Properties

Label 840.2.f.b.41.1
Level $840$
Weight $2$
Character 840.41
Analytic conductor $6.707$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(41,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + x^{14} - 4 x^{13} + 10 x^{12} - 32 x^{11} + 71 x^{10} - 70 x^{9} + 74 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 41.1
Root \(0.348228 - 1.69668i\) of defining polynomial
Character \(\chi\) \(=\) 840.41
Dual form 840.2.f.b.41.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.69668 - 0.348228i) q^{3} +1.00000 q^{5} +(-2.63166 - 0.272689i) q^{7} +(2.75748 + 1.18166i) q^{9} +3.13162i q^{11} -4.34145i q^{13} +(-1.69668 - 0.348228i) q^{15} -0.791039 q^{17} +0.768290i q^{19} +(4.37014 + 1.37908i) q^{21} +6.32787i q^{23} +1.00000 q^{25} +(-4.26708 - 2.96514i) q^{27} +5.96574i q^{29} +5.49220i q^{31} +(1.09052 - 5.31337i) q^{33} +(-2.63166 - 0.272689i) q^{35} +1.83534 q^{37} +(-1.51181 + 7.36607i) q^{39} -1.60516 q^{41} +6.18441 q^{43} +(2.75748 + 1.18166i) q^{45} +3.24695 q^{47} +(6.85128 + 1.43525i) q^{49} +(1.34214 + 0.275462i) q^{51} +10.0560i q^{53} +3.13162i q^{55} +(0.267540 - 1.30354i) q^{57} +9.30114 q^{59} +13.1365i q^{61} +(-6.93451 - 3.86167i) q^{63} -4.34145i q^{65} -2.64216 q^{67} +(2.20354 - 10.7364i) q^{69} -0.227035i q^{71} +15.7756i q^{73} +(-1.69668 - 0.348228i) q^{75} +(0.853957 - 8.24136i) q^{77} -13.6345 q^{79} +(6.20734 + 6.51682i) q^{81} +2.74892 q^{83} -0.791039 q^{85} +(2.07744 - 10.1220i) q^{87} -16.6351 q^{89} +(-1.18386 + 11.4252i) q^{91} +(1.91254 - 9.31853i) q^{93} +0.768290i q^{95} -6.11396i q^{97} +(-3.70052 + 8.63536i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{5} + 2 q^{7} - 2 q^{9} + 10 q^{21} + 16 q^{25} + 6 q^{27} + 6 q^{33} + 2 q^{35} + 12 q^{37} + 6 q^{39} + 32 q^{41} + 32 q^{43} - 2 q^{45} + 4 q^{47} - 4 q^{49} + 6 q^{51} - 24 q^{59} - 24 q^{63}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.69668 0.348228i −0.979581 0.201049i
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −2.63166 0.272689i −0.994674 0.103067i
\(8\) 0 0
\(9\) 2.75748 + 1.18166i 0.919158 + 0.393888i
\(10\) 0 0
\(11\) 3.13162i 0.944219i 0.881540 + 0.472109i \(0.156507\pi\)
−0.881540 + 0.472109i \(0.843493\pi\)
\(12\) 0 0
\(13\) 4.34145i 1.20410i −0.798458 0.602051i \(-0.794350\pi\)
0.798458 0.602051i \(-0.205650\pi\)
\(14\) 0 0
\(15\) −1.69668 0.348228i −0.438082 0.0899120i
\(16\) 0 0
\(17\) −0.791039 −0.191855 −0.0959276 0.995388i \(-0.530582\pi\)
−0.0959276 + 0.995388i \(0.530582\pi\)
\(18\) 0 0
\(19\) 0.768290i 0.176258i 0.996109 + 0.0881289i \(0.0280887\pi\)
−0.996109 + 0.0881289i \(0.971911\pi\)
\(20\) 0 0
\(21\) 4.37014 + 1.37908i 0.953643 + 0.300941i
\(22\) 0 0
\(23\) 6.32787i 1.31945i 0.751506 + 0.659726i \(0.229328\pi\)
−0.751506 + 0.659726i \(0.770672\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.26708 2.96514i −0.821199 0.570642i
\(28\) 0 0
\(29\) 5.96574i 1.10781i 0.832580 + 0.553905i \(0.186863\pi\)
−0.832580 + 0.553905i \(0.813137\pi\)
\(30\) 0 0
\(31\) 5.49220i 0.986428i 0.869908 + 0.493214i \(0.164178\pi\)
