 0.491000 0.871160i \(-0.336632\pi\)
0.491000 + 0.871160i \(0.336632\pi\)
\(468\) −3.90338 + 2.08644i −0.180434 + 0.0964459i
\(469\) 0 0
\(470\) 0 0
\(471\) 22.3137 37.2285i 1.02816 1.71540i
\(472\) 39.4327i 1.81504i
\(473\) 0 0
\(474\) −35.6552 21.3707i −1.63770 0.981588i
\(475\) 23.0492 14.3737i 1.05757 0.659510i
\(476\) 0 0
\(477\) 0 0
\(478\) 10.5830i 0.484055i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 5.65685 21.1660i 0.258199 0.966092i
\(481\) 0 0
\(482\) 0 0
\(483\) 14.1354 23.5837i 0.643182 1.07310i
\(484\) −22.0000 −1.00000
\(485\) 0 0
\(486\) −19.9286 + 9.42607i −0.903980 + 0.427575i
\(487\) 22.4499i 1.01730i 0.860972 + 0.508652i \(0.169856\pi\)
−0.860972 + 0.508652i \(0.830144\pi\)
\(488\) −30.1350 −1.36415
\(489\) 0 0
\(490\) 6.09185 + 21.2812i 0.275202 + 0.961387i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 5.66756i 0.254995i
\(495\) 0 0
\(496\) 0 0
\(497\) 42.0000 1.88396
\(498\) 29.0711 + 17.4244i 1.30271 + 0.780804i
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 16.5969 + 14.9848i 0.742234 + 0.670141i
\(501\) 0 0
\(502\) 1.65433i 0.0738362i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 19.7990 10.5830i 0.881917 0.471405i
\(505\) −13.7279 + 3.92969i −0.610885 + 0.174869i
\(506\) 0 0
\(507\) 18.5048 + 11.0913i 0.821828 + 0.492580i
\(508\) 44.8999i 1.99211i
\(509\) 8.72547i 0.386750i −0.981125 0.193375i \(-0.938057\pi\)
0.981125 0.193375i \(-0.0619433\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274 1.00000
\(513\) 1.38478 28.1954i 0.0611394 1.24486i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 35.6274 + 21.3540i 1.56387 + 0.937338i
\(520\) 4.48528 1.28393i 0.196693 0.0563042i
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 44.7754i 1.95789i −0.204120 0.978946i \(-0.565433\pi\)
0.204120 0.978946i \(-0.434567\pi\)
\(524\) 45.0810i 1.96937i
\(525\) 0.404208 + 22.9093i 0.0176411 + 0.999844i
\(526\) 40.0000 1.74408
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −36.8859 + 19.7164i −1.60071 + 0.855617i
\(532\) 28.7474i 1.24636i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 27.4510i 1.18350i
\(539\) 0 0
\(540\) 22.6274 5.29150i 0.973729 0.227710i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −37.1421 22.2619i −1.59392 0.955350i
\(544\) 0 0
\(545\) 0 0
\(546\) 4.10051 + 2.45772i 0.175485 + 0.105181i
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) −36.0000 −1.53784
\(549\) −15.0675 28.1887i −0.643065 1.20306i
\(550\) 0 0
\(551\) 0 0
\(552\) 25.2120 + 15.1114i 1.07310 + 0.643182i
\(553\) 44.8999i 1.90934i
\(554\) 0 0
\(555\) 0 0
\(556\) 46.5207 1.97292
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −22.7506 + 6.51246i −0.961387 + 0.275202i
\(561\) 0 0
\(562\) 21.1660i 0.892834i
\(563\) −39.0488 −1.64571 −0.822855 0.568251i \(-0.807620\pi\)
−0.822855 + 0.568251i \(0.807620\pi\)
\(564\) 0 0
\(565\) 8.70264 + 30.4017i 0.366123 + 1.27901i
\(566\) 41.9513i 1.76334i
\(567\) 19.7990 + 13.2288i 0.831479 + 0.555556i
\(568\) 44.8999i 1.88396i
\(569\) 47.6235i 1.99648i 0.0592869 + 0.998241i \(0.481117\pi\)
−0.0592869 + 0.998241i \(0.518883\pi\)
\(570\) −7.68306 + 28.7474i −0.321808 + 1.20410i
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 14.1354 23.5837i 0.590514 0.985223i
\(574\) 0 0
\(575\) −25.4558 + 15.8745i −1.06158 + 0.662013i
\(576\) 11.3137 + 21.1660i 0.471405 + 0.881917i
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 24.0416 1.00000
