Properties

Label 840.2.u.d.629.1
Level $840$
Weight $2$
Character 840.629
Analytic conductor $6.707$
Analytic rank $0$
Dimension $8$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(629,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.629"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.u (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,16,0,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2517630976.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 11x^{4} + 4x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 629.1
Root \(-1.52009 - 1.05050i\) of defining polynomial
Character \(\chi\) \(=\) 840.629
Dual form 840.2.u.d.629.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} +(-0.890446 - 1.48563i) q^{3} +2.00000 q^{4} +(-2.14973 - 0.615370i) q^{5} +(1.25928 + 2.10100i) q^{6} -2.64575i q^{7} -2.82843 q^{8} +(-1.41421 + 2.64575i) q^{9} +(3.04017 + 0.870264i) q^{10} +(-1.78089 - 2.97127i) q^{12} +7.17327i q^{13} +3.74166i q^{14} +(1.00000 + 3.74166i) q^{15} +4.00000 q^{16} +(2.00000 - 3.74166i) q^{18} -6.81801 q^{19} +(-4.29945 - 1.23074i) q^{20} +(-3.93062 + 2.35590i) q^{21} +6.00000 q^{23} +(2.51856 + 4.20201i) q^{24} +(4.24264 + 2.64575i) q^{25} -10.1445i q^{26} +(5.18990 - 0.254894i) q^{27} -5.29150i q^{28} +(-1.41421 - 5.29150i) q^{30} -5.65685 q^{32} +(-1.62811 + 5.68764i) q^{35} +(-2.82843 + 5.29150i) q^{36} +9.64212 q^{38} +(10.6569 - 6.38741i) q^{39} +(6.08034 + 1.74053i) q^{40} +(5.55873 - 3.33174i) q^{42} +(4.66829 - 4.81738i) q^{45} -8.48528 q^{46} +(-3.56178 - 5.94253i) q^{48} -7.00000 q^{49} +(-6.00000 - 3.74166i) q^{50} +14.3465i q^{52} +(-7.33962 + 0.360475i) q^{54} +7.48331i q^{56} +(6.07107 + 10.1291i) q^{57} -6.45232i q^{59} +(2.00000 + 7.48331i) q^{60} +11.4230 q^{61} +(7.00000 + 3.74166i) q^{63} +8.00000 q^{64} +(4.41421 - 15.4206i) q^{65} +(-5.34267 - 8.91380i) q^{69} +(2.30250 - 8.04354i) q^{70} +15.8745i q^{71} +(4.00000 - 7.48331i) q^{72} +(0.152776 - 8.65891i) q^{75} -13.6360 q^{76} +(-15.0711 + 9.03316i) q^{78} +16.9706 q^{79} +(-8.59890 - 2.46148i) q^{80} +(-5.00000 - 7.48331i) q^{81} +11.8551 q^{83} +(-7.86123 + 4.71179i) q^{84} +(-6.60195 + 6.81280i) q^{90} +18.9787 q^{91} +12.0000 q^{92} +(14.6569 + 4.19560i) q^{95} +(5.03712 + 8.40401i) q^{96} +9.89949 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} + 8 q^{15} + 32 q^{16} + 16 q^{18} + 48 q^{23} + 40 q^{39} - 56 q^{49} - 48 q^{50} - 8 q^{57} + 16 q^{60} + 56 q^{63} + 64 q^{64} + 24 q^{65} + 32 q^{72} - 64 q^{78} - 40 q^{81} + 96 q^{92}+ \cdots + 72 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −1.00000
\(3\) −0.890446 1.48563i −0.514099 0.857731i
\(4\) 2.00000 1.00000
\(5\) −2.14973 0.615370i −0.961387 0.275202i
\(6\) 1.25928 + 2.10100i 0.514099 + 0.857731i
\(7\) 2.64575i 1.00000i
\(8\) −2.82843 −1.00000
\(9\) −1.41421 + 2.64575i −0.471405 + 0.881917i
\(10\) 3.04017 + 0.870264i 0.961387 + 0.275202i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −1.78089 2.97127i −0.514099 0.857731i
\(13\) 7.17327i 1.98951i 0.102296 + 0.994754i \(0.467381\pi\)
−0.102296 + 0.994754i \(0.532619\pi\)
\(14\) 3.74166i 1.00000i
\(15\) 1.00000 + 3.74166i 0.258199 + 0.966092i
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 2.00000 3.74166i 0.471405 0.881917i
\(19\) −6.81801 −1.56416 −0.782080 0.623179i \(-0.785841\pi\)
−0.782080 + 0.623179i \(0.785841\pi\)
\(20\) −4.29945 1.23074i −0.961387 0.275202i
\(21\) −3.93062 + 2.35590i −0.857731 + 0.514099i
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 2.51856 + 4.20201i 0.514099 + 0.857731i
\(25\) 4.24264 + 2.64575i 0.848528 + 0.529150i
\(26\) 10.1445i 1.98951i
\(27\) 5.18990 0.254894i 0.998796 0.0490545i
\(28\) 5.29150i 1.00000i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) −1.41421 5.29150i −0.258199 0.966092i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −5.65685 −1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) −1.62811 + 5.68764i −0.275202 + 0.961387i
\(36\) −2.82843 + 5.29150i −0.471405 + 0.881917i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 9.64212 1.56416
\(39\) 10.6569 6.38741i 1.70646 1.02280i
\(40\) 6.08034 + 1.74053i 0.961387 + 0.275202i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 5.55873 3.33174i 0.857731 0.514099i
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 4.66829 4.81738i 0.695907 0.718132i
\(46\) −8.48528 −1.25109
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −3.56178 5.94253i −0.514099 0.857731i