−0.869908 + 0.493214i \(0.835822\pi\)
\(32\) 0 0
\(33\) 1.09052 5.31337i 0.189834 0.924939i
\(34\) 0 0
\(35\) −2.63166 0.272689i −0.444832 0.0460928i
\(36\) 0 0
\(37\) 1.83534 0.301728 0.150864 0.988555i \(-0.451794\pi\)
0.150864 + 0.988555i \(0.451794\pi\)
\(38\) 0 0
\(39\) −1.51181 + 7.36607i −0.242084 + 1.17952i
\(40\) 0 0
\(41\) −1.60516 −0.250684 −0.125342 0.992114i \(-0.540003\pi\)
−0.125342 + 0.992114i \(0.540003\pi\)
\(42\) 0 0
\(43\) 6.18441 0.943113 0.471557 0.881836i \(-0.343692\pi\)
0.471557 + 0.881836i \(0.343692\pi\)
\(44\) 0 0
\(45\) 2.75748 + 1.18166i 0.411060 + 0.176152i
\(46\) 0 0
\(47\) 3.24695 0.473617 0.236808 0.971556i \(-0.423899\pi\)
0.236808 + 0.971556i \(0.423899\pi\)
\(48\) 0 0
\(49\) 6.85128 + 1.43525i 0.978755 + 0.205035i
\(50\) 0 0
\(51\) 1.34214 + 0.275462i 0.187938 + 0.0385724i
\(52\) 0 0
\(53\) 10.0560i 1.38130i 0.723189 + 0.690651i \(0.242676\pi\)
−0.723189 + 0.690651i \(0.757324\pi\)
\(54\) 0 0
\(55\) 3.13162i 0.422267i
\(56\) 0 0
\(57\) 0.267540 1.30354i 0.0354365 0.172659i
\(58\) 0 0
\(59\) 9.30114 1.21091 0.605453 0.795881i \(-0.292992\pi\)
0.605453 + 0.795881i \(0.292992\pi\)
\(60\) 0 0
\(61\) 13.1365i 1.68195i 0.541071 + 0.840977i \(0.318019\pi\)
−0.541071 + 0.840977i \(0.681981\pi\)
\(62\) 0 0
\(63\) −6.93451 3.86167i −0.873667 0.486525i
\(64\) 0 0
\(65\) 4.34145i 0.538491i
\(66\) 0 0
\(67\) −2.64216 −0.322792 −0.161396 0.986890i \(-0.551600\pi\)
−0.161396 + 0.986890i \(0.551600\pi\)
\(68\) 0 0
\(69\) 2.20354 10.7364i 0.265275 1.29251i
\(70\) 0 0
\(71\) 0.227035i 0.0269441i −0.999909 0.0134721i \(-0.995712\pi\)
0.999909 0.0134721i \(-0.00428842\pi\)
\(72\) 0 0
\(73\) 15.7756i 1.84639i 0.384327 + 0.923197i \(0.374434\pi\)
−0.384327 + 0.923197i \(0.625566\pi\)
\(74\) 0 0
\(75\) −1.69668 0.348228i −0.195916 0.0402099i
\(76\) 0 0
\(77\) 0.853957 8.24136i 0.0973174 0.939190i
\(78\) 0 0
\(79\) −13.6345 −1.53400 −0.767002 0.641645i \(-0.778252\pi\)
−0.767002 + 0.641645i \(0.778252\pi\)
\(80\) 0 0
\(81\) 6.20734 + 6.51682i 0.689704 + 0.724091i
\(82\) 0 0
\(83\) 2.74892 0.301733 0.150866 0.988554i \(-0.451794\pi\)
0.150866 + 0.988554i \(0.451794\pi\)
\(84\) 0 0
\(85\) −0.791039 −0.0858002
\(86\) 0 0
\(87\) 2.07744 10.1220i 0.222725 1.08519i
\(88\) 0 0
\(89\) −16.6351 −1.76331 −0.881657 0.471892i \(-0.843571\pi\)
−0.881657 + 0.471892i \(0.843571\pi\)
\(90\) 0 0
\(91\) −1.18386 + 11.4252i −0.124103 + 1.19769i
\(92\) 0 0
\(93\) 1.91254 9.31853i 0.198321 0.966287i
\(94\) 0 0
\(95\) 0.768290i 0.0788248i
\(96\) 0 0
\(97\) 6.11396i 0.620779i −0.950609 0.310389i \(-0.899541\pi\)
0.950609 0.310389i \(-0.100459\pi\)
\(98\) 0 0
\(99\) −3.70052 + 8.63536i −0.371917 + 0.867886i
\(100\) 0 0
\(101\) −1.20483 −0.119885 −0.0599425 0.998202i \(-0.519092\pi\)
−0.0599425 + 0.998202i \(0.519092\pi\)
\(102\) 0 0
\(103\) 1.42563i 0.140471i 0.997530 + 0.0702355i \(0.0223751\pi\)
−0.997530 + 0.0702355i \(0.977625\pi\)
\(104\) 0 0
\(105\) 4.37014 + 1.37908i 0.426482 + 0.134585i
\(106\) 0 0
\(107\) 11.2184i 1.08453i −0.840208 0.542264i \(-0.817567\pi\)
0.840208 0.542264i \(-0.182433\pi\)
\(108\) 0 0
