Properties

Label 840.2.f.b.41.7
Level $840$
Weight $2$
Character 840.41
Analytic conductor $6.707$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(41,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + x^{14} - 4 x^{13} + 10 x^{12} - 32 x^{11} + 71 x^{10} - 70 x^{9} + 74 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 41.7
Root \(1.66912 - 0.462633i\) of defining polynomial
Character \(\chi\) \(=\) 840.41
Dual form 840.2.f.b.41.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.462633 - 1.66912i) q^{3} +1.00000 q^{5} +(1.62879 - 2.08496i) q^{7} +(-2.57194 + 1.54438i) q^{9} +0.196087i q^{11} -2.37720i q^{13} +(-0.462633 - 1.66912i) q^{15} +3.36987 q^{17} -2.89268i q^{19} +(-4.23358 - 1.75408i) q^{21} -5.80220i q^{23} +1.00000 q^{25} +(3.76763 + 3.57841i) q^{27} +5.73415i q^{29} -4.66669i q^{31} +(0.327293 - 0.0907162i) q^{33} +(1.62879 - 2.08496i) q^{35} -7.34774 q^{37} +(-3.96785 + 1.09977i) q^{39} -8.59692 q^{41} -0.444609 q^{43} +(-2.57194 + 1.54438i) q^{45} +5.43557 q^{47} +(-1.69409 - 6.79191i) q^{49} +(-1.55901 - 5.62473i) q^{51} +2.24643i q^{53} +0.196087i q^{55} +(-4.82823 + 1.33825i) q^{57} +4.10762 q^{59} -1.24011i q^{61} +(-0.969183 + 7.87786i) q^{63} -2.37720i q^{65} +7.26282 q^{67} +(-9.68459 + 2.68429i) q^{69} -8.21455i q^{71} -11.5044i q^{73} +(-0.462633 - 1.66912i) q^{75} +(0.408833 + 0.319384i) q^{77} -9.71013 q^{79} +(4.22977 - 7.94412i) q^{81} -5.51467 q^{83} +3.36987 q^{85} +(9.57100 - 2.65280i) q^{87} -2.30915 q^{89} +(-4.95637 - 3.87196i) q^{91} +(-7.78927 + 2.15896i) q^{93} -2.89268i q^{95} +6.59507i q^{97} +(-0.302833 - 0.504324i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{5} + 2 q^{7} - 2 q^{9} + 10 q^{21} + 16 q^{25} + 6 q^{27} + 6 q^{33} + 2 q^{35} + 12 q^{37} + 6 q^{39} + 32 q^{41} + 32 q^{43} - 2 q^{45} + 4 q^{47} - 4 q^{49} + 6 q^{51} - 24 q^{59} - 24 q^{63}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.462633 1.66912i −0.267101 0.963669i
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.62879 2.08496i 0.615624 0.788040i
\(8\) 0 0
\(9\) −2.57194 + 1.54438i −0.857314 + 0.514794i
\(10\) 0 0
\(11\) 0.196087i 0.0591224i 0.999563 + 0.0295612i \(0.00941100\pi\)
−0.999563 + 0.0295612i \(0.990589\pi\)
\(12\) 0 0
\(13\) 2.37720i 0.659318i −0.944100 0.329659i \(-0.893066\pi\)
0.944100 0.329659i \(-0.106934\pi\)
\(14\) 0 0
\(15\) −0.462633 1.66912i −0.119451 0.430966i
\(16\) 0 0
\(17\) 3.36987 0.817315 0.408657 0.912688i \(-0.365997\pi\)
0.408657 + 0.912688i \(0.365997\pi\)
\(18\) 0 0
\(19\) 2.89268i 0.663625i −0.943345 0.331813i \(-0.892340\pi\)
0.943345 0.331813i \(-0.107660\pi\)
\(20\) 0 0
\(21\) −4.23358 1.75408i −0.923843 0.382772i
\(22\) 0 0
\(23\) 5.80220i 1.20984i −0.796285 0.604921i \(-0.793205\pi\)
0.796285 0.604921i \(-0.206795\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 3.76763 + 3.57841i 0.725080 + 0.688665i
\(28\) 0 0
\(29\) 5.73415i 1.06480i 0.846491 + 0.532402i \(0.178711\pi\)
−0.846491 + 0.532402i \(0.821289\pi\)
\(30\) 0 0
\(31\) 4.66669i 0.838162i −0.907949 0.419081i \(-0.862352\pi\)
0.907949 0.419081i \(-0.137648\pi\)
\(32\) 0 0
\(33\) 0.327293 0.0907162i 0.0569744 0.0157917i
\(34\) 0 0
\(35\) 1.62879 2.08496i 0.275316 0.352422i
\(36\) 0 0
\(37\) −7.34774 −1.20796 −0.603980 0.796999i \(-0.706419\pi\)
−0.603980 + 0.796999i \(0.706419\pi\)
\(38\) 0 0
\(39\) −3.96785 + 1.09977i −0.635364 + 0.176104i
\(40\) 0 0
\(41\) −8.59692 −1.34261 −0.671307 0.741180i \(-0.734267\pi\)
−0.671307 + 0.741180i \(0.734267\pi\)
\(42\) 0 0
\(43\) −0.444609 −0.0678022 −0.0339011 0.999425i \(-0.510793\pi\)
−0.0339011 + 0.999425i \(0.510793\pi\)
\(44\) 0 0
\(45\) −2.57194 + 1.54438i −0.383403 + 0.230223i
\(46\) 0 0
\(47\) 5.43557 0.792860 0.396430 0.918065i \(-0.370249\pi\)
0.396430 + 0.918065i \(0.370249\pi\)
\(48\) 0 0
\(49\) −1.69409 6.79191i −0.242013 0.970273i
\(50\) 0 0
\(51\) −1.55901 5.62473i −0.218306 0.787620i
\(52\) 0 0
\(53\) 2.24643i 0.308571i 0.988026 + 0.154286i \(0.0493076\pi\)
−0.988026 + 0.154286i \(0.950692\pi\)
\(54\) 0 0
\(55\) 0.196087i 0.0264403i
\(56\) 0 0
\(57\) −4.82823 + 1.33825i −0.639515 + 0.177255i
\(58\) 0 0
\(59\) 4.10762 0.534767 0.267384 0.963590i \(-0.413841\pi\)
0.267384 + 0.963590i \(0.413841\pi\)
\(60\) 0 0
\(61\) 1.24011i 0.158780i −0.996844 0.0793901i \(-0.974703\pi\)
0.996844 0.0793901i \(-0.0252973\pi\)
\(62\) 0 0
\(63\) −0.969183 + 7.87786i −0.122106 + 0.992517i
\(64\) 0 0
\(65\) 2.37720i 0.294856i
\(66\) 0 0
\(67\) 7.26282 0.887295 0.443648 0.896201i \(-0.353684\pi\)
0.443648 + 0.896201i \(0.353684\pi\)
\(68\) 0 0
\(69\) −9.68459 + 2.68429i −1.16589 + 0.323150i
\(70\) 0 0
\(71\) 8.21455i 0.974888i −0.873154 0.487444i \(-0.837929\pi\)
0.873154 0.487444i \(-0.162071\pi\)
\(72\) 0 0
\(73\) 11.5044i 1.34649i −0.739421 0.673243i \(-0.764901\pi\)
0.739421 0.673243i \(-0.235099\pi\)
\(74\) 0 0