\(579\) −23.5590 + 39.3062i −0.979078 + 1.63351i
\(580\) 0 0
\(581\) 36.6086i 1.51878i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 3.44365 + 3.55363i 0.142377 + 0.146925i
\(586\) −16.5094 −0.681997
\(587\) 3.39359 0.140068 0.0700342 0.997545i \(-0.477689\pi\)
0.0700342 + 0.997545i \(0.477689\pi\)
\(588\) −20.7989 12.4662i −0.857731 0.514099i
\(589\) 0 0
\(590\) 42.3848 12.1329i 1.74495 0.499502i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 6.25933i 0.255963i
\(599\) 47.6235i 1.94584i −0.231133 0.972922i \(-0.574243\pi\)
0.231133 0.972922i \(-0.425757\pi\)
\(600\) −24.4911 + 0.432117i −0.999844 + 0.0176411i
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 20.0000 0.813788
\(605\) 6.76906 + 23.6470i 0.275202 + 0.961387i
\(606\) 8.04163 13.4168i 0.326669 0.545020i
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) −30.7322 −1.24636
\(609\) 0 0
\(610\) 9.27208 + 32.3910i 0.375415 + 1.31147i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 46.1242i 1.86142i
\(615\) 0 0
\(616\) 0 0
\(617\) 14.1421 0.569341 0.284670 0.958625i \(-0.408116\pi\)
0.284670 + 0.958625i \(0.408116\pi\)
\(618\) 0 0
\(619\) 48.4724 1.94827 0.974135 0.225968i \(-0.0725544\pi\)
0.974135 + 0.225968i \(0.0725544\pi\)
\(620\) 0 0
\(621\) −1.52937 + 31.1394i −0.0613714 + 1.24958i
\(622\) 0 0
\(623\) 0 0
\(624\) −2.62742 + 4.38362i −0.105181 + 0.175485i
\(625\) 11.0000 22.4499i 0.440000 0.897998i
\(626\) 0 0
\(627\) 0 0
\(628\) 50.1181i 1.99993i
\(629\) 0 0
\(630\) −17.4671 18.0250i −0.695907 0.718132i
\(631\) 33.9411 1.35117 0.675587 0.737280i \(-0.263890\pi\)
0.675587 + 0.737280i \(0.263890\pi\)
\(632\) −48.0000 −1.90934
\(633\) 0 0
\(634\) 0 0
\(635\) −48.2612 + 13.8150i −1.91519 + 0.548232i
\(636\) 0 0
\(637\) 5.16368i 0.204593i
\(638\) 0 0
\(639\) −42.0000 + 22.4499i −1.66149 + 0.888106i
\(640\) −6.96211 24.3214i −0.275202 0.961387i
\(641\) 15.8745i 0.627005i 0.949587 + 0.313503i \(0.101502\pi\)
−0.949587 + 0.313503i \(0.898498\pi\)
\(642\) 0 0
\(643\) 23.4047i 0.922992i −0.887142 0.461496i \(-0.847313\pi\)
0.887142 0.461496i \(-0.152687\pi\)
\(644\) 31.7490i 1.25109i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −14.1421 + 21.1660i −0.555556 + 0.831479i
\(649\) 0 0
\(650\) −2.76011 4.42602i −0.108260 0.173603i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) −48.4558 + 13.8707i −1.89333 + 0.541974i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 7.59560 0.295434 0.147717 0.989030i \(-0.452807\pi\)
0.147717 + 0.989030i \(0.452807\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 39.1363 1.51878
\(665\) 30.8995 8.84513i 1.19823 0.343000i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 13.3270 22.2349i 0.514099 0.857731i
\(673\) 44.8999i 1.73076i −0.501113 0.865382i \(-0.667076\pi\)
0.501113 0.865382i \(-0.332924\pi\)
\(674\) 37.4166i 1.44123i
\(675\) −12.6498 22.6933i −0.486889 0.873464i
\(676\) 24.9117 0.958142
\(677\) 29.5015 1.13384 0.566918 0.823775i \(-0.308136\pi\)
0.566918 + 0.823775i \(0.308136\pi\)
\(678\) −29.7127 17.8089i −1.14111 0.683947i
\(679\) 0 0
\(680\) 0 0
\(681\) 43.3848 + 26.0036i 1.66251 + 0.996459i
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) −15.3661 28.7474i −0.587538 1.09918i
\(685\) 11.0767 + 38.6951i 0.423217 + 1.47846i
\(686\) 26.1916i 1.00000i
\(687\) −21.6274 12.9628i −0.825137 0.494563i
\(688\) 0 0
\(689\) 0 0
\(690\) 8.48528 31.7490i 0.323029 1.20866i
\(691\) 33.7035 1.28214 0.641071 0.767482i \(-0.278490\pi\)