\(49\) −7.00000 −1.00000
\(50\) −6.00000 3.74166i −0.848528 0.529150i
\(51\) 0 0
\(52\) 14.3465i 1.98951i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −7.33962 + 0.360475i −0.998796 + 0.0490545i
\(55\) 0 0
\(56\) 7.48331i 1.00000i
\(57\) 6.07107 + 10.1291i 0.804133 + 1.34163i
\(58\) 0 0
\(59\) 6.45232i 0.840021i −0.907519 0.420010i \(-0.862026\pi\)
0.907519 0.420010i \(-0.137974\pi\)
\(60\) 2.00000 + 7.48331i 0.258199 + 0.966092i
\(61\) 11.4230 1.46257 0.731284 0.682073i \(-0.238922\pi\)
0.731284 + 0.682073i \(0.238922\pi\)
\(62\) 0 0
\(63\) 7.00000 + 3.74166i 0.881917 + 0.471405i
\(64\) 8.00000 1.00000
\(65\) 4.41421 15.4206i 0.547516 1.91269i
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) −5.34267 8.91380i −0.643182 1.07310i
\(70\) 2.30250 8.04354i 0.275202 0.961387i
\(71\) 15.8745i 1.88396i 0.335673 + 0.941979i \(0.391036\pi\)
−0.335673 + 0.941979i \(0.608964\pi\)
\(72\) 4.00000 7.48331i 0.471405 0.881917i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0.152776 8.65891i 0.0176411 0.999844i
\(76\) −13.6360 −1.56416
\(77\) 0 0
\(78\) −15.0711 + 9.03316i −1.70646 + 1.02280i
\(79\) 16.9706 1.90934 0.954669 0.297670i \(-0.0962096\pi\)
0.954669 + 0.297670i \(0.0962096\pi\)
\(80\) −8.59890 2.46148i −0.961387 0.275202i
\(81\) −5.00000 7.48331i −0.555556 0.831479i
\(82\) 0 0
\(83\) 11.8551 1.30127 0.650635 0.759391i \(-0.274503\pi\)
0.650635 + 0.759391i \(0.274503\pi\)
\(84\) −7.86123 + 4.71179i −0.857731 + 0.514099i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −6.60195 + 6.81280i −0.695907 + 0.718132i
\(91\) 18.9787 1.98951
\(92\) 12.0000 1.25109
\(93\) 0 0
\(94\) 0 0
\(95\) 14.6569 + 4.19560i 1.50376 + 0.430459i
\(96\) 5.03712 + 8.40401i 0.514099 + 0.857731i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 9.89949 1.00000
\(99\) 0 0
\(100\) 8.48528 + 5.29150i 0.848528 + 0.529150i
\(101\) 19.0583i 1.89638i 0.317710 + 0.948188i \(0.397086\pi\)
−0.317710 + 0.948188i \(0.602914\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 20.2891i 1.98951i
\(105\) 9.89949 2.64575i 0.966092 0.258199i
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 10.3798 0.509789i 0.998796 0.0490545i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 10.5830i 1.00000i
\(113\) 14.1421 1.33038 0.665190 0.746674i \(-0.268350\pi\)
0.665190 + 0.746674i \(0.268350\pi\)
\(114\) −8.58579 14.3247i −0.804133 1.34163i
\(115\) −12.8984 3.69222i −1.20278 0.344301i
\(116\) 0 0
\(117\) −18.9787 10.1445i −1.75458 0.937863i
\(118\) 9.12496i 0.840021i
\(119\) 0 0
\(120\) −2.82843 10.5830i −0.258199 0.966092i
\(121\) −11.0000 −1.00000
\(122\) −16.1546 −1.46257
\(123\) 0 0
\(124\) 0 0
\(125\) −7.49240 8.29843i −0.670141 0.742234i
\(126\) −9.89949 5.29150i −0.881917 0.471405i
\(127\) 22.4499i 1.99211i 0.0887357 + 0.996055i \(0.471717\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) −11.3137 −1.00000
\(129\) 0 0
\(130\) −6.24264 + 21.8080i −0.547516 + 1.91269i
\(131\) 3.99084i 0.348682i 0.984685 + 0.174341i \(0.0557795\pi\)
−0.984685 + 0.174341i \(0.944221\pi\)
\(132\) 0 0
\(133\) 18.0388i 1.56416i
\(134\) 0 0
\(135\) −11.3137 2.64575i −0.973729 0.227710i
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 7.55568 + 12.6060i 0.643182 + 1.07310i
\(139\) −3.86733 −0.328023 −0.164012 0.986458i \(-0.552443\pi\)
−0.164012 + 0.986458i \(0.552443\pi\)
\(140\) −3.25623 + 11.3753i −0.275202 + 0.961387i
\(141\) 0 0
\(142\) 22.4499i 1.88396i
\(143\) 0 0
\(144\) −5.65685 + 10.5830i −0.471405 + 0.881917i
\(145\) 0 0
\(146\) 0 0
\(147\) 6.23312 + 10.3994i 0.514099 + 0.857731i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) −0.216058 + 12.2455i −0.0176411 + 0.999844i
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 19.2842 1.56416
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 21.3137 12.7748i 1.70646 1.02280i
\(157\) 0.211161i 0.0168525i −0.999964 0.00842626i \(-0.997318\pi\)
0.999964 0.00842626i \(-0.00268219\pi\)
\(158\) −24.0000 −1.90934
\(159\) 0 0
\(160\) 12.1607 + 3.48106i 0.961387 + 0.275202i
\(161\) 15.8745i 1.25109i
\(162\) 7.07107 + 10.5830i 0.555556 + 0.831479i
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −16.7657 −1.30127
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 11.1175 6.66348i 0.857731 0.514099i
\(169\) −38.4558 −2.95814
\(170\) 0 0
\(171\) 9.64212 18.0388i 0.737352 1.37946i
\(172\) 0 0
\(173\) 10.8119 0.822014 0.411007 0.911632i \(-0.365177\pi\)