\(75\) −0.462633 1.66912i −0.0534202 0.192734i
\(76\) 0 0
\(77\) 0.408833 + 0.319384i 0.0465908 + 0.0363972i
\(78\) 0 0
\(79\) −9.71013 −1.09248 −0.546238 0.837630i \(-0.683940\pi\)
−0.546238 + 0.837630i \(0.683940\pi\)
\(80\) 0 0
\(81\) 4.22977 7.94412i 0.469975 0.882680i
\(82\) 0 0
\(83\) −5.51467 −0.605314 −0.302657 0.953100i \(-0.597874\pi\)
−0.302657 + 0.953100i \(0.597874\pi\)
\(84\) 0 0
\(85\) 3.36987 0.365514
\(86\) 0 0
\(87\) 9.57100 2.65280i 1.02612 0.284410i
\(88\) 0 0
\(89\) −2.30915 −0.244770 −0.122385 0.992483i \(-0.539054\pi\)
−0.122385 + 0.992483i \(0.539054\pi\)
\(90\) 0 0
\(91\) −4.95637 3.87196i −0.519569 0.405892i
\(92\) 0 0
\(93\) −7.78927 + 2.15896i −0.807710 + 0.223874i
\(94\) 0 0
\(95\) 2.89268i 0.296782i
\(96\) 0 0
\(97\) 6.59507i 0.669628i 0.942284 + 0.334814i \(0.108674\pi\)
−0.942284 + 0.334814i \(0.891326\pi\)
\(98\) 0 0
\(99\) −0.302833 0.504324i −0.0304358 0.0506865i
\(100\) 0 0
\(101\) 0.709225 0.0705705 0.0352853 0.999377i \(-0.488766\pi\)
0.0352853 + 0.999377i \(0.488766\pi\)
\(102\) 0 0
\(103\) 11.6159i 1.14455i 0.820062 + 0.572275i \(0.193939\pi\)
−0.820062 + 0.572275i \(0.806061\pi\)
\(104\) 0 0
\(105\) −4.23358 1.75408i −0.413155 0.171181i
\(106\) 0 0
\(107\) 6.85555i 0.662751i 0.943499 + 0.331375i \(0.107513\pi\)
−0.943499 + 0.331375i \(0.892487\pi\)
\(108\) 0 0
\(109\) 18.3995 1.76235 0.881174 0.472792i \(-0.156754\pi\)
0.881174 + 0.472792i \(0.156754\pi\)
\(110\) 0 0
\(111\) 3.39930 + 12.2643i 0.322647 + 1.16407i
\(112\) 0 0
\(113\) 8.13112i 0.764911i 0.923974 + 0.382456i \(0.124922\pi\)
−0.923974 + 0.382456i \(0.875078\pi\)
\(114\) 0 0
\(115\) 5.80220i 0.541058i
\(116\) 0 0
\(117\) 3.67131 + 6.11403i 0.339413 + 0.565242i
\(118\) 0 0
\(119\) 5.48881 7.02604i 0.503159 0.644076i
\(120\) 0 0
\(121\) 10.9615 0.996505
\(122\) 0 0
\(123\) 3.97722 + 14.3493i 0.358613 + 1.29383i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 15.7323 1.39601 0.698006 0.716092i \(-0.254071\pi\)
0.698006 + 0.716092i \(0.254071\pi\)
\(128\) 0 0
\(129\) 0.205691 + 0.742107i 0.0181100 + 0.0653389i
\(130\) 0 0
\(131\) −22.2013 −1.93974 −0.969869 0.243626i \(-0.921663\pi\)
−0.969869 + 0.243626i \(0.921663\pi\)
\(132\) 0 0
\(133\) −6.03110 4.71156i −0.522963 0.408544i
\(134\) 0 0
\(135\) 3.76763 + 3.57841i 0.324266 + 0.307980i
\(136\) 0 0
\(137\) 6.54886i 0.559507i 0.960072 + 0.279754i \(0.0902528\pi\)
−0.960072 + 0.279754i \(0.909747\pi\)
\(138\) 0 0
\(139\) 0.422584i 0.0358431i 0.999839 + 0.0179216i \(0.00570492\pi\)
−0.999839 + 0.0179216i \(0.994295\pi\)
\(140\) 0 0
\(141\) −2.51467 9.07264i −0.211774 0.764054i
\(142\) 0 0
\(143\) 0.466139 0.0389805
\(144\) 0 0
\(145\) 5.73415i 0.476195i
\(146\) 0 0
\(147\) −10.5528 + 5.96981i −0.870380 + 0.492381i
\(148\) 0 0
\(149\) 24.2743i 1.98863i 0.106497 + 0.994313i \(0.466036\pi\)
−0.106497 + 0.994313i \(0.533964\pi\)
\(150\) 0 0
\(151\) 19.9630 1.62456 0.812282 0.583265i \(-0.198225\pi\)
0.812282 + 0.583265i \(0.198225\pi\)
\(152\) 0 0
\(153\) −8.66712 + 5.20437i −0.700695 + 0.420748i
\(154\) 0 0
\(155\) 4.66669i 0.374837i
\(156\) 0 0
\(157\) 6.46198i 0.515722i 0.966182 + 0.257861i \(0.0830177\pi\)
−0.966182 + 0.257861i \(0.916982\pi\)
\(158\) 0 0
\(159\) 3.74957 1.03927i 0.297361 0.0824197i
\(160\) 0 0
\(161\) −12.0973 9.45056i −0.953404 0.744809i
\(162\) 0 0
\(163\) 10.1360 0.793913 0.396956 0.917837i \(-0.370066\pi\)
0.396956 + 0.917837i \(0.370066\pi\)
\(164\) 0 0
\(165\) 0.327293 0.0907162i 0.0254797 0.00706224i
\(166\) 0 0
\(167\) 21.8061 1.68741 0.843704 0.536808i \(-0.180370\pi\)
0.843704 + 0.536808i \(0.180370\pi\)
\(168\) 0 0
\(169\) 7.34890 0.565300
\(170\) 0 0
\(171\) 4.46739 + 7.43979i 0.341630 + 0.568935i
\(172\) 0 0
\(173\) 15.9989 1.21637 0.608186 0.793795i \(-0.291898\pi\)
0.608186 + 0.793795i \(0.291898\pi\)
\(174\) 0 0
\(175\) 1.62879 2.08496i 0.123125 0.157608i
\(176\) 0 0
\(177\) −1.90032 6.85613i −0.142837 0.515338i
\(178\) 0 0
\(179\) 12.6765i 0.947488i 0.880663 + 0.473744i \(0.157098\pi\)
−0.880663 + 0.473744i \(0.842902\pi\)
\(180\) 0 0
\(181\) 12.1474i 0.902912i −0.892293 0.451456i \(-0.850905\pi\)
0.892293 0.451456i \(-0.149095\pi\)
\(182\) 0 0
\(183\) −2.06990 + 0.573717i −0.153011 + 0.0424103i
\(184\) 0 0
\(185\) −7.34774 −0.540216
\(186\) 0 0
\(187\) 0.660788i 0.0483216i
\(188\) 0 0
\(189\) 13.5975 2.02687i 0.989072 0.147433i
\(190\) 0 0
\(191\) 19.1461i 1.38536i −0.721244 0.692682i \(-0.756429\pi\)
0.721244 0.692682i \(-0.243571\pi\)
\(192\) 0 0
\(193\) 21.6408 1.55774 0.778868 0.627188i \(-0.215794\pi\)
0.778868 + 0.627188i \(0.215794\pi\)
\(194\) 0 0
\(195\) −3.96785 + 1.09977i −0.284143 + 0.0787563i
\(196\) 0 0
\(197\) 21.8641i 1.55775i 0.627177 + 0.778877i \(0.284210\pi\)
−0.627177 + 0.778877i \(0.715790\pi\)
\(198\) 0 0
\(199\) 5.31869i 0.377032i 0.982070 + 0.188516i \(0.0603678\pi\)
−0.982070 + 0.188516i \(0.939632\pi\)
