Properties

Label 840.2.j.d
Level $840$
Weight $2$
Character orbit 840.j
Analytic conductor $6.707$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + i ) q^{2} + q^{3} + 2 i q^{4} + ( 2 + i ) q^{5} + ( 1 + i ) q^{6} + i q^{7} + ( -2 + 2 i ) q^{8} + q^{9} +O(q^{10})\) \( q + ( 1 + i ) q^{2} + q^{3} + 2 i q^{4} + ( 2 + i ) q^{5} + ( 1 + i ) q^{6} + i q^{7} + ( -2 + 2 i ) q^{8} + q^{9} + ( 1 + 3 i ) q^{10} + 4 i q^{11} + 2 i q^{12} -2 q^{13} + ( -1 + i ) q^{14} + ( 2 + i ) q^{15} -4 q^{16} -2 i q^{17} + ( 1 + i ) q^{18} -8 i q^{19} + ( -2 + 4 i ) q^{20} + i q^{21} + ( -4 + 4 i ) q^{22} -4 i q^{23} + ( -2 + 2 i ) q^{24} + ( 3 + 4 i ) q^{25} + ( -2 - 2 i ) q^{26} + q^{27} -2 q^{28} + 2 i q^{29} + ( 1 + 3 i ) q^{30} -4 q^{31} + ( -4 - 4 i ) q^{32} + 4 i q^{33} + ( 2 - 2 i ) q^{34} + ( -1 + 2 i ) q^{35} + 2 i q^{36} + 6 q^{37} + ( 8 - 8 i ) q^{38} -2 q^{39} + ( -6 + 2 i ) q^{40} + ( -1 + i ) q^{42} + 10 q^{43} -8 q^{44} + ( 2 + i ) q^{45} + ( 4 - 4 i ) q^{46} + 6 i q^{47} -4 q^{48} - q^{49} + ( -1 + 7 i ) q^{50} -2 i q^{51} -4 i q^{52} + 14 q^{53} + ( 1 + i ) q^{54} + ( -4 + 8 i ) q^{55} + ( -2 - 2 i ) q^{56} -8 i q^{57} + ( -2 + 2 i ) q^{58} -6 i q^{59} + ( -2 + 4 i ) q^{60} + 2 i q^{61} + ( -4 - 4 i ) q^{62} + i q^{63} -8 i q^{64} + ( -4 - 2 i ) q^{65} + ( -4 + 4 i ) q^{66} -10 q^{67} + 4 q^{68} -4 i q^{69} + ( -3 + i ) q^{70} -12 q^{71} + ( -2 + 2 i ) q^{72} -6 i q^{73} + ( 6 + 6 i ) q^{74} + ( 3 + 4 i ) q^{75} + 16 q^{76} -4 q^{77} + ( -2 - 2 i ) q^{78} -14 q^{79} + ( -8 - 4 i ) q^{80} + q^{81} + 12 q^{83} -2 q^{84} + ( 2 - 4 i ) q^{85} + ( 10 + 10 i ) q^{86} + 2 i q^{87} + ( -8 - 8 i ) q^{88} + 8 q^{89} + ( 1 + 3 i ) q^{90} -2 i q^{91} + 8 q^{92} -4 q^{93} + ( -6 + 6 i ) q^{94} + ( 8 - 16 i ) q^{95} + ( -4 - 4 i ) q^{96} -6 i q^{97} + ( -1 - i ) q^{98} + 4 i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 4 q^{5} + 2 q^{6} - 4 q^{8} + 2 q^{9} + O(q^{10}) \) \( 2 q + 2 q^{2} + 2 q^{3} + 4 q^{5} + 2 q^{6} - 4 q^{8} + 2 q^{9} + 2 q^{10} - 4 q^{13} - 2 q^{14} + 4 q^{15} - 8 q^{16} + 2 q^{18} - 4 q^{20} - 8 q^{22} - 4 q^{24} + 6 q^{25} - 4 q^{26} + 2 q^{27} - 4 q^{28} + 2 q^{30} - 8 q^{31} - 8 q^{32} + 4 q^{34} - 2 q^{35} + 12 q^{37} + 16 q^{38} - 4 q^{39} - 12 q^{40} - 2 q^{42} + 20 q^{43} - 16 q^{44} + 4 q^{45} + 8 q^{46} - 8 q^{48} - 2 q^{49} - 2 q^{50} + 28 q^{53} + 2 q^{54} - 8 q^{55} - 4 q^{56} - 4 q^{58} - 4 q^{60} - 8 q^{62} - 8 q^{65} - 8 q^{66} - 20 q^{67} + 8 q^{68} - 6 q^{70} - 24 q^{71} - 4 q^{72} + 12 q^{74} + 6 q^{75} + 32 q^{76} - 8 q^{77} - 4 q^{78} - 28 q^{79} - 16 q^{80} + 2 q^{81} + 24 q^{83} - 4 q^{84} + 4 q^{85} + 20 q^{86} - 16 q^{88} + 16 q^{89} + 2 q^{90} + 16 q^{92} - 8 q^{93} - 12 q^{94} + 16 q^{95} - 8 q^{96} - 2 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
589.1
1.00000i
1.00000i
1.00000 1.00000i 1.00000 2.00000i 2.00000 1.00000i 1.00000 1.00000i 1.00000i −2.00000 2.00000i 1.00000 1.00000 3.00000i
589.2 1.00000 + 1.00000i 1.00000 2.00000i 2.00000 + 1.00000i 1.00000 + 1.00000i 1.00000i −2.00000 + 2.00000i 1.00000 1.00000 + 3.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 840.2.j.d yes 2
4.b odd 2 1 3360.2.j.b 2
5.b even 2 1 840.2.j.a 2
8.b even 2 1 840.2.j.a 2
8.d odd 2 1 3360.2.j.c 2
20.d odd 2 1 3360.2.j.c 2
40.e odd 2 1 3360.2.j.b 2
40.f even 2 1 inner 840.2.j.d yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
840.2.j.a 2 5.b even 2 1
840.2.j.a 2 8.b even 2 1
840.2.j.d yes 2 1.a even 1 1 trivial
840.2.j.d yes 2 40.f even 2 1 inner
3360.2.j.b 2 4.b odd 2 1
3360.2.j.b 2 40.e odd 2 1
3360.2.j.c 2 8.d odd 2 1
3360.2.j.c 2 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(840, [\chi])\):

\( T_{11}^{2} + 16 \)
\( T_{13} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 2 - 2 T + T^{2} \)
$3$ \( ( -1 + T )^{2} \)
$5$ \( 5 - 4 T + T^{2} \)
$7$ \( 1 + T^{2} \)
$11$ \( 16 + T^{2} \)
$13$ \( ( 2 + T )^{2} \)
$17$ \( 4 + T^{2} \)
$19$ \( 64 + T^{2} \)
$23$ \( 16 + T^{2} \)
$29$ \( 4 + T^{2} \)
$31$ \( ( 4 + T )^{2} \)
$37$ \( ( -6 + T )^{2} \)
$41$ \( T^{2} \)
$43$ \( ( -10 + T )^{2} \)
$47$ \( 36 + T^{2} \)
$53$ \( ( -14 + T )^{2} \)
$59$ \( 36 + T^{2} \)
$61$ \( 4 + T^{2} \)
$67$ \( ( 10 + T )^{2} \)
$71$ \( ( 12 + T )^{2} \)
$73$ \( 36 + T^{2} \)
$79$ \( ( 14 + T )^{2} \)
$83$ \( ( -12 + T )^{2} \)
$89$ \( ( -8 + T )^{2} \)
$97$ \( 36 + T^{2} \)
show more
show less