0.411007 + 0.911632i \(0.365177\pi\)
\(174\) 0 0
\(175\) 7.00000 11.2250i 0.529150 0.848528i
\(176\) 0 0
\(177\) −9.58579 + 5.74544i −0.720512 + 0.431854i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 9.33657 9.63475i 0.695907 0.718132i
\(181\) 9.94768 0.739405 0.369703 0.929150i \(-0.379460\pi\)
0.369703 + 0.929150i \(0.379460\pi\)
\(182\) −26.8399 −1.98951
\(183\) −10.1716 16.9704i −0.751904 1.25449i
\(184\) −16.9706 −1.25109
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.674387 13.7312i −0.0490545 0.998796i
\(190\) −20.7279 5.93347i −1.50376 0.430459i
\(191\) 15.8745i 1.14864i −0.818631 0.574320i \(-0.805267\pi\)
0.818631 0.574320i \(-0.194733\pi\)
\(192\) −7.12356 11.8851i −0.514099 0.857731i
\(193\) 26.4575i 1.90445i 0.305392 + 0.952227i \(0.401213\pi\)
−0.305392 + 0.952227i \(0.598787\pi\)
\(194\) 0 0
\(195\) −26.8399 + 7.17327i −1.92205 + 0.513689i
\(196\) −14.0000 −1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −12.0000 7.48331i −0.848528 0.529150i
\(201\) 0 0
\(202\) 26.9526i 1.89638i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −8.48528 + 15.8745i −0.589768 + 1.10335i
\(208\) 28.6931i 1.98951i
\(209\) 0 0
\(210\) −14.0000 + 3.74166i −0.966092 + 0.258199i
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 23.5837 14.1354i 1.61593 0.968541i
\(214\) 0 0
\(215\) 0 0
\(216\) −14.6792 + 0.720950i −0.998796 + 0.0490545i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 14.9666i 1.00000i
\(225\) −13.0000 + 7.48331i −0.866667 + 0.498888i
\(226\) −20.0000 −1.33038
\(227\) −7.42912 −0.493088 −0.246544 0.969132i \(-0.579295\pi\)
−0.246544 + 0.969132i \(0.579295\pi\)
\(228\) 12.1421 + 20.2581i 0.804133 + 1.34163i
\(229\) −26.5344 −1.75344 −0.876720 0.481000i \(-0.840274\pi\)
−0.876720 + 0.481000i \(0.840274\pi\)
\(230\) 18.2410 + 5.22158i 1.20278 + 0.344301i
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 26.8399 + 14.3465i 1.75458 + 0.937863i
\(235\) 0 0
\(236\) 12.9046i 0.840021i
\(237\) −15.1114 25.2120i −0.981588 1.63770i
\(238\) 0 0
\(239\) 7.48331i 0.484055i 0.970269 + 0.242028i \(0.0778125\pi\)
−0.970269 + 0.242028i \(0.922188\pi\)
\(240\) 4.00000 + 14.9666i 0.258199 + 0.966092i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 15.5563 1.00000
\(243\) −6.66524 + 14.0917i −0.427575 + 0.903980i
\(244\) 22.8460 1.46257
\(245\) 15.0481 + 4.30759i 0.961387 + 0.275202i
\(246\) 0 0
\(247\) 48.9075i 3.11191i
\(248\) 0 0
\(249\) −10.5563 17.6124i −0.668981 1.11614i
\(250\) 10.5959 + 11.7358i 0.670141 + 0.742234i
\(251\) 31.6644i 1.99864i 0.0369181 + 0.999318i \(0.488246\pi\)
−0.0369181 + 0.999318i \(0.511754\pi\)
\(252\) 14.0000 + 7.48331i 0.881917 + 0.471405i
\(253\) 0 0
\(254\) 31.7490i 1.99211i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 8.82843 30.8411i 0.547516 1.91269i
\(261\) 0 0
\(262\) 5.64391i 0.348682i
\(263\) −28.2843 −1.74408 −0.872041 0.489432i \(-0.837204\pi\)
−0.872041 + 0.489432i \(0.837204\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 25.5107i 1.56416i
\(267\) 0 0
\(268\) 0 0
\(269\) 26.4428i 1.61224i 0.591749 + 0.806122i \(0.298438\pi\)
−0.591749 + 0.806122i \(0.701562\pi\)
\(270\) 16.0000 + 3.74166i 0.973729 + 0.227710i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) −16.8995 28.1954i −1.02280 1.70646i
\(274\) 25.4558 1.53784
\(275\) 0 0
\(276\) −10.6853 17.8276i −0.643182 1.07310i
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 5.46924 0.328023
\(279\) 0 0
\(280\) 4.60500 16.0871i 0.275202 0.961387i
\(281\) 14.9666i 0.892834i 0.894825 + 0.446417i \(0.147300\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) 15.8759i 0.943725i −0.881672 0.471863i \(-0.843582\pi\)
0.881672 0.471863i \(-0.156418\pi\)
\(284\) 31.7490i 1.88396i
\(285\) −6.81801 25.5107i −0.403864 1.51112i
\(286\) 0 0
\(287\) 0 0
\(288\) 8.00000 14.9666i 0.471405 0.881917i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 32.1826 1.88013 0.940064 0.340998i \(-0.110765\pi\)
0.940064 + 0.340998i \(0.110765\pi\)
\(294\) −8.81496 14.7070i −0.514099 0.857731i
\(295\) −3.97056 + 13.8707i −0.231175 + 0.807585i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 43.0396i 2.48905i
\(300\) 0.305553 17.3178i 0.0176411 0.999844i
\(301\) 0 0
\(302\) −14.1421 −0.813788
\(303\) 28.3137 16.9704i 1.62658 0.974925i
\(304\) −27.2720 −1.56416
\(305\) −24.5563 7.02938i −1.40609 0.402501i
\(306\) 0 0
\(307\) 12.8172i 0.731515i 0.930710 + 0.365758i \(0.119190\pi\)