\(109\) 16.1783 1.54960 0.774798 0.632209i \(-0.217851\pi\)
0.774798 + 0.632209i \(0.217851\pi\)
\(110\) 0 0
\(111\) −3.11399 0.639115i −0.295567 0.0606621i
\(112\) 0 0
\(113\) 4.91036i 0.461928i 0.972962 + 0.230964i \(0.0741879\pi\)
−0.972962 + 0.230964i \(0.925812\pi\)
\(114\) 0 0
\(115\) 6.32787i 0.590077i
\(116\) 0 0
\(117\) 5.13014 11.9714i 0.474282 1.10676i
\(118\) 0 0
\(119\) 2.08175 + 0.215707i 0.190833 + 0.0197739i
\(120\) 0 0
\(121\) 1.19296 0.108451
\(122\) 0 0
\(123\) 2.72345 + 0.558962i 0.245565 + 0.0503999i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −6.25616 −0.555144 −0.277572 0.960705i \(-0.589530\pi\)
−0.277572 + 0.960705i \(0.589530\pi\)
\(128\) 0 0
\(129\) −10.4930 2.15358i −0.923856 0.189612i
\(130\) 0 0
\(131\) 9.05057 0.790752 0.395376 0.918519i \(-0.370614\pi\)
0.395376 + 0.918519i \(0.370614\pi\)
\(132\) 0 0
\(133\) 0.209504 2.02188i 0.0181663 0.175319i
\(134\) 0 0
\(135\) −4.26708 2.96514i −0.367251 0.255199i
\(136\) 0 0
\(137\) 5.29111i 0.452050i 0.974122 + 0.226025i \(0.0725731\pi\)
−0.974122 + 0.226025i \(0.927427\pi\)
\(138\) 0 0
\(139\) 18.3215i 1.55401i −0.629494 0.777006i \(-0.716738\pi\)
0.629494 0.777006i \(-0.283262\pi\)
\(140\) 0 0
\(141\) −5.50905 1.13068i −0.463946 0.0952203i
\(142\) 0 0
\(143\) 13.5958 1.13694
\(144\) 0 0
\(145\) 5.96574i 0.495428i
\(146\) 0 0
\(147\) −11.1247 4.82097i −0.917547 0.397627i
\(148\) 0 0
\(149\) 23.3480i 1.91274i −0.292160 0.956370i \(-0.594374\pi\)
0.292160 0.956370i \(-0.405626\pi\)
\(150\) 0 0
\(151\) −9.14170 −0.743941 −0.371971 0.928245i \(-0.621318\pi\)
−0.371971 + 0.928245i \(0.621318\pi\)
\(152\) 0 0
\(153\) −2.18127 0.934743i −0.176345 0.0755695i
\(154\) 0 0
\(155\) 5.49220i 0.441144i
\(156\) 0 0
\(157\) 15.2610i 1.21796i −0.793185 0.608981i \(-0.791579\pi\)
0.793185 0.608981i \(-0.208421\pi\)
\(158\) 0 0
\(159\) 3.50179 17.0619i 0.277710 1.35310i
\(160\) 0 0
\(161\) 1.72554 16.6528i 0.135991 1.31242i
\(162\) 0 0
\(163\) 5.02683 0.393732 0.196866 0.980430i \(-0.436924\pi\)
0.196866 + 0.980430i \(0.436924\pi\)
\(164\) 0 0
\(165\) 1.09052 5.31337i 0.0848966 0.413645i
\(166\) 0 0
\(167\) −21.9872 −1.70142 −0.850710 0.525635i \(-0.823828\pi\)
−0.850710 + 0.525635i \(0.823828\pi\)
\(168\) 0 0
\(169\) −5.84820 −0.449862
\(170\) 0 0
\(171\) −0.907861 + 2.11854i −0.0694258 + 0.162009i
\(172\) 0 0
\(173\) −18.9508 −1.44081 −0.720403 0.693556i \(-0.756043\pi\)
−0.720403 + 0.693556i \(0.756043\pi\)
\(174\) 0 0
\(175\) −2.63166 0.272689i −0.198935 0.0206133i
\(176\) 0 0
\(177\) −15.7811 3.23892i −1.18618 0.243452i
\(178\) 0 0
\(179\) 1.39906i 0.104571i −0.998632 0.0522853i \(-0.983349\pi\)
0.998632 0.0522853i \(-0.0166505\pi\)
\(180\) 0 0
\(181\) 13.3999i 0.996006i 0.867175 + 0.498003i \(0.165933\pi\)
−0.867175 + 0.498003i \(0.834067\pi\)
\(182\) 0 0
\(183\) 4.57449 22.2885i 0.338156 1.64761i
\(184\) 0 0
\(185\) 1.83534 0.134937
\(186\) 0 0
\(187\) 2.47723i 0.181153i
\(188\) 0 0
\(189\) 10.4209 + 8.96683i 0.758012 + 0.652241i
\(190\) 0 0
\(191\) 22.3132i 1.61452i −0.590193 0.807262i \(-0.700948\pi\)