\(200\) 0 0
\(201\) −3.36002 12.1225i −0.236997 0.855058i
\(202\) 0 0
\(203\) 11.9555 + 9.33972i 0.839109 + 0.655520i
\(204\) 0 0
\(205\) −8.59692 −0.600435
\(206\) 0 0
\(207\) 8.96081 + 14.9229i 0.622819 + 1.03722i
\(208\) 0 0
\(209\) 0.567216 0.0392351
\(210\) 0 0
\(211\) 6.72971 0.463292 0.231646 0.972800i \(-0.425589\pi\)
0.231646 + 0.972800i \(0.425589\pi\)
\(212\) 0 0
\(213\) −13.7111 + 3.80032i −0.939469 + 0.260394i
\(214\) 0 0
\(215\) −0.444609 −0.0303221
\(216\) 0 0
\(217\) −9.72984 7.60105i −0.660505 0.515993i
\(218\) 0 0
\(219\) −19.2022 + 5.32230i −1.29757 + 0.359648i
\(220\) 0 0
\(221\) 8.01088i 0.538870i
\(222\) 0 0
\(223\) 8.90230i 0.596142i 0.954544 + 0.298071i \(0.0963433\pi\)
−0.954544 + 0.298071i \(0.903657\pi\)
\(224\) 0 0
\(225\) −2.57194 + 1.54438i −0.171463 + 0.102959i
\(226\) 0 0
\(227\) −26.1415 −1.73507 −0.867537 0.497373i \(-0.834298\pi\)
−0.867537 + 0.497373i \(0.834298\pi\)
\(228\) 0 0
\(229\) 17.8960i 1.18260i 0.806451 + 0.591301i \(0.201386\pi\)
−0.806451 + 0.591301i \(0.798614\pi\)
\(230\) 0 0
\(231\) 0.343952 0.830150i 0.0226304 0.0546198i
\(232\) 0 0
\(233\) 26.2856i 1.72203i −0.508582 0.861014i \(-0.669830\pi\)
0.508582 0.861014i \(-0.330170\pi\)
\(234\) 0 0
\(235\) 5.43557 0.354578
\(236\) 0 0
\(237\) 4.49222 + 16.2074i 0.291801 + 1.05278i
\(238\) 0 0
\(239\) 18.3474i 1.18679i −0.804910 0.593397i \(-0.797787\pi\)
0.804910 0.593397i \(-0.202213\pi\)
\(240\) 0 0
\(241\) 22.3756i 1.44134i 0.693278 + 0.720670i \(0.256166\pi\)
−0.693278 + 0.720670i \(0.743834\pi\)
\(242\) 0 0
\(243\) −15.2165 3.38481i −0.976142 0.217135i
\(244\) 0 0
\(245\) −1.69409 6.79191i −0.108232 0.433919i
\(246\) 0 0
\(247\) −6.87648 −0.437540
\(248\) 0 0
\(249\) 2.55127 + 9.20466i 0.161680 + 0.583322i
\(250\) 0 0
\(251\) −21.4170 −1.35183 −0.675914 0.736981i \(-0.736251\pi\)
−0.675914 + 0.736981i \(0.736251\pi\)
\(252\) 0 0
\(253\) 1.13774 0.0715288
\(254\) 0 0
\(255\) −1.55901 5.62473i −0.0976292 0.352234i
\(256\) 0 0
\(257\) 4.19079 0.261414 0.130707 0.991421i \(-0.458275\pi\)
0.130707 + 0.991421i \(0.458275\pi\)
\(258\) 0 0
\(259\) −11.9679 + 15.3197i −0.743650 + 0.951921i
\(260\) 0 0
\(261\) −8.85571 14.7479i −0.548155 0.912872i
\(262\) 0 0
\(263\) 20.3154i 1.25270i −0.779541 0.626352i \(-0.784547\pi\)
0.779541 0.626352i \(-0.215453\pi\)
\(264\) 0 0
\(265\) 2.24643i 0.137997i
\(266\) 0 0
\(267\) 1.06829 + 3.85426i 0.0653782 + 0.235877i
\(268\) 0 0
\(269\) 26.4004 1.60966 0.804831 0.593504i \(-0.202256\pi\)
0.804831 + 0.593504i \(0.202256\pi\)
\(270\) 0 0
\(271\) 1.59460i 0.0968648i −0.998826 0.0484324i \(-0.984577\pi\)
0.998826 0.0484324i \(-0.0154225\pi\)
\(272\) 0 0
\(273\) −4.16981 + 10.0641i −0.252368 + 0.609106i
\(274\) 0 0
\(275\) 0.196087i 0.0118245i
\(276\) 0 0
\(277\) −3.27229 −0.196613 −0.0983064 0.995156i \(-0.531343\pi\)
−0.0983064 + 0.995156i \(0.531343\pi\)
\(278\) 0 0
\(279\) 7.20714 + 12.0024i 0.431480 + 0.718568i
\(280\) 0 0
\(281\) 24.6152i 1.46842i 0.678921 + 0.734211i \(0.262448\pi\)
−0.678921 + 0.734211i \(0.737552\pi\)
\(282\) 0 0
\(283\) 6.38730i 0.379686i 0.981815 + 0.189843i \(0.0607978\pi\)
−0.981815 + 0.189843i \(0.939202\pi\)
\(284\) 0 0
\(285\) −4.82823 + 1.33825i −0.286000 + 0.0792708i
\(286\) 0 0
\(287\) −14.0026 + 17.9242i −0.826546 + 1.05803i
\(288\) 0 0
\(289\) −5.64395 −0.331997
\(290\) 0 0
\(291\) 11.0080 3.05110i 0.645300 0.178858i
\(292\) 0 0
\(293\) 9.71110 0.567329 0.283664 0.958924i \(-0.408450\pi\)
0.283664 + 0.958924i \(0.408450\pi\)
\(294\) 0 0
\(295\) 4.10762 0.239155
\(296\) 0 0
\(297\) −0.701679 + 0.738782i −0.0407155 + 0.0428685i
\(298\) 0 0
\(299\) −13.7930 −0.797671
\(300\) 0 0
\(301\) −0.724174 + 0.926991i −0.0417407 + 0.0534309i
\(302\) 0 0
\(303\) −0.328111 1.18378i −0.0188495 0.0680066i
\(304\) 0 0
\(305\) 1.24011i 0.0710087i
\(306\) 0 0
\(307\) 22.1102i 1.26190i −0.775825 0.630949i \(-0.782666\pi\)
0.775825 0.630949i \(-0.217334\pi\)
\(308\) 0 0
\(309\) 19.3884 5.37390i 1.10297 0.305711i
\(310\) 0 0
\(311\) −15.6135 −0.885359 −0.442679 0.896680i \(-0.645972\pi\)
−0.442679 + 0.896680i \(0.645972\pi\)
\(312\) 0 0
\(313\) 1.04206i 0.0589009i 0.999566 + 0.0294504i \(0.00937572\pi\)
−0.999566 + 0.0294504i \(0.990624\pi\)
\(314\) 0 0
\(315\) −0.969183 + 7.87786i −0.0546073 + 0.443867i
\(316\) 0 0
\(317\) 15.6828i 0.880836i 0.897793 + 0.440418i \(0.145170\pi\)
−0.897793 + 0.440418i \(0.854830\pi\)
\(318\) 0 0
\(319\) −1.12439 −0.0629538
\(320\) 0 0
\(321\) 11.4428 3.17160i 0.638672 0.177021i
\(322\) 0 0
\(323\) 9.74795i 0.542391i
\(324\) 0 0
\(325\) 2.37720i 0.131864i
\(326\) 0 0
\(327\) −8.51219 30.7110i −0.470725 1.69832i
\(328\) 0 0
\(329\) 8.85340 11.3329i 0.488104 0.624805i
\(330\) 0 0
\(331\) −31.2221 −1.71612 −0.858061 0.513548i \(-0.828331\pi\)
−0.858061 + 0.513548i \(0.828331\pi\)
\(332\) 0 0
\(333\) 18.8980 11.3477i 1.03560 0.621850i