−0.930710 + 0.365758i \(0.880810\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −30.1421 + 18.0663i −1.70646 + 1.02280i
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0.298627i 0.0168525i
\(315\) −12.7456 12.3511i −0.718132 0.695907i
\(316\) 33.9411 1.90934
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −17.1978 4.92296i −0.961387 0.275202i
\(321\) 0 0
\(322\) 22.4499i 1.25109i
\(323\) 0 0
\(324\) −10.0000 14.9666i −0.555556 0.831479i
\(325\) −18.9787 + 30.4336i −1.05275 + 1.68815i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 23.7103 1.30127
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −15.7225 + 9.42359i −0.857731 + 0.514099i
\(337\) 26.4575i 1.44123i −0.693334 0.720616i \(-0.743859\pi\)
0.693334 0.720616i \(-0.256141\pi\)
\(338\) 54.3848 2.95814
\(339\) −12.5928 21.0100i −0.683947 1.14111i
\(340\) 0 0
\(341\) 0 0
\(342\) −13.6360 + 25.5107i −0.737352 + 1.37946i
\(343\) 18.5203i 1.00000i
\(344\) 0 0
\(345\) 6.00000 + 22.4499i 0.323029 + 1.20866i
\(346\) −15.2904 −0.822014
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 37.2197 1.99233 0.996163 0.0875167i \(-0.0278931\pi\)
0.996163 + 0.0875167i \(0.0278931\pi\)
\(350\) −9.89949 + 15.8745i −0.529150 + 0.848528i
\(351\) 1.82843 + 37.2285i 0.0975942 + 1.98711i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 13.5563 8.12528i 0.720512 0.431854i
\(355\) 9.76869 34.1258i 0.518468 1.81121i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 37.4166i 1.97477i 0.158334 + 0.987386i \(0.449388\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) −13.2039 + 13.6256i −0.695907 + 0.718132i
\(361\) 27.4853 1.44659
\(362\) −14.0681 −0.739405
\(363\) 9.79490 + 16.3420i 0.514099 + 0.857731i
\(364\) 37.9574 1.98951
\(365\) 0 0
\(366\) 14.3848 + 23.9998i 0.751904 + 1.25449i
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 24.0000 1.25109
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) −5.65685 + 18.5203i −0.292119 + 0.956382i
\(376\) 0 0
\(377\) 0 0
\(378\) 0.953728 + 19.4188i 0.0490545 + 0.998796i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 29.3137 + 8.39119i 1.50376 + 0.430459i
\(381\) 33.3524 19.9905i 1.70869 1.02414i
\(382\) 22.4499i 1.14864i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 10.0742 + 16.8080i 0.514099 + 0.857731i
\(385\) 0 0
\(386\) 37.4166i 1.90445i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 37.9574 10.1445i 1.92205 0.513689i
\(391\) 0 0
\(392\) 19.7990 1.00000
\(393\) 5.92893 3.55363i 0.299075 0.179257i
\(394\) 0 0
\(395\) −36.4821 10.4432i −1.83561 0.525453i
\(396\) 0 0
\(397\) 17.6164i 0.884144i 0.896980 + 0.442072i \(0.145756\pi\)
−0.896980 + 0.442072i \(0.854244\pi\)
\(398\) 0 0
\(399\) 26.7990 16.0625i 1.34163 0.804133i
\(400\) 16.9706 + 10.5830i 0.848528 + 0.529150i
\(401\) 15.8745i 0.792735i 0.918092 + 0.396368i \(0.129729\pi\)
−0.918092 + 0.396368i \(0.870271\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 38.1167i 1.89638i
\(405\) 6.14362 + 19.1639i 0.305279 + 0.952263i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 16.0280 + 26.7414i 0.790604 + 1.31906i
\(412\) 0 0
\(413\) −17.0712 −0.840021
\(414\) 12.0000 22.4499i 0.589768 1.10335i
\(415\) −25.4853 7.29529i −1.25102 0.358112i
\(416\) 40.5782i 1.98951i
\(417\) 3.44365 + 5.74544i 0.168636 + 0.281355i
\(418\) 0 0
\(419\) 36.5873i 1.78741i −0.448658 0.893704i \(-0.648098\pi\)
0.448658 0.893704i \(-0.351902\pi\)
\(420\) 19.7990 5.29150i 0.966092 0.258199i
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −33.3524 + 19.9905i −1.61593 + 0.968541i
\(427\) 30.2225i 1.46257i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 37.4166i 1.80229i −0.433515 0.901146i \(-0.642727\pi\)
0.433515 0.901146i \(-0.357273\pi\)
\(432\) 20.7596 1.01958i 0.998796 0.0490545i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −40.9081 −1.95690
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 9.89949 18.5203i 0.471405 0.881917i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 21.1660i 1.00000i
\(449\) 29.9333i 1.41264i 0.707894 + 0.706319i \(0.249646\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 18.3848 10.5830i 0.866667 0.498888i
\(451\) 0 0
\(452\) 28.2843 1.33038
\(453\) −8.90446 14.8563i −0.418368 0.698011i
\(454\) 10.5064 0.493088
\(455\) −40.7990 11.6789i −1.91269 0.547516i
\(456\) −17.1716 28.6493i −0.804133 1.34163i
\(457\) 5.29150i 0.247526i −0.992312 0.123763i \(-0.960504\pi\)