0.641071 + 0.767482i \(0.278490\pi\)
\(692\) 47.9626 1.82326
\(693\) 0 0
\(694\) 0 0
\(695\) −14.3137 50.0034i −0.542950 1.89674i
\(696\) 0 0
\(697\) 0 0
\(698\) −4.62433 −0.175033
\(699\) −8.91380 5.34267i −0.337151 0.202078i
\(700\) 14.0000 + 22.4499i 0.529150 + 0.848528i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −5.41421 0.265911i −0.204346 0.0100362i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −16.8955 −0.635420
\(708\) −24.8284 + 41.4241i −0.933109 + 1.55681i
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 48.2612 13.8150i 1.81121 0.518468i
\(711\) −24.0000 44.8999i −0.900070 1.68388i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.66348 11.1175i 0.248852 0.415189i
\(718\) 52.9150i 1.97477i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 19.2695 18.6731i 0.718132 0.695907i
\(721\) 0 0
\(722\) 14.8701 0.553406
\(723\) 0 0
\(724\) −50.0017 −1.85830
\(725\) 0 0
\(726\) −23.1110 13.8521i −0.857731 0.514099i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 5.52021 0.204593
\(729\) −26.8701 2.64575i −0.995187 0.0979908i
\(730\) 0 0
\(731\) 0 0
\(732\) −31.6569 18.9742i −1.17007 0.701307i
\(733\) 6.99700i 0.258440i −0.991616 0.129220i \(-0.958753\pi\)
0.991616 0.129220i \(-0.0412474\pi\)
\(734\) 0 0
\(735\) −7.00000 + 26.1916i −0.258199 + 0.966092i
\(736\) 33.9411 1.25109
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 3.56852 5.95378i 0.131093 0.218718i
\(742\) 0 0
\(743\) −54.0000 −1.98107 −0.990534 0.137268i \(-0.956168\pi\)
−0.990534 + 0.137268i \(0.956168\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 19.5681 + 36.6086i 0.715960 + 1.33944i
\(748\) 0 0
\(749\) 0 0
\(750\) 8.00000 + 26.1916i 0.292119 + 0.956382i
\(751\) −50.0000 −1.82453 −0.912263 0.409605i \(-0.865667\pi\)
−0.912263 + 0.409605i \(0.865667\pi\)
\(752\) 0 0
\(753\) −1.04163 + 1.73787i −0.0379591 + 0.0633316i
\(754\) 0 0
\(755\) −6.15370 21.4973i −0.223956 0.782365i
\(756\) 27.4624 + 1.34877i 0.998796 + 0.0490545i
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 9.45584 + 33.0329i 0.343000 + 1.19823i
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 28.2708 47.1674i 1.02414 1.70869i
\(763\) 0 0
\(764\) 31.7490i 1.14864i
\(765\) 0 0
\(766\) 0 0
\(767\) −10.2843 −0.371344
\(768\) 23.7701 + 14.2471i 0.857731 + 0.514099i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 52.9150i 1.90445i
\(773\) −49.1933 −1.76936 −0.884681 0.466198i \(-0.845624\pi\)
−0.884681 + 0.466198i \(0.845624\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 5.52021 + 1.47534i 0.197655 + 0.0528256i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −28.0000 −1.00000
\(785\) −53.8701 + 15.4206i −1.92270 + 0.550384i
\(786\) 28.3848 47.3576i 1.01245 1.68919i
\(787\) 55.4608i 1.97696i 0.151344 + 0.988481i \(0.451640\pi\)
−0.151344 + 0.988481i \(0.548360\pi\)
\(788\) 0 0
\(789\) 42.0201 + 25.1856i 1.49595 + 0.896631i
\(790\) 14.7689 + 51.5934i 0.525453 + 1.83561i
\(791\) 37.4166i 1.33038i
\(792\) 0 0
\(793\) 7.85937i 0.279094i
\(794\) 50.5502i 1.79396i
\(795\) 0 0
\(796\) 0 0
\(797\) −33.8272 −1.19822 −0.599111 0.800666i \(-0.704479\pi\)
−0.599111 + 0.800666i \(0.704479\pi\)
\(798\) −18.1005 + 30.1992i −0.640751 + 1.06904i
\(799\) 0 0
\(800\) −24.0000 + 14.9666i −0.848528 + 0.529150i
\(801\) 0 0
\(802\) 22.4499i 0.792735i
\(803\) 0 0
\(804\) 0 0
\(805\) −34.1258 + 9.76869i −1.20278 + 0.344301i
\(806\) 0 0
\(807\) −17.2843 + 28.8374i −0.608435 + 1.01512i