0.590193 0.807262i \(-0.299052\pi\)
\(192\) 0 0
\(193\) −10.2441 −0.737385 −0.368692 0.929551i \(-0.620194\pi\)
−0.368692 + 0.929551i \(0.620194\pi\)
\(194\) 0 0
\(195\) −1.51181 + 7.36607i −0.108263 + 0.527495i
\(196\) 0 0
\(197\) 1.79870i 0.128152i −0.997945 0.0640761i \(-0.979590\pi\)
0.997945 0.0640761i \(-0.0204100\pi\)
\(198\) 0 0
\(199\) 14.1953i 1.00628i 0.864204 + 0.503141i \(0.167822\pi\)
−0.864204 + 0.503141i \(0.832178\pi\)
\(200\) 0 0
\(201\) 4.48292 + 0.920074i 0.316201 + 0.0648970i
\(202\) 0 0
\(203\) 1.62679 15.6998i 0.114178 1.10191i
\(204\) 0 0
\(205\) −1.60516 −0.112109
\(206\) 0 0
\(207\) −7.47742 + 17.4489i −0.519716 + 1.21278i
\(208\) 0 0
\(209\) −2.40599 −0.166426
\(210\) 0 0
\(211\) 21.9123 1.50851 0.754254 0.656583i \(-0.227999\pi\)
0.754254 + 0.656583i \(0.227999\pi\)
\(212\) 0 0
\(213\) −0.0790599 + 0.385207i −0.00541710 + 0.0263940i
\(214\) 0 0
\(215\) 6.18441 0.421773
\(216\) 0 0
\(217\) 1.49766 14.4536i 0.101668 0.981175i
\(218\) 0 0
\(219\) 5.49350 26.7662i 0.371216 1.80869i
\(220\) 0 0
\(221\) 3.43426i 0.231013i
\(222\) 0 0
\(223\) 4.77721i 0.319905i −0.987125 0.159953i \(-0.948866\pi\)
0.987125 0.159953i \(-0.0511342\pi\)
\(224\) 0 0
\(225\) 2.75748 + 1.18166i 0.183832 + 0.0787776i
\(226\) 0 0
\(227\) −19.9326 −1.32297 −0.661487 0.749957i \(-0.730074\pi\)
−0.661487 + 0.749957i \(0.730074\pi\)
\(228\) 0 0
\(229\) 6.04167i 0.399245i 0.979873 + 0.199622i \(0.0639715\pi\)
−0.979873 + 0.199622i \(0.936028\pi\)
\(230\) 0 0
\(231\) −4.31876 + 13.6856i −0.284154 + 0.900447i
\(232\) 0 0
\(233\) 6.52570i 0.427513i 0.976887 + 0.213756i \(0.0685699\pi\)
−0.976887 + 0.213756i \(0.931430\pi\)
\(234\) 0 0
\(235\) 3.24695 0.211808
\(236\) 0 0
\(237\) 23.1335 + 4.74792i 1.50268 + 0.308410i
\(238\) 0 0
\(239\) 3.42646i 0.221639i 0.993841 + 0.110820i \(0.0353476\pi\)
−0.993841 + 0.110820i \(0.964652\pi\)
\(240\) 0 0
\(241\) 11.6681i 0.751607i 0.926699 + 0.375804i \(0.122633\pi\)
−0.926699 + 0.375804i \(0.877367\pi\)
\(242\) 0 0
\(243\) −8.26255 13.2186i −0.530043 0.847971i
\(244\) 0 0
\(245\) 6.85128 + 1.43525i 0.437712 + 0.0916947i
\(246\) 0 0
\(247\) 3.33549 0.212232
\(248\) 0 0
\(249\) −4.66404 0.957248i −0.295572 0.0606631i
\(250\) 0 0
\(251\) 21.5770 1.36193 0.680966 0.732315i \(-0.261560\pi\)
0.680966 + 0.732315i \(0.261560\pi\)
\(252\) 0 0
\(253\) −19.8165 −1.24585
\(254\) 0 0
\(255\) 1.34214 + 0.275462i 0.0840483 + 0.0172501i
\(256\) 0 0
\(257\) 17.2123 1.07367 0.536837 0.843686i \(-0.319619\pi\)
0.536837 + 0.843686i \(0.319619\pi\)
\(258\) 0 0
\(259\) −4.82999 0.500476i −0.300121 0.0310981i
\(260\) 0 0
\(261\) −7.04951 + 16.4504i −0.436354 + 1.01825i
\(262\) 0 0
\(263\) 24.1528i 1.48933i 0.667440 + 0.744663i \(0.267390\pi\)
−0.667440 + 0.744663i \(0.732610\pi\)
\(264\) 0 0
\(265\) 10.0560i 0.617737i
\(266\) 0 0
\(267\) 28.2244 + 5.79279i 1.72731 + 0.354513i
\(268\) 0 0
\(269\) −15.8931 −0.969021 −0.484511 0.874785i \(-0.661002\pi\)
−0.484511 + 0.874785i \(0.661002\pi\)
\(270\) 0 0
\(271\) 27.5408i 1.67299i 0.547977 + 0.836494i \(0.315398\pi\)
−0.547977 + 0.836494i \(0.684602\pi\)