\(334\) 0 0
\(335\) 7.26282 0.396810
\(336\) 0 0
\(337\) −27.7126 −1.50960 −0.754800 0.655955i \(-0.772266\pi\)
−0.754800 + 0.655955i \(0.772266\pi\)
\(338\) 0 0
\(339\) 13.5718 3.76172i 0.737121 0.204309i
\(340\) 0 0
\(341\) 0.915076 0.0495541
\(342\) 0 0
\(343\) −16.9202 7.53048i −0.913603 0.406608i
\(344\) 0 0
\(345\) −9.68459 + 2.68429i −0.521401 + 0.144517i
\(346\) 0 0
\(347\) 21.0936i 1.13236i 0.824281 + 0.566181i \(0.191580\pi\)
−0.824281 + 0.566181i \(0.808420\pi\)
\(348\) 0 0
\(349\) 34.2739i 1.83464i −0.398148 0.917321i \(-0.630347\pi\)
0.398148 0.917321i \(-0.369653\pi\)
\(350\) 0 0
\(351\) 8.50660 8.95642i 0.454049 0.478058i
\(352\) 0 0
\(353\) 36.0053 1.91637 0.958183 0.286155i \(-0.0923774\pi\)
0.958183 + 0.286155i \(0.0923774\pi\)
\(354\) 0 0
\(355\) 8.21455i 0.435983i
\(356\) 0 0
\(357\) −14.2666 5.91103i −0.755070 0.312845i
\(358\) 0 0
\(359\) 4.46402i 0.235602i 0.993037 + 0.117801i \(0.0375845\pi\)
−0.993037 + 0.117801i \(0.962416\pi\)
\(360\) 0 0
\(361\) 10.6324 0.559602
\(362\) 0 0
\(363\) −5.07117 18.2962i −0.266167 0.960300i
\(364\) 0 0
\(365\) 11.5044i 0.602167i
\(366\) 0 0
\(367\) 0.327460i 0.0170933i −0.999963 0.00854663i \(-0.997279\pi\)
0.999963 0.00854663i \(-0.00272051\pi\)
\(368\) 0 0
\(369\) 22.1108 13.2769i 1.15104 0.691169i
\(370\) 0 0
\(371\) 4.68372 + 3.65897i 0.243167 + 0.189964i
\(372\) 0 0
\(373\) −10.3788 −0.537393 −0.268696 0.963225i \(-0.586593\pi\)
−0.268696 + 0.963225i \(0.586593\pi\)
\(374\) 0 0
\(375\) −0.462633 1.66912i −0.0238902 0.0861931i
\(376\) 0 0
\(377\) 13.6312 0.702045
\(378\) 0 0
\(379\) 11.7360 0.602837 0.301419 0.953492i \(-0.402540\pi\)
0.301419 + 0.953492i \(0.402540\pi\)
\(380\) 0 0
\(381\) −7.27825 26.2591i −0.372876 1.34529i
\(382\) 0 0
\(383\) 11.9198 0.609073 0.304536 0.952501i \(-0.401499\pi\)
0.304536 + 0.952501i \(0.401499\pi\)
\(384\) 0 0
\(385\) 0.408833 + 0.319384i 0.0208360 + 0.0162773i
\(386\) 0 0
\(387\) 1.14351 0.686646i 0.0581278 0.0349042i
\(388\) 0 0
\(389\) 10.4525i 0.529965i −0.964253 0.264982i \(-0.914634\pi\)
0.964253 0.264982i \(-0.0853662\pi\)
\(390\) 0 0
\(391\) 19.5527i 0.988822i
\(392\) 0 0
\(393\) 10.2711 + 37.0567i 0.518106 + 1.86927i
\(394\) 0 0
\(395\) −9.71013 −0.488570
\(396\) 0 0
\(397\) 19.7169i 0.989563i 0.869017 + 0.494781i \(0.164752\pi\)
−0.869017 + 0.494781i \(0.835248\pi\)
\(398\) 0 0
\(399\) −5.07398 + 12.2464i −0.254017 + 0.613086i
\(400\) 0 0
\(401\) 11.2315i 0.560872i −0.959873 0.280436i \(-0.909521\pi\)
0.959873 0.280436i \(-0.0904790\pi\)
\(402\) 0 0
\(403\) −11.0937 −0.552615
\(404\) 0 0
\(405\) 4.22977 7.94412i 0.210179 0.394746i
\(406\) 0 0
\(407\) 1.44079i 0.0714175i
\(408\) 0 0
\(409\) 1.61432i 0.0798229i −0.999203 0.0399114i \(-0.987292\pi\)
0.999203 0.0399114i \(-0.0127076\pi\)
\(410\) 0 0
\(411\) 10.9309 3.02972i 0.539179 0.149445i
\(412\) 0 0
\(413\) 6.69045 8.56422i 0.329216 0.421418i
\(414\) 0 0
\(415\) −5.51467 −0.270705
\(416\) 0 0
\(417\) 0.705345 0.195501i 0.0345409 0.00957374i
\(418\) 0 0
\(419\) −29.8474 −1.45814 −0.729071 0.684438i \(-0.760048\pi\)
−0.729071 + 0.684438i \(0.760048\pi\)
\(420\) 0 0
\(421\) −6.87115 −0.334879 −0.167440 0.985882i \(-0.553550\pi\)
−0.167440 + 0.985882i \(0.553550\pi\)
\(422\) 0 0
\(423\) −13.9800 + 8.39460i −0.679730 + 0.408159i
\(424\) 0 0
\(425\) 3.36987 0.163463
\(426\) 0 0
\(427\) −2.58558 2.01988i −0.125125 0.0977489i
\(428\) 0 0
\(429\) −0.215651 0.778042i −0.0104117 0.0375642i
\(430\) 0 0
\(431\) 35.3572i 1.70310i 0.524275 + 0.851549i \(0.324336\pi\)
−0.524275 + 0.851549i \(0.675664\pi\)
\(432\) 0 0
\(433\) 17.5668i 0.844207i −0.906548 0.422104i \(-0.861292\pi\)
0.906548 0.422104i \(-0.138708\pi\)
\(434\) 0 0
\(435\) 9.57100 2.65280i 0.458894 0.127192i
\(436\) 0 0
\(437\) −16.7839 −0.802882
\(438\) 0 0
\(439\) 5.33236i 0.254500i 0.991871 + 0.127250i \(0.0406150\pi\)
−0.991871 + 0.127250i \(0.959385\pi\)
\(440\) 0 0
\(441\) 14.8464 + 14.8521i 0.706972 + 0.707242i
\(442\) 0 0
\(443\) 8.57620i 0.407468i −0.979026 0.203734i \(-0.934692\pi\)
0.979026 0.203734i \(-0.0653077\pi\)
\(444\) 0 0
\(445\) −2.30915 −0.109464
\(446\) 0 0
\(447\) 40.5167 11.2301i 1.91638 0.531164i
\(448\) 0 0
\(449\) 5.56437i 0.262599i −0.991343 0.131299i \(-0.958085\pi\)
0.991343 0.131299i \(-0.0419149\pi\)
\(450\) 0 0
\(451\) 1.68574i 0.0793786i
\(452\) 0 0
\(453\) −9.23552 33.3206i −0.433923 1.56554i
\(454\) 0 0
\(455\) −4.95637 3.87196i −0.232358 0.181520i
\(456\) 0 0
\(457\) −18.4095 −0.861160 −0.430580 0.902552i \(-0.641691\pi\)
−0.430580 + 0.902552i \(0.641691\pi\)
\(458\) 0 0
\(459\) 12.6964 + 12.0588i 0.592618 + 0.562856i
\(460\) 0 0
\(461\) 12.2709 0.571511 0.285755 0.958303i \(-0.407756\pi\)
0.285755 + 0.958303i \(0.407756\pi\)
\(462\) 0 0
\(463\) −21.6465 −1.00600 −0.502999 0.864287i \(-0.667770\pi\)
−0.502999 + 0.864287i \(0.667770\pi\)