0.992312 0.123763i \(-0.0394963\pi\)
\(458\) 37.5253 1.75344
\(459\) 0 0
\(460\) −25.7967 7.38443i −1.20278 0.344301i
\(461\) 34.4245i 1.60331i 0.597789 + 0.801654i \(0.296046\pi\)
−0.597789 + 0.801654i \(0.703954\pi\)
\(462\) 0 0
\(463\) 26.4575i 1.22958i 0.788689 + 0.614792i \(0.210760\pi\)
−0.788689 + 0.614792i \(0.789240\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 8.48528 0.393073
\(467\) 37.6518 1.74232 0.871160 0.491000i \(-0.163368\pi\)
0.871160 + 0.491000i \(0.163368\pi\)
\(468\) −37.9574 20.2891i −1.75458 0.937863i
\(469\) 0 0
\(470\) 0 0
\(471\) −0.313708 + 0.188028i −0.0144549 + 0.00866386i
\(472\) 18.2499i 0.840021i
\(473\) 0 0
\(474\) 21.3707 + 35.6552i 0.981588 + 1.63770i
\(475\) −28.9264 18.0388i −1.32723 0.827675i
\(476\) 0 0
\(477\) 0 0
\(478\) 10.5830i 0.484055i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) −5.65685 21.1660i −0.258199 0.966092i
\(481\) 0 0
\(482\) 0 0
\(483\) −23.5837 + 14.1354i −1.07310 + 0.643182i
\(484\) −22.0000 −1.00000
\(485\) 0 0
\(486\) 9.42607 19.9286i 0.427575 0.903980i
\(487\) 22.4499i 1.01730i −0.860972 0.508652i \(-0.830144\pi\)
0.860972 0.508652i \(-0.169856\pi\)
\(488\) −32.3092 −1.46257
\(489\) 0 0
\(490\) −21.2812 6.09185i −0.961387 0.275202i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 69.1656i 3.11191i
\(495\) 0 0
\(496\) 0 0
\(497\) 42.0000 1.88396
\(498\) 14.9289 + 24.9077i 0.668981 + 1.11614i
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −14.9848 16.5969i −0.670141 0.742234i
\(501\) 0 0
\(502\) 44.7802i 1.99864i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −19.7990 10.5830i −0.881917 0.471405i
\(505\) 11.7279 40.9702i 0.521886 1.82315i
\(506\) 0 0
\(507\) 34.2428 + 57.1313i 1.52078 + 2.53729i
\(508\) 44.8999i 1.99211i
\(509\) 44.2704i 1.96225i −0.193375 0.981125i \(-0.561943\pi\)
0.193375 0.981125i \(-0.438057\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.6274 −1.00000
\(513\) −35.3848 + 1.73787i −1.56228 + 0.0767290i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −9.62742 16.0625i −0.422597 0.705067i
\(520\) −12.4853 + 43.6160i −0.547516 + 1.91269i
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 9.33612i 0.408240i −0.978946 0.204120i \(-0.934567\pi\)
0.978946 0.204120i \(-0.0654333\pi\)
\(524\) 7.98169i 0.348682i
\(525\) −22.9093 0.404208i −0.999844 0.0176411i
\(526\) 40.0000 1.74408
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 17.0712 + 9.12496i 0.740829 + 0.395990i
\(532\) 36.0775i 1.56416i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 37.3957i 1.61224i
\(539\) 0 0
\(540\) −22.6274 5.29150i −0.973729 0.227710i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −8.85786 14.7786i −0.380127 0.634211i
\(544\) 0 0
\(545\) 0 0
\(546\) 23.8995 + 39.8743i 1.02280 + 1.70646i
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) −36.0000 −1.53784
\(549\) −16.1546 + 30.2225i −0.689461 + 1.28986i
\(550\) 0 0
\(551\) 0 0
\(552\) 15.1114 + 25.2120i 0.643182 + 1.07310i
\(553\) 44.8999i 1.90934i
\(554\) 0 0
\(555\) 0 0
\(556\) −7.73467 −0.328023
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −6.51246 + 22.7506i −0.275202 + 0.961387i
\(561\) 0 0
\(562\) 21.1660i 0.892834i
\(563\) −26.9665 −1.13650 −0.568251 0.822855i \(-0.692380\pi\)
−0.568251 + 0.822855i \(0.692380\pi\)
\(564\) 0 0
\(565\) −30.4017 8.70264i −1.27901 0.366123i
\(566\) 22.4519i 0.943725i
\(567\) −19.7990 + 13.2288i −0.831479 + 0.555556i
\(568\) 44.8999i 1.88396i
\(569\) 47.6235i 1.99648i 0.0592869 + 0.998241i \(0.481117\pi\)
−0.0592869 + 0.998241i \(0.518883\pi\)
\(570\) 9.64212 + 36.0775i 0.403864 + 1.51112i
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −23.5837 + 14.1354i −0.985223 + 0.590514i
\(574\) 0 0
\(575\) 25.4558 + 15.8745i 1.06158 + 0.662013i
\(576\) −11.3137 + 21.1660i −0.471405 + 0.881917i
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −24.0416 −1.00000
\(579\) 39.3062 23.5590i 1.63351 0.979078i
\(580\) 0 0
\(581\) 31.3657i 1.30127i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 34.5563 + 33.4869i 1.42873 + 1.38451i
\(586\) −45.5131 −1.88013
\(587\) 48.3372 1.99509 0.997545 0.0700342i \(-0.0223108\pi\)
0.997545 + 0.0700342i \(0.0223108\pi\)
\(588\) 12.4662 + 20.7989i 0.514099 + 0.857731i
\(589\) 0 0
\(590\) 5.61522 19.6162i 0.231175 0.807585i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 60.8672i 2.48905i
\(599\) 47.6235i 1.94584i −0.231133 0.972922i \(-0.574243\pi\)