\(272\) 0 0
\(273\) 5.98722 18.9728i 0.362363 1.14828i
\(274\) 0 0
\(275\) 3.13162i 0.188844i
\(276\) 0 0
\(277\) 29.5866 1.77769 0.888843 0.458212i \(-0.151510\pi\)
0.888843 + 0.458212i \(0.151510\pi\)
\(278\) 0 0
\(279\) −6.48994 + 15.1446i −0.388542 + 0.906684i
\(280\) 0 0
\(281\) 9.58240i 0.571638i −0.958284 0.285819i \(-0.907734\pi\)
0.958284 0.285819i \(-0.0922656\pi\)
\(282\) 0 0
\(283\) 5.41762i 0.322044i −0.986951 0.161022i \(-0.948521\pi\)
0.986951 0.161022i \(-0.0514790\pi\)
\(284\) 0 0
\(285\) 0.267540 1.30354i 0.0158477 0.0772153i
\(286\) 0 0
\(287\) 4.22424 + 0.437709i 0.249349 + 0.0258372i
\(288\) 0 0
\(289\) −16.3743 −0.963192
\(290\) 0 0
\(291\) −2.12905 + 10.3735i −0.124807 + 0.608103i
\(292\) 0 0
\(293\) −3.92094 −0.229064 −0.114532 0.993420i \(-0.536537\pi\)
−0.114532 + 0.993420i \(0.536537\pi\)
\(294\) 0 0
\(295\) 9.30114 0.541534
\(296\) 0 0
\(297\) 9.28569 13.3629i 0.538810 0.775392i
\(298\) 0 0
\(299\) 27.4721 1.58875
\(300\) 0 0
\(301\) −16.2753 1.68642i −0.938091 0.0972035i
\(302\) 0 0
\(303\) 2.04421 + 0.419555i 0.117437 + 0.0241028i
\(304\) 0 0
\(305\) 13.1365i 0.752193i
\(306\) 0 0
\(307\) 20.1163i 1.14810i 0.818820 + 0.574050i \(0.194628\pi\)
−0.818820 + 0.574050i \(0.805372\pi\)
\(308\) 0 0
\(309\) 0.496442 2.41884i 0.0282416 0.137603i
\(310\) 0 0
\(311\) −7.92125 −0.449173 −0.224586 0.974454i \(-0.572103\pi\)
−0.224586 + 0.974454i \(0.572103\pi\)
\(312\) 0 0
\(313\) 7.13951i 0.403549i −0.979432 0.201774i \(-0.935329\pi\)
0.979432 0.201774i \(-0.0646708\pi\)
\(314\) 0 0
\(315\) −6.93451 3.86167i −0.390716 0.217581i
\(316\) 0 0
\(317\) 10.9008i 0.612249i 0.951991 + 0.306125i \(0.0990324\pi\)
−0.951991 + 0.306125i \(0.900968\pi\)
\(318\) 0 0
\(319\) −18.6824 −1.04602
\(320\) 0 0
\(321\) −3.90657 + 19.0341i −0.218043 + 1.06238i
\(322\) 0 0
\(323\) 0.607747i 0.0338160i
\(324\) 0 0
\(325\) 4.34145i 0.240820i
\(326\) 0 0
\(327\) −27.4494 5.63372i −1.51796 0.311545i
\(328\) 0 0
\(329\) −8.54488 0.885407i −0.471094 0.0488141i
\(330\) 0 0
\(331\) 24.5105 1.34722 0.673608 0.739088i \(-0.264743\pi\)
0.673608 + 0.739088i \(0.264743\pi\)
\(332\) 0 0
\(333\) 5.06090 + 2.16875i 0.277336 + 0.118847i
\(334\) 0 0
\(335\) −2.64216 −0.144357
\(336\) 0 0
\(337\) −24.4917 −1.33415 −0.667074 0.744991i \(-0.732454\pi\)
−0.667074 + 0.744991i \(0.732454\pi\)
\(338\) 0 0
\(339\) 1.70992 8.33133i 0.0928703 0.452496i
\(340\) 0 0
\(341\) −17.1995 −0.931404
\(342\) 0 0
\(343\) −17.6389 5.64535i −0.952410 0.304821i
\(344\) 0 0
\(345\) 2.20354 10.7364i 0.118634 0.578028i
\(346\) 0 0
\(347\) 13.9427i 0.748482i 0.927332 + 0.374241i \(0.122097\pi\)
−0.927332 + 0.374241i \(0.877903\pi\)
\(348\) 0 0
\(349\) 22.2380i 1.19037i −0.803588 0.595185i \(-0.797079\pi\)
0.803588 0.595185i \(-0.202921\pi\)
\(350\) 0 0
\(351\) −12.8730 + 18.5253i −0.687111 + 0.988808i
\(352\) 0 0
\(353\) 7.30187 0.388639 0.194320 0.980938i \(-0.437750\pi\)
0.194320 + 0.980938i \(0.437750\pi\)
\(354\) 0 0
\(355\) 0.227035i 0.0120498i
\(356\) 0 0
\(357\) −3.45695 1.09091i −0.182961 0.0577370i
\(358\) 0 0