\(464\) 0 0
\(465\) −7.78927 + 2.15896i −0.361219 + 0.100119i
\(466\) 0 0
\(467\) 13.4338 0.621644 0.310822 0.950468i \(-0.399396\pi\)
0.310822 + 0.950468i \(0.399396\pi\)
\(468\) 0 0
\(469\) 11.8296 15.1427i 0.546241 0.699224i
\(470\) 0 0
\(471\) 10.7858 2.98952i 0.496985 0.137750i
\(472\) 0 0
\(473\) 0.0871820i 0.00400863i
\(474\) 0 0
\(475\) 2.89268i 0.132725i
\(476\) 0 0
\(477\) −3.46935 5.77770i −0.158851 0.264543i
\(478\) 0 0
\(479\) −5.59941 −0.255844 −0.127922 0.991784i \(-0.540831\pi\)
−0.127922 + 0.991784i \(0.540831\pi\)
\(480\) 0 0
\(481\) 17.4671i 0.796430i
\(482\) 0 0
\(483\) −10.1775 + 24.5641i −0.463093 + 1.11770i
\(484\) 0 0
\(485\) 6.59507i 0.299467i
\(486\) 0 0
\(487\) 32.9111 1.49134 0.745671 0.666314i \(-0.232129\pi\)
0.745671 + 0.666314i \(0.232129\pi\)
\(488\) 0 0
\(489\) −4.68924 16.9182i −0.212055 0.765069i
\(490\) 0 0
\(491\) 6.88974i 0.310929i 0.987841 + 0.155465i \(0.0496875\pi\)
−0.987841 + 0.155465i \(0.950313\pi\)
\(492\) 0 0
\(493\) 19.3234i 0.870280i
\(494\) 0 0
\(495\) −0.302833 0.504324i −0.0136113 0.0226677i
\(496\) 0 0
\(497\) −17.1270 13.3798i −0.768251 0.600165i
\(498\) 0 0
\(499\) −24.9765 −1.11810 −0.559051 0.829133i \(-0.688834\pi\)
−0.559051 + 0.829133i \(0.688834\pi\)
\(500\) 0 0
\(501\) −10.0882 36.3971i −0.450709 1.62610i
\(502\) 0 0
\(503\) 20.4820 0.913246 0.456623 0.889660i \(-0.349059\pi\)
0.456623 + 0.889660i \(0.349059\pi\)
\(504\) 0 0
\(505\) 0.709225 0.0315601
\(506\) 0 0
\(507\) −3.39984 12.2662i −0.150992 0.544762i
\(508\) 0 0
\(509\) −20.1419 −0.892773 −0.446386 0.894840i \(-0.647289\pi\)
−0.446386 + 0.894840i \(0.647289\pi\)
\(510\) 0 0
\(511\) −23.9862 18.7382i −1.06109 0.828930i
\(512\) 0 0
\(513\) 10.3512 10.8985i 0.457015 0.481181i
\(514\) 0 0
\(515\) 11.6159i 0.511859i
\(516\) 0 0
\(517\) 1.06584i 0.0468758i
\(518\) 0 0
\(519\) −7.40160 26.7041i −0.324894 1.17218i
\(520\) 0 0
\(521\) −14.1611 −0.620410 −0.310205 0.950670i \(-0.600398\pi\)
−0.310205 + 0.950670i \(0.600398\pi\)
\(522\) 0 0
\(523\) 7.85547i 0.343496i 0.985141 + 0.171748i \(0.0549414\pi\)
−0.985141 + 0.171748i \(0.945059\pi\)
\(524\) 0 0
\(525\) −4.23358 1.75408i −0.184769 0.0765543i
\(526\) 0 0
\(527\) 15.7261i 0.685042i
\(528\) 0 0
\(529\) −10.6655 −0.463719
\(530\) 0 0
\(531\) −10.5646 + 6.34374i −0.458463 + 0.275295i
\(532\) 0 0
\(533\) 20.4366i 0.885209i
\(534\) 0 0
\(535\) 6.85555i 0.296391i
\(536\) 0 0
\(537\) 21.1587 5.86457i 0.913064 0.253075i
\(538\) 0 0
\(539\) 1.33180 0.332189i 0.0573649 0.0143084i
\(540\) 0 0
\(541\) 12.9291 0.555866 0.277933 0.960600i \(-0.410351\pi\)
0.277933 + 0.960600i \(0.410351\pi\)
\(542\) 0 0
\(543\) −20.2756 + 5.61980i −0.870108 + 0.241169i
\(544\) 0 0
\(545\) 18.3995 0.788146
\(546\) 0 0
\(547\) −1.68245 −0.0719366 −0.0359683 0.999353i \(-0.511452\pi\)
−0.0359683 + 0.999353i \(0.511452\pi\)
\(548\) 0 0
\(549\) 1.91521 + 3.18950i 0.0817390 + 0.136124i
\(550\) 0 0
\(551\) 16.5870 0.706631
\(552\) 0 0
\(553\) −15.8158 + 20.2452i −0.672554 + 0.860914i
\(554\) 0 0
\(555\) 3.39930 + 12.2643i 0.144292 + 0.520589i
\(556\) 0 0
\(557\) 44.7979i 1.89815i −0.315055 0.949074i \(-0.602023\pi\)
0.315055 0.949074i \(-0.397977\pi\)
\(558\) 0 0
\(559\) 1.05693i 0.0447032i
\(560\) 0 0
\(561\) 1.10294 0.305702i 0.0465660 0.0129068i
\(562\) 0 0
\(563\) 15.5205 0.654112 0.327056 0.945005i \(-0.393943\pi\)
0.327056 + 0.945005i \(0.393943\pi\)
\(564\) 0 0
\(565\) 8.13112i 0.342079i
\(566\) 0 0
\(567\) −9.67374 21.7582i −0.406259 0.913758i
\(568\) 0 0
\(569\) 12.3342i 0.517077i 0.966001 + 0.258538i \(0.0832409\pi\)
−0.966001 + 0.258538i \(0.916759\pi\)
\(570\) 0 0
\(571\) −29.9050 −1.25149 −0.625743 0.780029i \(-0.715204\pi\)
−0.625743 + 0.780029i \(0.715204\pi\)
\(572\) 0 0
\(573\) −31.9572 + 8.85761i −1.33503 + 0.370032i
\(574\) 0 0
\(575\) 5.80220i 0.241968i
\(576\) 0 0
\(577\) 21.8516i 0.909695i −0.890569 0.454847i \(-0.849694\pi\)
0.890569 0.454847i \(-0.150306\pi\)
\(578\) 0 0
\(579\) −10.0117 36.1211i −0.416073 1.50114i
\(580\) 0 0
\(581\) −8.98224 + 11.4979i −0.372646 + 0.477011i
\(582\) 0 0
\(583\) −0.440496 −0.0182435
\(584\) 0 0
\(585\) 3.67131 + 6.11403i 0.151790 + 0.252784i
\(586\) 0 0
\(587\) 2.56025 0.105673 0.0528363 0.998603i \(-0.483174\pi\)
0.0528363 + 0.998603i \(0.483174\pi\)
\(588\) 0 0
\(589\) −13.4992 −0.556225
\(590\) 0 0
\(591\) 36.4939 10.1151i 1.50116 0.416078i
\(592\) 0 0
\(593\) −14.3072 −0.587528 −0.293764 0.955878i \(-0.594908\pi\)
−0.293764 + 0.955878i \(0.594908\pi\)
\(594\) 0 0
\(595\) 5.48881 7.02604i 0.225019 0.288040i
\(596\) 0 0
\(597\) 8.87755 2.46060i 0.363334 0.100706i
\(598\) 0 0
\(599\) 25.7961i 1.05400i 0.849866 + 0.526999i \(0.176683\pi\)
−0.849866 + 0.526999i \(0.823317\pi\)
\(600\) 0 0
\(601\) 7.10158i 0.289679i 0.989455 + 0.144840i \(0.0462667\pi\)
−0.989455 + 0.144840i \(0.953733\pi\)
\(602\) 0 0