\(808\) 18.0620i 0.635420i
\(809\) 47.6235i 1.67435i −0.546932 0.837177i \(-0.684204\pi\)
0.546932 0.837177i \(-0.315796\pi\)
\(810\) 27.1019 + 8.68840i 0.952263 + 0.305279i
\(811\) −55.4345 −1.94657 −0.973284 0.229604i \(-0.926257\pi\)
−0.973284 + 0.229604i \(0.926257\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 2.76011 + 5.16368i 0.0964459 + 0.180434i
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) −37.8181 22.6670i −1.31906 0.790604i
\(823\) 26.4575i 0.922251i 0.887335 + 0.461125i \(0.152554\pi\)
−0.887335 + 0.461125i \(0.847446\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 52.1646 1.81504
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 16.9706 + 31.7490i 0.589768 + 1.10335i
\(829\) −39.7697 −1.38126 −0.690630 0.723208i \(-0.742667\pi\)
−0.690630 + 0.723208i \(0.742667\pi\)
\(830\) −12.0416 42.0661i −0.417971 1.46014i
\(831\) 0 0
\(832\) 5.90135i 0.204593i
\(833\) 0 0
\(834\) 48.8701 + 29.2913i 1.69223 + 1.01427i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 25.9757i 0.897316i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) −28.0000 7.48331i −0.966092 0.258199i
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 13.3270 22.2349i 0.459005 0.765812i
\(844\) 0 0
\(845\) −7.66495 26.7766i −0.263682 0.921145i
\(846\) 0 0
\(847\) 29.1033i 1.00000i
\(848\) 0 0
\(849\) −26.4142 + 44.0699i −0.906533 + 1.51247i
\(850\) 0 0
\(851\) 0 0
\(852\) −28.2708 + 47.1674i −0.968541 + 1.61593i
\(853\) 46.4297i 1.58972i 0.606790 + 0.794862i \(0.292457\pi\)
−0.606790 + 0.794862i \(0.707543\pi\)
\(854\) 39.8648i 1.36415i
\(855\) −26.1716 + 25.3616i −0.895049 + 0.867349i
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 22.8380 0.779223 0.389612 0.920979i \(-0.372609\pi\)
0.389612 + 0.920979i \(0.372609\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 52.9150i 1.80229i
\(863\) −56.5685 −1.92562 −0.962808 0.270187i \(-0.912914\pi\)
−0.962808 + 0.270187i \(0.912914\pi\)
\(864\) −1.44190 + 29.3585i −0.0490545 + 0.998796i
\(865\) −14.7574 51.5532i −0.501765 1.75286i
\(866\) 0 0
\(867\) 25.2558 + 15.1376i 0.857731 + 0.514099i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) −46.0984 −1.55930
\(875\) 19.8230 21.9556i 0.670141 0.742234i
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) −17.3431 10.3950i −0.584970 0.350614i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) −14.0000 26.1916i −0.471405 0.881917i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 52.1646 + 13.9416i 1.75349 + 0.468641i
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −59.3970 −1.99211
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 1.00000i
\(897\) −3.94113 + 6.57544i −0.131590 + 0.219547i
\(898\) 42.3320i 1.41264i
\(899\) 0 0
\(900\) −26.0000 14.9666i −0.866667 0.498888i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −40.0000 −1.33038
\(905\) 15.3848 + 53.7450i 0.511407 + 1.78654i
\(906\) 21.0100 + 12.5928i 0.698011 + 0.418368i
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 58.4058 1.93826
\(909\) 16.8955 9.03102i 0.560388 0.299540i
\(910\) −1.69848 5.93347i −0.0563042 0.196693i
\(911\) 52.3832i 1.73553i 0.496972 + 0.867766i \(0.334445\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) −32.2843 19.3503i −1.06904 0.640751i
\(913\) 0 0
\(914\) 7.48331i 0.247526i
\(915\) −10.6543 + 39.8648i −0.352221 + 1.31789i
\(916\) −29.1154 −0.962000
\(917\) −59.6365 −1.96937
\(918\) 0 0
\(919\) 16.9706 0.559807 0.279904 0.960028i \(-0.409697\pi\)