\(359\) 22.4577i 1.18527i −0.805471 0.592635i \(-0.798088\pi\)
0.805471 0.592635i \(-0.201912\pi\)
\(360\) 0 0
\(361\) 18.4097 0.968933
\(362\) 0 0
\(363\) −2.02408 0.415423i −0.106237 0.0218041i
\(364\) 0 0
\(365\) 15.7756i 0.825733i
\(366\) 0 0
\(367\) 34.5325i 1.80258i −0.433216 0.901290i \(-0.642621\pi\)
0.433216 0.901290i \(-0.357379\pi\)
\(368\) 0 0
\(369\) −4.42619 1.89676i −0.230418 0.0987415i
\(370\) 0 0
\(371\) 2.74216 26.4641i 0.142366 1.37395i
\(372\) 0 0
\(373\) 7.87066 0.407527 0.203764 0.979020i \(-0.434683\pi\)
0.203764 + 0.979020i \(0.434683\pi\)
\(374\) 0 0
\(375\) −1.69668 0.348228i −0.0876164 0.0179824i
\(376\) 0 0
\(377\) 25.9000 1.33392
\(378\) 0 0
\(379\) 33.3198 1.71152 0.855761 0.517371i \(-0.173089\pi\)
0.855761 + 0.517371i \(0.173089\pi\)
\(380\) 0 0
\(381\) 10.6147 + 2.17857i 0.543809 + 0.111611i
\(382\) 0 0
\(383\) 13.9800 0.714345 0.357172 0.934038i \(-0.383741\pi\)
0.357172 + 0.934038i \(0.383741\pi\)
\(384\) 0 0
\(385\) 0.853957 8.24136i 0.0435217 0.420019i
\(386\) 0 0
\(387\) 17.0534 + 7.30790i 0.866871 + 0.371481i
\(388\) 0 0
\(389\) 17.5098i 0.887783i 0.896081 + 0.443892i \(0.146402\pi\)
−0.896081 + 0.443892i \(0.853598\pi\)
\(390\) 0 0
\(391\) 5.00559i 0.253144i
\(392\) 0 0
\(393\) −15.3560 3.15166i −0.774606 0.158980i
\(394\) 0 0
\(395\) −13.6345 −0.686027
\(396\) 0 0
\(397\) 18.3263i 0.919769i 0.887979 + 0.459884i \(0.152109\pi\)
−0.887979 + 0.459884i \(0.847891\pi\)
\(398\) 0 0
\(399\) −1.05954 + 3.35753i −0.0530431 + 0.168087i
\(400\) 0 0
\(401\) 0.472174i 0.0235793i 0.999930 + 0.0117896i \(0.00375284\pi\)
−0.999930 + 0.0117896i \(0.996247\pi\)
\(402\) 0 0
\(403\) 23.8441 1.18776
\(404\) 0 0
\(405\) 6.20734 + 6.51682i 0.308445 + 0.323823i
\(406\) 0 0
\(407\) 5.74758i 0.284897i
\(408\) 0 0
\(409\) 7.30432i 0.361176i −0.983559 0.180588i \(-0.942200\pi\)
0.983559 0.180588i \(-0.0578000\pi\)
\(410\) 0 0
\(411\) 1.84251 8.97734i 0.0908843 0.442819i
\(412\) 0 0
\(413\) −24.4775 2.53632i −1.20446 0.124804i
\(414\) 0 0
\(415\) 2.74892 0.134939
\(416\) 0 0
\(417\) −6.38006 + 31.0858i −0.312433 + 1.52228i
\(418\) 0 0
\(419\) −0.396150 −0.0193532 −0.00967659 0.999953i \(-0.503080\pi\)
−0.00967659 + 0.999953i \(0.503080\pi\)
\(420\) 0 0
\(421\) −25.0098 −1.21891 −0.609453 0.792823i \(-0.708611\pi\)
−0.609453 + 0.792823i \(0.708611\pi\)
\(422\) 0 0
\(423\) 8.95339 + 3.83681i 0.435329 + 0.186552i
\(424\) 0 0
\(425\) −0.791039 −0.0383710
\(426\) 0 0
\(427\) 3.58217 34.5708i 0.173353 1.67300i
\(428\) 0 0
\(429\) −23.0677 4.73442i −1.11372 0.228580i
\(430\) 0 0
\(431\) 25.2731i 1.21736i 0.793415 + 0.608681i \(0.208301\pi\)
−0.793415 + 0.608681i \(0.791699\pi\)
\(432\) 0 0
\(433\) 13.3865i 0.643316i −0.946856 0.321658i \(-0.895760\pi\)
0.946856 0.321658i \(-0.104240\pi\)
\(434\) 0 0
\(435\) 2.07744 10.1220i 0.0996055 0.485312i
\(436\) 0 0
\(437\) −4.86163 −0.232563
\(438\) 0 0
\(439\) 17.3616i 0.828622i −0.910135 0.414311i \(-0.864023\pi\)
0.910135 0.414311i \(-0.135977\pi\)
\(440\) 0 0
\(441\) 17.1963 + 12.0536i 0.818869 + 0.573980i
\(442\) 0 0
\(443\) 30.2288i 1.43621i 0.695933 + 0.718107i \(0.254991\pi\)