\(603\) −18.6796 + 11.2166i −0.760691 + 0.456774i
\(604\) 0 0
\(605\) 10.9615 0.445650
\(606\) 0 0
\(607\) 37.7229i 1.53112i 0.643362 + 0.765562i \(0.277539\pi\)
−0.643362 + 0.765562i \(0.722461\pi\)
\(608\) 0 0
\(609\) 10.0582 24.2760i 0.407577 0.983712i
\(610\) 0 0
\(611\) 12.9215i 0.522747i
\(612\) 0 0
\(613\) 40.8785 1.65107 0.825533 0.564353i \(-0.190874\pi\)
0.825533 + 0.564353i \(0.190874\pi\)
\(614\) 0 0
\(615\) 3.97722 + 14.3493i 0.160377 + 0.578620i
\(616\) 0 0
\(617\) 12.6969i 0.511158i −0.966788 0.255579i \(-0.917734\pi\)
0.966788 0.255579i \(-0.0822662\pi\)
\(618\) 0 0
\(619\) 48.5788i 1.95255i 0.216545 + 0.976273i \(0.430521\pi\)
−0.216545 + 0.976273i \(0.569479\pi\)
\(620\) 0 0
\(621\) 20.7626 21.8605i 0.833176 0.877233i
\(622\) 0 0
\(623\) −3.76112 + 4.81449i −0.150686 + 0.192888i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −0.262412 0.946753i −0.0104797 0.0378097i
\(628\) 0 0
\(629\) −24.7609 −0.987284
\(630\) 0 0
\(631\) −2.07013 −0.0824106 −0.0412053 0.999151i \(-0.513120\pi\)
−0.0412053 + 0.999151i \(0.513120\pi\)
\(632\) 0 0
\(633\) −3.11338 11.2327i −0.123746 0.446460i
\(634\) 0 0
\(635\) 15.7323 0.624315
\(636\) 0 0
\(637\) −16.1458 + 4.02720i −0.639718 + 0.159564i
\(638\) 0 0
\(639\) 12.6864 + 21.1274i 0.501866 + 0.835785i
\(640\) 0 0
\(641\) 21.5974i 0.853045i 0.904477 + 0.426523i \(0.140262\pi\)
−0.904477 + 0.426523i \(0.859738\pi\)
\(642\) 0 0
\(643\) 37.6759i 1.48579i −0.669407 0.742896i \(-0.733452\pi\)
0.669407 0.742896i \(-0.266548\pi\)
\(644\) 0 0
\(645\) 0.205691 + 0.742107i 0.00809906 + 0.0292204i
\(646\) 0 0
\(647\) −30.7561 −1.20915 −0.604574 0.796549i \(-0.706657\pi\)
−0.604574 + 0.796549i \(0.706657\pi\)
\(648\) 0 0
\(649\) 0.805451i 0.0316167i
\(650\) 0 0
\(651\) −8.18574 + 19.7568i −0.320824 + 0.774330i
\(652\) 0 0
\(653\) 1.26896i 0.0496583i −0.999692 0.0248292i \(-0.992096\pi\)
0.999692 0.0248292i \(-0.00790418\pi\)
\(654\) 0 0
\(655\) −22.2013 −0.867478
\(656\) 0 0
\(657\) 17.7672 + 29.5886i 0.693163 + 1.15436i
\(658\) 0 0
\(659\) 33.1535i 1.29148i −0.763559 0.645738i \(-0.776550\pi\)
0.763559 0.645738i \(-0.223450\pi\)
\(660\) 0 0
\(661\) 6.99036i 0.271894i 0.990716 + 0.135947i \(0.0434076\pi\)
−0.990716 + 0.135947i \(0.956592\pi\)
\(662\) 0 0
\(663\) −13.3711 + 3.70609i −0.519292 + 0.143933i
\(664\) 0 0
\(665\) −6.03110 4.71156i −0.233876 0.182706i
\(666\) 0 0
\(667\) 33.2707 1.28825
\(668\) 0 0
\(669\) 14.8590 4.11850i 0.574484 0.159230i
\(670\) 0 0
\(671\) 0.243170 0.00938747
\(672\) 0 0
\(673\) −12.7243 −0.490484 −0.245242 0.969462i \(-0.578867\pi\)
−0.245242 + 0.969462i \(0.578867\pi\)
\(674\) 0 0
\(675\) 3.76763 + 3.57841i 0.145016 + 0.137733i
\(676\) 0 0
\(677\) −17.7083 −0.680585 −0.340293 0.940320i \(-0.610526\pi\)
−0.340293 + 0.940320i \(0.610526\pi\)
\(678\) 0 0
\(679\) 13.7504 + 10.7420i 0.527694 + 0.412239i
\(680\) 0 0
\(681\) 12.0939 + 43.6334i 0.463440 + 1.67204i
\(682\) 0 0
\(683\) 15.5608i 0.595416i −0.954657 0.297708i \(-0.903778\pi\)
0.954657 0.297708i \(-0.0962221\pi\)
\(684\) 0 0
\(685\) 6.54886i 0.250219i
\(686\) 0 0
\(687\) 29.8707 8.27928i 1.13964 0.315874i
\(688\) 0 0
\(689\) 5.34023 0.203447
\(690\) 0 0
\(691\) 44.5595i 1.69512i 0.530696 + 0.847562i \(0.321931\pi\)
−0.530696 + 0.847562i \(0.678069\pi\)
\(692\) 0 0
\(693\) −1.54474 0.190044i −0.0586800 0.00721918i
\(694\) 0 0
\(695\) 0.422584i 0.0160295i
\(696\) 0 0
\(697\) −28.9705 −1.09734
\(698\) 0 0
\(699\) −43.8739 + 12.1606i −1.65946 + 0.459955i
\(700\) 0 0
\(701\) 31.5905i 1.19316i 0.802555 + 0.596578i \(0.203473\pi\)
−0.802555 + 0.596578i \(0.796527\pi\)
\(702\) 0 0
\(703\) 21.2546i 0.801633i
\(704\) 0 0
\(705\) −2.51467 9.07264i −0.0947081 0.341695i
\(706\) 0 0
\(707\) 1.15518 1.47870i 0.0434450 0.0556124i
\(708\) 0 0
\(709\) −23.2268 −0.872302 −0.436151 0.899874i \(-0.643659\pi\)
−0.436151 + 0.899874i \(0.643659\pi\)
\(710\) 0 0
\(711\) 24.9739 14.9961i 0.936594 0.562399i
\(712\) 0 0
\(713\) −27.0770 −1.01404
\(714\) 0 0
\(715\) 0.466139 0.0174326
\(716\) 0 0
\(717\) −30.6240 + 8.48809i −1.14368 + 0.316994i
\(718\) 0 0
\(719\) 31.0899 1.15946 0.579730 0.814809i \(-0.303158\pi\)
0.579730 + 0.814809i \(0.303158\pi\)
\(720\) 0 0
\(721\) 24.2187 + 18.9199i 0.901951 + 0.704613i
\(722\) 0 0
\(723\) 37.3477 10.3517i 1.38897 0.384984i
\(724\) 0 0
\(725\) 5.73415i 0.212961i
\(726\) 0 0
\(727\) 25.9826i 0.963641i 0.876270 + 0.481821i \(0.160024\pi\)
−0.876270 + 0.481821i \(0.839976\pi\)
\(728\) 0 0
\(729\) 1.39001 + 26.9642i 0.0514819 + 0.998674i
\(730\) 0 0
\(731\) −1.49828 −0.0554158
\(732\) 0 0
\(733\) 2.39842i 0.0885875i 0.999019 + 0.0442938i \(0.0141038\pi\)
−0.999019 + 0.0442938i \(0.985896\pi\)
\(734\) 0 0
\(735\) −10.5528 + 5.96981i −0.389246 + 0.220200i
\(736\) 0 0
\(737\) 1.42414i 0.0524590i
\(738\) 0 0
\(739\) −19.6322 −0.722183 −0.361091 0.932530i \(-0.617596\pi\)