0.279904 + 0.960028i \(0.409697\pi\)
\(920\) −10.4432 36.4821i −0.344301 1.20278i
\(921\) −29.0416 + 48.4535i −0.956954 + 1.59660i
\(922\) 36.3031i 1.19558i
\(923\) −11.7101 −0.385444
\(924\) 0 0
\(925\) 0 0
\(926\) 37.4166i 1.22958i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 38.0292 1.24636
\(932\) −12.0000 −0.393073
\(933\) 0 0
\(934\) 30.0113 0.982000
\(935\) 0 0
\(936\) −5.52021 + 2.95068i −0.180434 + 0.0964459i
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27.7566i 0.904839i 0.891805 + 0.452419i \(0.149439\pi\)
−0.891805 + 0.452419i \(0.850561\pi\)
\(942\) 31.5563 52.6491i 1.02816 1.71540i
\(943\) 0 0
\(944\) 55.7663i 1.81504i
\(945\) −7.00000 29.9333i −0.227710 0.973729i
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) −50.4241 30.2227i −1.63770 0.981588i
\(949\) 0 0
\(950\) 32.5965 20.3275i 1.05757 0.659510i
\(951\) 0 0
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) −34.1258 + 9.76869i −1.10429 + 0.316107i
\(956\) 14.9666i 0.484055i
\(957\) 0 0
\(958\) 0 0
\(959\) 47.6235i 1.53784i
\(960\) 8.00000 29.9333i 0.258199 0.966092i
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 56.8764 16.2811i 1.83092 0.524109i
\(966\) 19.9905 33.3524i 0.643182 1.07310i
\(967\) 22.4499i 0.721942i −0.932577 0.360971i \(-0.882445\pi\)
0.932577 0.360971i \(-0.117555\pi\)
\(968\) −31.1127 −1.00000
\(969\) 0 0
\(970\) 0 0
\(971\) 44.1643i 1.41730i −0.705560 0.708650i \(-0.749305\pi\)
0.705560 0.708650i \(-0.250695\pi\)
\(972\) −28.1833 + 13.3305i −0.903980 + 0.427575i
\(973\) 61.5411i 1.97292i
\(974\) 31.7490i 1.01730i
\(975\) −0.112698 6.38741i −0.00360924 0.204561i
\(976\) −42.6173 −1.36415
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 8.61517 + 30.0962i 0.275202 + 0.961387i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 8.01514i 0.254995i
\(989\) 0 0
\(990\) 0 0
\(991\) −50.9117 −1.61726 −0.808632 0.588315i \(-0.799791\pi\)
−0.808632 + 0.588315i \(0.799791\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 59.3970 1.88396
\(995\) 0 0
\(996\) 41.1127 + 24.6418i 1.30271 + 0.780804i
\(997\) 63.0164i 1.99575i −0.0651544 0.997875i \(-0.520754\pi\)
0.0651544 0.997875i \(-0.479246\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.u.d.629.8 yes 8
3.2 odd 2 840.2.u.c.629.2 yes 8
5.4 even 2 840.2.u.c.629.1 8
7.6 odd 2 inner 840.2.u.d.629.5 yes 8
8.5 even 2 inner 840.2.u.d.629.5 yes 8
15.14 odd 2 inner 840.2.u.d.629.7 yes 8
21.20 even 2 840.2.u.c.629.3 yes 8
24.5 odd 2 840.2.u.c.629.3 yes 8
35.34 odd 2 840.2.u.c.629.4 yes 8
40.29 even 2 840.2.u.c.629.4 yes 8
56.13 odd 2 CM 840.2.u.d.629.8 yes 8
105.104 even 2 inner 840.2.u.d.629.6 yes 8
120.29 odd 2 inner 840.2.u.d.629.6 yes 8
168.125 even 2 840.2.u.c.629.2 yes 8
280.69 odd 2 840.2.u.c.629.1 8
840.629 even 2 inner 840.2.u.d.629.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.u.c.629.1 8 5.4 even 2
840.2.u.c.629.1 8 280.69 odd 2
840.2.u.c.629.2 yes 8 3.2 odd 2
840.2.u.c.629.2 yes 8 168.125 even 2
840.2.u.c.629.3 yes 8 21.20 even 2
840.2.u.c.629.3 yes 8 24.5 odd 2
840.2.u.c.629.4 yes 8 35.34 odd 2
840.2.u.c.629.4 yes 8 40.29 even 2
840.2.u.d.629.5 yes 8 7.6 odd 2 inner
840.2.u.d.629.5 yes 8 8.5 even 2 inner
840.2.u.d.629.6 yes 8 105.104 even 2 inner
840.2.u.d.629.6 yes 8 120.29 odd 2 inner
840.2.u.d.629.7 yes 8 15.14 odd 2 inner
840.2.u.d.629.7 yes 8 840.629 even 2 inner
840.2.u.d.629.8 yes 8 1.1 even 1 trivial
840.2.u.d.629.8 yes 8 56.13 odd 2 CM