−0.695933 + 0.718107i \(0.745009\pi\)
\(444\) 0 0
\(445\) −16.6351 −0.788578
\(446\) 0 0
\(447\) −8.13040 + 39.6141i −0.384555 + 1.87368i
\(448\) 0 0
\(449\) 37.1531i 1.75336i 0.481071 + 0.876681i \(0.340248\pi\)
−0.481071 + 0.876681i \(0.659752\pi\)
\(450\) 0 0
\(451\) 5.02675i 0.236701i
\(452\) 0 0
\(453\) 15.5106 + 3.18339i 0.728751 + 0.149569i
\(454\) 0 0
\(455\) −1.18386 + 11.4252i −0.0555004 + 0.535623i
\(456\) 0 0
\(457\) 7.31615 0.342235 0.171118 0.985251i \(-0.445262\pi\)
0.171118 + 0.985251i \(0.445262\pi\)
\(458\) 0 0
\(459\) 3.37542 + 2.34554i 0.157551 + 0.109481i
\(460\) 0 0
\(461\) −20.8550 −0.971313 −0.485656 0.874150i \(-0.661419\pi\)
−0.485656 + 0.874150i \(0.661419\pi\)
\(462\) 0 0
\(463\) 4.79424 0.222807 0.111404 0.993775i \(-0.464465\pi\)
0.111404 + 0.993775i \(0.464465\pi\)
\(464\) 0 0
\(465\) 1.91254 9.31853i 0.0886917 0.432136i
\(466\) 0 0
\(467\) −10.3144 −0.477292 −0.238646 0.971107i \(-0.576704\pi\)
−0.238646 + 0.971107i \(0.576704\pi\)
\(468\) 0 0
\(469\) 6.95328 + 0.720488i 0.321073 + 0.0332691i
\(470\) 0 0
\(471\) −5.31431 + 25.8931i −0.244870 + 1.19309i
\(472\) 0 0
\(473\) 19.3672i 0.890505i
\(474\) 0 0
\(475\) 0.768290i 0.0352515i
\(476\) 0 0
\(477\) −11.8828 + 27.7292i −0.544078 + 1.26963i
\(478\) 0 0
\(479\) 27.1291 1.23956 0.619780 0.784775i \(-0.287222\pi\)
0.619780 + 0.784775i \(0.287222\pi\)
\(480\) 0 0
\(481\) 7.96803i 0.363311i
\(482\) 0 0
\(483\) −8.72666 + 27.6537i −0.397077 + 1.25829i
\(484\) 0 0
\(485\) 6.11396i 0.277621i
\(486\) 0 0
\(487\) −10.5407 −0.477646 −0.238823 0.971063i \(-0.576762\pi\)
−0.238823 + 0.971063i \(0.576762\pi\)
\(488\) 0 0
\(489\) −8.52895 1.75048i −0.385692 0.0791595i
\(490\) 0 0
\(491\) 26.2238i 1.18346i −0.806134 0.591732i \(-0.798444\pi\)
0.806134 0.591732i \(-0.201556\pi\)
\(492\) 0 0
\(493\) 4.71914i 0.212539i
\(494\) 0 0
\(495\) −3.70052 + 8.63536i −0.166326 + 0.388131i
\(496\) 0 0
\(497\) −0.0619099 + 0.597480i −0.00277704 + 0.0268006i
\(498\) 0 0
\(499\) 16.7873 0.751505 0.375752 0.926720i \(-0.377384\pi\)
0.375752 + 0.926720i \(0.377384\pi\)
\(500\) 0 0
\(501\) 37.3053 + 7.65655i 1.66668 + 0.342069i
\(502\) 0 0
\(503\) 18.4191 0.821267 0.410634 0.911800i \(-0.365308\pi\)
0.410634 + 0.911800i \(0.365308\pi\)
\(504\) 0 0
\(505\) −1.20483 −0.0536142
\(506\) 0 0
\(507\) 9.92255 + 2.03650i 0.440676 + 0.0904444i
\(508\) 0 0
\(509\) −31.5649 −1.39909 −0.699544 0.714589i \(-0.746614\pi\)
−0.699544 + 0.714589i \(0.746614\pi\)
\(510\) 0 0
\(511\) 4.30183 41.5160i 0.190302 1.83656i
\(512\) 0 0
\(513\) 2.27809 3.27835i 0.100580 0.144743i
\(514\) 0 0
\(515\) 1.42563i 0.0628205i
\(516\) 0 0
\(517\) 10.1682i 0.447198i
\(518\) 0 0
\(519\) 32.1536 + 6.59921i 1.41139 + 0.289673i
\(520\) 0 0
\(521\) 19.0356 0.833963 0.416981 0.908915i \(-0.363088\pi\)
0.416981 + 0.908915i \(0.363088\pi\)
\(522\) 0 0
\(523\) 32.7943i 1.43400i 0.697075 + 0.716998i \(0.254484\pi\)
−0.697075 + 0.716998i \(0.745516\pi\)
\(524\) 0 0
\(525\) 4.37014 + 1.37908i 0.190729 + 0.0601881i
\(526\) 0 0
\(527\) 4.34455i 0.189251i
\(528\) 0 0