−0.361091 + 0.932530i \(0.617596\pi\)
\(740\) 0 0
\(741\) 3.18128 + 11.4777i 0.116867 + 0.421643i
\(742\) 0 0
\(743\) 23.0639i 0.846132i −0.906099 0.423066i \(-0.860954\pi\)
0.906099 0.423066i \(-0.139046\pi\)
\(744\) 0 0
\(745\) 24.2743i 0.889341i
\(746\) 0 0
\(747\) 14.1834 8.51675i 0.518944 0.311612i
\(748\) 0 0
\(749\) 14.2935 + 11.1662i 0.522274 + 0.408006i
\(750\) 0 0
\(751\) 5.54259 0.202252 0.101126 0.994874i \(-0.467755\pi\)
0.101126 + 0.994874i \(0.467755\pi\)
\(752\) 0 0
\(753\) 9.90819 + 35.7476i 0.361075 + 1.30271i
\(754\) 0 0
\(755\) 19.9630 0.726527
\(756\) 0 0
\(757\) 20.0408 0.728397 0.364198 0.931321i \(-0.381343\pi\)
0.364198 + 0.931321i \(0.381343\pi\)
\(758\) 0 0
\(759\) −0.526353 1.89902i −0.0191054 0.0689301i
\(760\) 0 0
\(761\) −23.1864 −0.840507 −0.420254 0.907407i \(-0.638059\pi\)
−0.420254 + 0.907407i \(0.638059\pi\)
\(762\) 0 0
\(763\) 29.9688 38.3621i 1.08494 1.38880i
\(764\) 0 0
\(765\) −8.66712 + 5.20437i −0.313360 + 0.188164i
\(766\) 0 0
\(767\) 9.76466i 0.352581i
\(768\) 0 0
\(769\) 8.09763i 0.292008i −0.989284 0.146004i \(-0.953359\pi\)
0.989284 0.146004i \(-0.0466412\pi\)
\(770\) 0 0
\(771\) −1.93879 6.99494i −0.0698240 0.251917i
\(772\) 0 0
\(773\) 24.7010 0.888432 0.444216 0.895920i \(-0.353482\pi\)
0.444216 + 0.895920i \(0.353482\pi\)
\(774\) 0 0
\(775\) 4.66669i 0.167632i
\(776\) 0 0
\(777\) 31.1072 + 12.8885i 1.11597 + 0.462373i
\(778\) 0 0
\(779\) 24.8681i 0.890992i
\(780\) 0 0
\(781\) 1.61077 0.0576377
\(782\) 0 0
\(783\) −20.5191 + 21.6041i −0.733293 + 0.772069i
\(784\) 0 0
\(785\) 6.46198i 0.230638i
\(786\) 0 0
\(787\) 6.04084i 0.215333i 0.994187 + 0.107666i \(0.0343378\pi\)
−0.994187 + 0.107666i \(0.965662\pi\)
\(788\) 0 0
\(789\) −33.9090 + 9.39858i −1.20719 + 0.334598i
\(790\) 0 0
\(791\) 16.9530 + 13.2439i 0.602780 + 0.470898i
\(792\) 0 0
\(793\) −2.94800 −0.104687
\(794\) 0 0
\(795\) 3.74957 1.03927i 0.132984 0.0368592i
\(796\) 0 0
\(797\) 45.6745 1.61787 0.808937 0.587895i \(-0.200043\pi\)
0.808937 + 0.587895i \(0.200043\pi\)
\(798\) 0 0
\(799\) 18.3172 0.648016
\(800\) 0 0
\(801\) 5.93901 3.56621i 0.209845 0.126006i
\(802\) 0 0
\(803\) 2.25586 0.0796075
\(804\) 0 0
\(805\) −12.0973 9.45056i −0.426375 0.333089i
\(806\) 0 0
\(807\) −12.2137 44.0656i −0.429942 1.55118i
\(808\) 0 0
\(809\) 6.65382i 0.233936i −0.993136 0.116968i \(-0.962683\pi\)
0.993136 0.116968i \(-0.0373175\pi\)
\(810\) 0 0
\(811\) 13.1472i 0.461662i −0.972994 0.230831i \(-0.925856\pi\)
0.972994 0.230831i \(-0.0741445\pi\)
\(812\) 0 0
\(813\) −2.66158 + 0.737712i −0.0933456 + 0.0258727i
\(814\) 0 0
\(815\) 10.1360 0.355049
\(816\) 0 0
\(817\) 1.28611i 0.0449953i
\(818\) 0 0
\(819\) 18.7273 + 2.30395i 0.654384 + 0.0805064i
\(820\) 0 0
\(821\) 39.2991i 1.37155i 0.727814 + 0.685775i \(0.240536\pi\)
−0.727814 + 0.685775i \(0.759464\pi\)
\(822\) 0 0
\(823\) −40.2932 −1.40453 −0.702266 0.711915i \(-0.747828\pi\)
−0.702266 + 0.711915i \(0.747828\pi\)
\(824\) 0 0
\(825\) 0.327293 0.0907162i 0.0113949 0.00315833i
\(826\) 0 0
\(827\) 31.2044i 1.08508i −0.840029 0.542541i \(-0.817462\pi\)
0.840029 0.542541i \(-0.182538\pi\)
\(828\) 0 0
\(829\) 23.3307i 0.810308i −0.914248 0.405154i \(-0.867218\pi\)
0.914248 0.405154i \(-0.132782\pi\)
\(830\) 0 0
\(831\) 1.51387 + 5.46185i 0.0525155 + 0.189470i
\(832\) 0 0
\(833\) −5.70888 22.8879i −0.197801 0.793018i
\(834\) 0 0
\(835\) 21.8061 0.754632
\(836\) 0 0
\(837\) 16.6993 17.5823i 0.577212 0.607734i
\(838\) 0 0
\(839\) −55.7694 −1.92537 −0.962687 0.270618i \(-0.912772\pi\)
−0.962687 + 0.270618i \(0.912772\pi\)
\(840\) 0 0
\(841\) −3.88047 −0.133809
\(842\) 0 0
\(843\) 41.0859 11.3878i 1.41507 0.392217i
\(844\) 0 0
\(845\) 7.34890 0.252810
\(846\) 0 0
\(847\) 17.8541 22.8544i 0.613472 0.785285i
\(848\) 0 0
\(849\) 10.6612 2.95497i 0.365891 0.101414i
\(850\) 0 0
\(851\) 42.6330i 1.46144i
\(852\) 0 0
\(853\) 30.0999i 1.03060i 0.857010 + 0.515300i \(0.172319\pi\)
−0.857010 + 0.515300i \(0.827681\pi\)
\(854\) 0 0
\(855\) 4.46739 + 7.43979i 0.152782 + 0.254436i
\(856\) 0 0
\(857\) −51.3831 −1.75521 −0.877607 0.479382i \(-0.840861\pi\)
−0.877607 + 0.479382i \(0.840861\pi\)
\(858\) 0 0
\(859\) 15.3624i 0.524160i 0.965046 + 0.262080i \(0.0844084\pi\)
−0.965046 + 0.262080i \(0.915592\pi\)
\(860\) 0 0
\(861\) 36.3958 + 15.0797i 1.24036 + 0.513914i
\(862\) 0 0
\(863\) 21.8347i 0.743263i −0.928380 0.371632i \(-0.878798\pi\)
0.928380 0.371632i \(-0.121202\pi\)
\(864\) 0 0
\(865\) 15.9989 0.543978
\(866\) 0 0
\(867\) 2.61107 + 9.42044i 0.0886767 + 0.319935i
\(868\) 0 0
\(869\) 1.90403i 0.0645898i
\(870\) 0 0
\(871\) 17.2652i 0.585010i
\(872\) 0 0
\(873\) −10.1853 16.9621i −0.344720 0.574082i
\(874\) 0 0
\(875\) 1.62879 2.08496i 0.0550631 0.0704844i
\(876\) 0 0
\(877\) 24.8639 0.839593 0.419796 0.907618i \(-0.362101\pi\)
0.419796 + 0.907618i \(0.362101\pi\)
\(878\) 0 0