0.231133 0.972922i \(-0.425757\pi\)
\(600\) −0.432117 + 24.4911i −0.0176411 + 0.999844i
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 20.0000 0.813788
\(605\) 23.6470 + 6.76906i 0.961387 + 0.275202i
\(606\) −40.0416 + 23.9998i −1.62658 + 0.974925i
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 38.5685 1.56416
\(609\) 0 0
\(610\) 34.7279 + 9.94104i 1.40609 + 0.402501i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 18.1262i 0.731515i
\(615\) 0 0
\(616\) 0 0
\(617\) −14.1421 −0.569341 −0.284670 0.958625i \(-0.591884\pi\)
−0.284670 + 0.958625i \(0.591884\pi\)
\(618\) 0 0
\(619\) 11.2440 0.451936 0.225968 0.974135i \(-0.427446\pi\)
0.225968 + 0.974135i \(0.427446\pi\)
\(620\) 0 0
\(621\) 31.1394 1.52937i 1.24958 0.0613714i
\(622\) 0 0
\(623\) 0 0
\(624\) 42.6274 25.5496i 1.70646 1.02280i
\(625\) 11.0000 + 22.4499i 0.440000 + 0.897998i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.422323i 0.0168525i
\(629\) 0 0
\(630\) 18.0250 + 17.4671i 0.718132 + 0.695907i
\(631\) −33.9411 −1.35117 −0.675587 0.737280i \(-0.736110\pi\)
−0.675587 + 0.737280i \(0.736110\pi\)
\(632\) −48.0000 −1.90934
\(633\) 0 0
\(634\) 0 0
\(635\) 13.8150 48.2612i 0.548232 1.91519i
\(636\) 0 0
\(637\) 50.2129i 1.98951i
\(638\) 0 0
\(639\) −42.0000 22.4499i −1.66149 0.888106i
\(640\) 24.3214 + 6.96211i 0.961387 + 0.275202i
\(641\) 15.8745i 0.627005i 0.949587 + 0.313503i \(0.101502\pi\)
−0.949587 + 0.313503i \(0.898498\pi\)
\(642\) 0 0
\(643\) 44.9913i 1.77428i −0.461496 0.887142i \(-0.652687\pi\)
0.461496 0.887142i \(-0.347313\pi\)
\(644\) 31.7490i 1.25109i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 14.1421 + 21.1660i 0.555556 + 0.831479i
\(649\) 0 0
\(650\) 26.8399 43.0396i 1.05275 1.68815i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 2.45584 8.57922i 0.0959578 0.335218i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 50.8557 1.97806 0.989030 0.147717i \(-0.0471926\pi\)
0.989030 + 0.147717i \(0.0471926\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −33.5314 −1.30127
\(665\) 11.1005 38.7784i 0.430459 1.50376i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 22.2349 13.3270i 0.857731 0.514099i
\(673\) 44.8999i 1.73076i 0.501113 + 0.865382i \(0.332924\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 37.4166i 1.44123i
\(675\) 22.6933 + 12.6498i 0.873464 + 0.486889i
\(676\) −76.9117 −2.95814
\(677\) −42.8679 −1.64755 −0.823775 0.566918i \(-0.808136\pi\)
−0.823775 + 0.566918i \(0.808136\pi\)
\(678\) 17.8089 + 29.7127i 0.683947 + 1.14111i
\(679\) 0 0
\(680\) 0 0
\(681\) 6.61522 + 11.0369i 0.253496 + 0.422937i
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 19.2842 36.0775i 0.737352 1.37946i
\(685\) 38.6951 + 11.0767i 1.47846 + 0.423217i
\(686\) 26.1916i 1.00000i
\(687\) 23.6274 + 39.4204i 0.901442 + 1.50398i
\(688\) 0 0
\(689\) 0 0
\(690\) −8.48528 31.7490i −0.323029 1.20866i
\(691\) −40.3494 −1.53496 −0.767482 0.641071i \(-0.778490\pi\)
−0.767482 + 0.641071i \(0.778490\pi\)
\(692\) 21.6238 0.822014
\(693\) 0 0
\(694\) 0 0
\(695\) 8.31371 + 2.37984i 0.315357 + 0.0902725i
\(696\) 0 0
\(697\) 0 0
\(698\) −52.6366 −1.99233
\(699\) 5.34267 + 8.91380i 0.202078 + 0.337151i
\(700\) 14.0000 22.4499i 0.529150 0.848528i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −2.58579 52.6491i −0.0975942 1.98711i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 50.4236 1.89638
\(708\) −19.1716 + 11.4909i −0.720512 + 0.431854i
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) −13.8150 + 48.2612i −0.518468 + 1.81121i
\(711\) −24.0000 + 44.8999i −0.900070 + 1.68388i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11.1175 6.66348i 0.415189 0.248852i
\(718\) 52.9150i 1.97477i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 18.6731 19.2695i 0.695907 0.718132i
\(721\) 0 0
\(722\) −38.8701 −1.44659
\(723\) 0 0
\(724\) 19.8954 0.739405
\(725\) 0 0
\(726\) −13.8521 23.1110i −0.514099 0.857731i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) −53.6799 −1.98951
\(729\) 26.8701 2.64575i 0.995187 0.0979908i
\(730\) 0 0
\(731\) 0 0
\(732\) −20.3431 33.9408i −0.751904 1.25449i
\(733\) 53.6940i 1.98323i 0.129220 + 0.991616i \(0.458753\pi\)
−0.129220 + 0.991616i \(0.541247\pi\)
\(734\) 0 0
\(735\) −7.00000 26.1916i −0.258199 0.966092i
\(736\) −33.9411 −1.25109
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) −72.6586 + 43.5494i −2.66918 + 1.59983i
\(742\) 0 0
