Properties

Label 840.2.j
Level $840$
Weight $2$
Character orbit 840.j
Rep. character $\chi_{840}(589,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $6$
Sturm bound $384$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.j (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(384\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(840, [\chi])\).

Total New Old
Modular forms 200 72 128
Cusp forms 184 72 112
Eisenstein series 16 0 16

Trace form

\( 72 q - 4 q^{4} + 4 q^{6} + 72 q^{9} + 8 q^{10} - 20 q^{16} + 20 q^{20} + 4 q^{24} - 8 q^{25} + 40 q^{26} - 8 q^{30} + 16 q^{31} - 4 q^{36} + 32 q^{39} - 40 q^{40} + 16 q^{41} - 80 q^{44} + 24 q^{46} - 72 q^{49}+ \cdots + 44 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(840, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
840.2.j.a 840.j 40.f $2$ $6.707$ \(\Q(\sqrt{-1}) \) None 840.2.j.a \(-2\) \(-2\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i-1)q^{2}-q^{3}+2 i q^{4}+(i-2)q^{5}+\cdots\)
840.2.j.b 840.j 40.f $2$ $6.707$ \(\Q(\sqrt{-1}) \) None 840.2.j.b \(-2\) \(2\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-1)q^{2}+q^{3}-2 i q^{4}+(-i-2)q^{5}+\cdots\)
840.2.j.c 840.j 40.f $2$ $6.707$ \(\Q(\sqrt{-1}) \) None 840.2.j.b \(2\) \(-2\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+1)q^{2}-q^{3}+2 i q^{4}+(i+2)q^{5}+\cdots\)
840.2.j.d 840.j 40.f $2$ $6.707$ \(\Q(\sqrt{-1}) \) None 840.2.j.a \(2\) \(2\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+1)q^{2}+q^{3}+2 i q^{4}+(i+2)q^{5}+\cdots\)
840.2.j.e 840.j 40.f $32$ $6.707$ None 840.2.j.e \(-2\) \(-32\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
840.2.j.f 840.j 40.f $32$ $6.707$ None 840.2.j.e \(2\) \(32\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(840, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)