\(879\) −4.49267 16.2090i −0.151534 0.546717i
\(880\) 0 0
\(881\) −17.5148 −0.590088 −0.295044 0.955484i \(-0.595334\pi\)
−0.295044 + 0.955484i \(0.595334\pi\)
\(882\) 0 0
\(883\) 45.7821 1.54069 0.770344 0.637628i \(-0.220084\pi\)
0.770344 + 0.637628i \(0.220084\pi\)
\(884\) 0 0
\(885\) −1.90032 6.85613i −0.0638786 0.230466i
\(886\) 0 0
\(887\) 31.8505 1.06944 0.534718 0.845031i \(-0.320418\pi\)
0.534718 + 0.845031i \(0.320418\pi\)
\(888\) 0 0
\(889\) 25.6245 32.8011i 0.859419 1.10011i
\(890\) 0 0
\(891\) 1.55774 + 0.829403i 0.0521862 + 0.0277861i
\(892\) 0 0
\(893\) 15.7233i 0.526162i
\(894\) 0 0
\(895\) 12.6765i 0.423729i
\(896\) 0 0
\(897\) 6.38110 + 23.0222i 0.213059 + 0.768690i
\(898\) 0 0
\(899\) 26.7595 0.892478
\(900\) 0 0
\(901\) 7.57020i 0.252200i
\(902\) 0 0
\(903\) 1.88229 + 0.779880i 0.0626386 + 0.0259528i
\(904\) 0 0
\(905\) 12.1474i 0.403795i
\(906\) 0 0
\(907\) 11.0152 0.365754 0.182877 0.983136i \(-0.441459\pi\)
0.182877 + 0.983136i \(0.441459\pi\)
\(908\) 0 0
\(909\) −1.82409 + 1.09531i −0.0605011 + 0.0363293i
\(910\) 0 0
\(911\) 23.6413i 0.783272i 0.920120 + 0.391636i \(0.128091\pi\)
−0.920120 + 0.391636i \(0.871909\pi\)
\(912\) 0 0
\(913\) 1.08135i 0.0357876i
\(914\) 0 0
\(915\) −2.06990 + 0.573717i −0.0684288 + 0.0189665i
\(916\) 0 0
\(917\) −36.1613 + 46.2888i −1.19415 + 1.52859i
\(918\) 0 0
\(919\) 24.0966 0.794874 0.397437 0.917629i \(-0.369900\pi\)
0.397437 + 0.917629i \(0.369900\pi\)
\(920\) 0 0
\(921\) −36.9047 + 10.2289i −1.21605 + 0.337054i
\(922\) 0 0
\(923\) −19.5277 −0.642761
\(924\) 0 0
\(925\) −7.34774 −0.241592
\(926\) 0 0
\(927\) −17.9394 29.8755i −0.589207 0.981239i
\(928\) 0 0
\(929\) −37.2676 −1.22271 −0.611355 0.791356i \(-0.709375\pi\)
−0.611355 + 0.791356i \(0.709375\pi\)
\(930\) 0 0
\(931\) −19.6468 + 4.90046i −0.643898 + 0.160606i
\(932\) 0 0
\(933\) 7.22330 + 26.0608i 0.236480 + 0.853193i
\(934\) 0 0
\(935\) 0.660788i 0.0216101i
\(936\) 0 0
\(937\) 11.1767i 0.365126i −0.983194 0.182563i \(-0.941561\pi\)
0.983194 0.182563i \(-0.0584394\pi\)
\(938\) 0 0
\(939\) 1.73933 0.482092i 0.0567609 0.0157325i
\(940\) 0 0
\(941\) 25.8782 0.843605 0.421803 0.906688i \(-0.361398\pi\)
0.421803 + 0.906688i \(0.361398\pi\)
\(942\) 0 0
\(943\) 49.8811i 1.62435i
\(944\) 0 0
\(945\) 13.5975 2.02687i 0.442326 0.0659341i
\(946\) 0 0
\(947\) 6.08802i 0.197834i −0.995096 0.0989170i \(-0.968462\pi\)
0.995096 0.0989170i \(-0.0315378\pi\)
\(948\) 0 0
\(949\) −27.3483 −0.887763
\(950\) 0 0
\(951\) 26.1766 7.25539i 0.848834 0.235272i
\(952\) 0 0
\(953\) 1.35040i 0.0437438i −0.999761 0.0218719i \(-0.993037\pi\)
0.999761 0.0218719i \(-0.00696259\pi\)
\(954\) 0 0
\(955\) 19.1461i 0.619553i
\(956\) 0 0
\(957\) 0.520180 + 1.87675i 0.0168150 + 0.0606666i
\(958\) 0 0
\(959\) 13.6541 + 10.6667i 0.440914 + 0.344446i
\(960\) 0 0
\(961\) 9.22204 0.297485
\(962\) 0 0
\(963\) −10.5876 17.6321i −0.341180 0.568186i
\(964\) 0 0
\(965\) 21.6408 0.696640
\(966\) 0 0
\(967\) −3.25722 −0.104745 −0.0523726 0.998628i \(-0.516678\pi\)
−0.0523726 + 0.998628i \(0.516678\pi\)
\(968\) 0 0
\(969\) −16.2705 + 4.50972i −0.522685 + 0.144873i
\(970\) 0 0
\(971\) 13.6431 0.437827 0.218913 0.975744i \(-0.429749\pi\)
0.218913 + 0.975744i \(0.429749\pi\)
\(972\) 0 0
\(973\) 0.881070 + 0.688301i 0.0282458 + 0.0220659i
\(974\) 0 0
\(975\) −3.96785 + 1.09977i −0.127073 + 0.0352209i
\(976\) 0 0
\(977\) 43.7973i 1.40120i −0.713555 0.700599i \(-0.752916\pi\)
0.713555 0.700599i \(-0.247084\pi\)
\(978\) 0 0
\(979\) 0.452795i 0.0144714i
\(980\) 0 0
\(981\) −47.3223 + 28.4158i −1.51089 + 0.907246i
\(982\) 0 0
\(983\) 9.68575 0.308927 0.154464 0.987998i \(-0.450635\pi\)
0.154464 + 0.987998i \(0.450635\pi\)
\(984\) 0 0
\(985\) 21.8641i 0.696649i
\(986\) 0 0
\(987\) −23.0119 9.53443i −0.732478 0.303484i
\(988\) 0 0
\(989\) 2.57971i 0.0820300i
\(990\) 0 0
\(991\) 19.1780 0.609210 0.304605 0.952479i \(-0.401476\pi\)
0.304605 + 0.952479i \(0.401476\pi\)
\(992\) 0 0
\(993\) 14.4444 + 52.1135i 0.458378 + 1.65377i
\(994\) 0 0
\(995\) 5.31869i 0.168614i
\(996\) 0 0
\(997\) 0.756399i 0.0239554i 0.999928 + 0.0119777i \(0.00381271\pi\)
−0.999928 + 0.0119777i \(0.996187\pi\)
\(998\) 0 0
\(999\) −27.6835 26.2932i −0.875868 0.831880i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.f.b.41.7 yes 16
3.2 odd 2 840.2.f.a.41.9 16
4.3 odd 2 1680.2.f.l.881.10 16
7.6 odd 2 840.2.f.a.41.10 yes 16
12.11 even 2 1680.2.f.k.881.8 16
21.20 even 2 inner 840.2.f.b.41.8 yes 16
28.27 even 2 1680.2.f.k.881.7 16
84.83 odd 2 1680.2.f.l.881.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.f.a.41.9 16 3.2 odd 2
840.2.f.a.41.10 yes 16 7.6 odd 2
840.2.f.b.41.7 yes 16 1.1 even 1 trivial
840.2.f.b.41.8 yes 16 21.20 even 2 inner
1680.2.f.k.881.7 16 28.27 even 2
1680.2.f.k.881.8 16 12.11 even 2
1680.2.f.l.881.9 16 84.83 odd 2
1680.2.f.l.881.10 16 4.3 odd 2