\(743\) −54.0000 −1.98107 −0.990534 0.137268i \(-0.956168\pi\)
−0.990534 + 0.137268i \(0.956168\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −16.7657 + 31.3657i −0.613424 + 1.14761i
\(748\) 0 0
\(749\) 0 0
\(750\) 8.00000 26.1916i 0.292119 0.956382i
\(751\) −50.0000 −1.82453 −0.912263 0.409605i \(-0.865667\pi\)
−0.912263 + 0.409605i \(0.865667\pi\)
\(752\) 0 0
\(753\) 47.0416 28.1954i 1.71429 1.02750i
\(754\) 0 0
\(755\) −21.4973 6.15370i −0.782365 0.223956i
\(756\) −1.34877 27.4624i −0.0490545 0.998796i
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −41.4558 11.8669i −1.50376 0.430459i
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) −47.1674 + 28.2708i −1.70869 + 1.02414i
\(763\) 0 0
\(764\) 31.7490i 1.14864i
\(765\) 0 0
\(766\) 0 0
\(767\) 46.2843 1.67123
\(768\) −14.2471 23.7701i −0.514099 0.857731i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 52.9150i 1.90445i
\(773\) −25.9233 −0.932395 −0.466198 0.884681i \(-0.654376\pi\)
−0.466198 + 0.884681i \(0.654376\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −53.6799 + 14.3465i −1.92205 + 0.513689i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −28.0000 −1.00000
\(785\) −0.129942 + 0.453939i −0.00463784 + 0.0162018i
\(786\) −8.38478 + 5.02559i −0.299075 + 0.179257i
\(787\) 8.49148i 0.302688i −0.988481 0.151344i \(-0.951640\pi\)
0.988481 0.151344i \(-0.0483602\pi\)
\(788\) 0 0
\(789\) 25.1856 + 42.0201i 0.896631 + 1.49595i
\(790\) 51.5934 + 14.7689i 1.83561 + 0.525453i
\(791\) 37.4166i 1.33038i
\(792\) 0 0
\(793\) 81.9404i 2.90979i
\(794\) 24.9134i 0.884144i
\(795\) 0 0
\(796\) 0 0
\(797\) −45.2075 −1.60133 −0.800666 0.599111i \(-0.795521\pi\)
−0.800666 + 0.599111i \(0.795521\pi\)
\(798\) −37.8995 + 22.7159i −1.34163 + 0.804133i
\(799\) 0 0
\(800\) −24.0000 14.9666i −0.848528 0.529150i
\(801\) 0 0
\(802\) 22.4499i 0.792735i
\(803\) 0 0
\(804\) 0 0
\(805\) −9.76869 + 34.1258i −0.344301 + 1.20278i
\(806\) 0 0
\(807\) 39.2843 23.5459i 1.38287 0.828853i
\(808\) 53.9051i 1.89638i
\(809\) 47.6235i 1.67435i −0.546932 0.837177i \(-0.684204\pi\)
0.546932 0.837177i \(-0.315796\pi\)
\(810\) −8.68840 27.1019i −0.305279 0.952263i
\(811\) 13.0773 0.459208 0.229604 0.973284i \(-0.426257\pi\)
0.229604 + 0.973284i \(0.426257\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −26.8399 + 50.2129i −0.937863 + 1.75458i
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) −22.6670 37.8181i −0.790604 1.31906i
\(823\) 26.4575i 0.922251i 0.887335 + 0.461125i \(0.152554\pi\)
−0.887335 + 0.461125i \(0.847446\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 24.1424 0.840021
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) −16.9706 + 31.7490i −0.589768 + 1.10335i
\(829\) −41.6457 −1.44642 −0.723208 0.690630i \(-0.757333\pi\)
−0.723208 + 0.690630i \(0.757333\pi\)
\(830\) 36.0416 + 10.3171i 1.25102 + 0.358112i
\(831\) 0 0
\(832\) 57.3862i 1.98951i
\(833\) 0 0
\(834\) −4.87006 8.12528i −0.168636 0.281355i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 51.7423i 1.78741i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) −28.0000 + 7.48331i −0.966092 + 0.258199i
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 22.2349 13.3270i 0.765812 0.459005i
\(844\) 0 0
\(845\) 82.6695 + 23.6646i 2.84392 + 0.814085i
\(846\) 0 0
\(847\) 29.1033i 1.00000i
\(848\) 0 0
\(849\) −23.5858 + 14.1366i −0.809462 + 0.485168i
\(850\) 0 0
\(851\) 0 0
\(852\) 47.1674 28.2708i 1.61593 0.968541i
\(853\) 35.4440i 1.21358i −0.794862 0.606790i \(-0.792457\pi\)
0.794862 0.606790i \(-0.207543\pi\)
\(854\) 42.7410i 1.46257i
\(855\) −31.8284 + 32.8449i −1.08851 + 1.12327i
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −53.9854 −1.84196 −0.920979 0.389612i \(-0.872609\pi\)
−0.920979 + 0.389612i \(0.872609\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 52.9150i 1.80229i
\(863\) 56.5685 1.92562 0.962808 0.270187i \(-0.0870856\pi\)
0.962808 + 0.270187i \(0.0870856\pi\)
\(864\) −29.3585 + 1.44190i −0.998796 + 0.0490545i
\(865\) −23.2426 6.65332i −0.790273 0.226220i
\(866\) 0 0
\(867\) −15.1376 25.2558i −0.514099 0.857731i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 57.8527 1.95690
\(875\) −21.9556 + 19.8230i −0.742234 + 0.670141i
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) −28.6569 47.8116i −0.966572 1.61264i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) −14.0000 + 26.1916i −0.471405 + 0.881917i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 24.1424 6.45232i 0.811537 0.216892i
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 59.3970 1.99211
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 1.00000i
\(897\) 63.9411 38.3245i 2.13493 1.27962i
\(898\) 42.3320i 1.41264i
\(899\) 0 0
\(900\) −26.0000 + 14.9666i −0.866667 + 0.498888i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −40.0000 −1.33038
\(905\) −21.3848 6.12150i −0.710854 0.203485i
\(906\) 12.5928 + 21.0100i 0.418368 + 0.698011i
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) −14.8582 −0.493088
\(909\) −50.4236 26.9526i −1.67245 0.893960i
\(910\) 57.6985 + 16.5165i 1.91269 + 0.547516i
\(911\) 52.3832i 1.73553i −0.496972 0.867766i \(-0.665555\pi\)
0.496972 0.867766i \(-0.334445\pi\)
\(912\) 24.2843 + 40.5163i 0.804133 + 1.34163i
\(913\) 0 0
\(914\) 7.48331i 0.247526i
\(915\) 11.4230 + 42.7410i 0.377633 + 1.41297i
\(916\) −53.0688 −1.75344
\(917\) 10.5588 0.348682
\(918\) 0 0
\(919\) −16.9706 −0.559807 −0.279904 0.960028i \(-0.590303\pi\)
−0.279904 + 0.960028i \(0.590303\pi\)
\(920\) 36.4821 + 10.4432i 1.20278 + 0.344301i
\(921\) 19.0416 11.4130i 0.627443 0.376071i
\(922\) 48.6835i 1.60331i
\(923\) −113.872 −3.74815
\(924\) 0 0
\(925\) 0 0
\(926\) 37.4166i 1.22958i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 47.7261 1.56416
\(932\) −12.0000 −0.393073
\(933\) 0 0
\(934\) −53.2477 −1.74232
\(935\) 0 0
\(936\) 53.6799 + 28.6931i 1.75458 + 0.937863i
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 54.7135i 1.78361i −0.452419 0.891805i \(-0.649439\pi\)
0.452419 0.891805i \(-0.350561\pi\)
\(942\) 0.443651 0.265911i 0.0144549 0.00866386i
\(943\) 0 0
\(944\) 25.8093i 0.840021i
\(945\) −7.00000 + 29.9333i −0.227710 + 0.973729i
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) −30.2227 50.4241i −0.981588 1.63770i
\(949\) 0 0
\(950\) 40.9081 + 25.5107i 1.32723 + 0.827675i
\(951\) 0 0
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) −9.76869 + 34.1258i −0.316107 + 1.10429i
\(956\) 14.9666i 0.484055i
\(957\) 0 0
\(958\) 0 0
\(959\) 47.6235i 1.53784i
\(960\) 8.00000 + 29.9333i 0.258199 + 0.966092i
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.2811 56.8764i 0.524109 1.83092i
\(966\) 33.3524 19.9905i 1.07310 0.643182i
\(967\) 22.4499i 0.721942i 0.932577 + 0.360971i \(0.117555\pi\)
−0.932577 + 0.360971i \(0.882445\pi\)
\(968\) 31.1127 1.00000
\(969\) 0 0
\(970\) 0 0
\(971\) 43.9717i 1.41112i −0.708650 0.705560i \(-0.750695\pi\)
0.708650 0.705560i \(-0.249305\pi\)
\(972\) −13.3305 + 28.1833i −0.427575 + 0.903980i
\(973\) 10.2320i 0.328023i
\(974\) 31.7490i 1.01730i
\(975\) 62.1127 + 1.09591i 1.98920 + 0.0350971i
\(976\) 45.6921 1.46257
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 30.0962 + 8.61517i 0.961387 + 0.275202i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 97.8149i 3.11191i
\(989\) 0 0
\(990\) 0 0
\(991\) 50.9117 1.61726 0.808632 0.588315i \(-0.200209\pi\)
0.808632 + 0.588315i \(0.200209\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −59.3970 −1.88396
\(995\) 0 0
\(996\) −21.1127 35.2248i −0.668981 1.11614i
\(997\) 4.11454i 0.130309i −0.997875 0.0651544i \(-0.979246\pi\)
0.997875 0.0651544i \(-0.0207540\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.u.d.629.1 yes 8
3.2 odd 2 840.2.u.c.629.7 yes 8
5.4 even 2 840.2.u.c.629.8 yes 8
7.6 odd 2 inner 840.2.u.d.629.4 yes 8
8.5 even 2 inner 840.2.u.d.629.4 yes 8
15.14 odd 2 inner 840.2.u.d.629.2 yes 8
21.20 even 2 840.2.u.c.629.6 yes 8
24.5 odd 2 840.2.u.c.629.6 yes 8
35.34 odd 2 840.2.u.c.629.5 8
40.29 even 2 840.2.u.c.629.5 8
56.13 odd 2 CM 840.2.u.d.629.1 yes 8
105.104 even 2 inner 840.2.u.d.629.3 yes 8
120.29 odd 2 inner 840.2.u.d.629.3 yes 8
168.125 even 2 840.2.u.c.629.7 yes 8
280.69 odd 2 840.2.u.c.629.8 yes 8
840.629 even 2 inner 840.2.u.d.629.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.u.c.629.5 8 35.34 odd 2
840.2.u.c.629.5 8 40.29 even 2
840.2.u.c.629.6 yes 8 21.20 even 2
840.2.u.c.629.6 yes 8 24.5 odd 2
840.2.u.c.629.7 yes 8 3.2 odd 2
840.2.u.c.629.7 yes 8 168.125 even 2
840.2.u.c.629.8 yes 8 5.4 even 2
840.2.u.c.629.8 yes 8 280.69 odd 2
840.2.u.d.629.1 yes 8 1.1 even 1 trivial
840.2.u.d.629.1 yes 8 56.13 odd 2 CM
840.2.u.d.629.2 yes 8 15.14 odd 2 inner
840.2.u.d.629.2 yes 8 840.629 even 2 inner
840.2.u.d.629.3 yes 8 105.104 even 2 inner
840.2.u.d.629.3 yes 8 120.29 odd 2 inner
840.2.u.d.629.4 yes 8 7.6 odd 2 inner
840.2.u.d.629.4 yes 8 8.5 even 2 inner