\(529\) −17.0419 −0.740952
\(530\) 0 0
\(531\) 25.6477 + 10.9908i 1.11301 + 0.476962i
\(532\) 0 0
\(533\) 6.96873i 0.301849i
\(534\) 0 0
\(535\) 11.2184i 0.485015i
\(536\) 0 0
\(537\) −0.487191 + 2.37376i −0.0210239 + 0.102435i
\(538\) 0 0
\(539\) −4.49465 + 21.4556i −0.193598 + 0.924158i
\(540\) 0 0
\(541\) −43.0191 −1.84954 −0.924769 0.380530i \(-0.875742\pi\)
−0.924769 + 0.380530i \(0.875742\pi\)
\(542\) 0 0
\(543\) 4.66621 22.7354i 0.200246 0.975669i
\(544\) 0 0
\(545\) 16.1783 0.693001
\(546\) 0 0
\(547\) 1.93124 0.0825739 0.0412869 0.999147i \(-0.486854\pi\)
0.0412869 + 0.999147i \(0.486854\pi\)
\(548\) 0 0
\(549\) −15.5229 + 36.2235i −0.662502 + 1.54598i
\(550\) 0 0
\(551\) −4.58342 −0.195260
\(552\) 0 0
\(553\) 35.8814 + 3.71798i 1.52583 + 0.158105i
\(554\) 0 0
\(555\) −3.11399 0.639115i −0.132181 0.0271289i
\(556\) 0 0
\(557\) 41.2956i 1.74975i −0.484347 0.874876i \(-0.660943\pi\)
0.484347 0.874876i \(-0.339057\pi\)
\(558\) 0 0
\(559\) 26.8493i 1.13560i
\(560\) 0 0
\(561\) −0.862641 + 4.20308i −0.0364207 + 0.177454i
\(562\) 0 0
\(563\) −39.7986 −1.67731 −0.838656 0.544662i \(-0.816658\pi\)
−0.838656 + 0.544662i \(0.816658\pi\)
\(564\) 0 0
\(565\) 4.91036i 0.206580i
\(566\) 0 0
\(567\) −14.5585 18.8427i −0.611401 0.791321i
\(568\) 0 0
\(569\) 21.6458i 0.907439i −0.891145 0.453720i \(-0.850097\pi\)
0.891145 0.453720i \(-0.149903\pi\)
\(570\) 0 0
\(571\) −19.2486 −0.805531 −0.402765 0.915303i \(-0.631951\pi\)
−0.402765 + 0.915303i \(0.631951\pi\)
\(572\) 0 0
\(573\) −7.77006 + 37.8584i −0.324599 + 1.58156i
\(574\) 0 0
\(575\) 6.32787i 0.263890i
\(576\) 0 0
\(577\) 0.0237908i 0.000990422i −1.00000 0.000495211i \(-0.999842\pi\)
1.00000 0.000495211i \(-0.000157631\pi\)
\(578\) 0 0
\(579\) 17.3810 + 3.56727i 0.722328 + 0.148251i
\(580\) 0 0
\(581\) −7.23421 0.749598i −0.300126 0.0310986i
\(582\) 0 0
\(583\) −31.4916 −1.30425
\(584\) 0 0
\(585\) 5.13014 11.9714i 0.212105 0.494958i
\(586\) 0 0
\(587\) 28.4193 1.17299 0.586495 0.809953i \(-0.300508\pi\)
0.586495 + 0.809953i \(0.300508\pi\)
\(588\) 0 0
\(589\) −4.21960 −0.173866
\(590\) 0 0
\(591\) −0.626358 + 3.05183i −0.0257649 + 0.125536i
\(592\) 0 0
\(593\) 40.6292 1.66844 0.834221 0.551430i \(-0.185918\pi\)
0.834221 + 0.551430i \(0.185918\pi\)
\(594\) 0 0
\(595\) 2.08175 + 0.215707i 0.0853433 + 0.00884314i
\(596\) 0 0
\(597\) 4.94321 24.0850i 0.202312 0.985734i
\(598\) 0 0
\(599\) 5.26519i 0.215130i −0.994198 0.107565i \(-0.965695\pi\)
0.994198 0.107565i \(-0.0343054\pi\)
\(600\) 0 0
\(601\) 40.1818i 1.63905i −0.573042 0.819526i \(-0.694237\pi\)
0.573042 0.819526i \(-0.305763\pi\)
\(602\) 0 0
\(603\) −7.28570 3.12215i −0.296697 0.127144i
\(604\) 0 0
\(605\) 1.19296 0.0485009
\(606\) 0 0
\(607\) 39.9601i 1.62193i 0.585095 + 0.810965i \(0.301057\pi\)
−0.585095 + 0.810965i \(0.698943\pi\)
\(608\) 0 0
\(609\) −8.22726 + 26.0711i −0.333385 + 1.05646i
\(610\) 0 0
\(611\) 14.0965i 0.570283i
\(612\) 0 0
\(613\) 26.7062 1.07865 0.539327 0.842096i \(-0.318679\pi\)
0.539327 + 0.842096i \(0.318679\pi\)
\(614\) 0 0
\(615\) 2.72345 + 0.558962i 0.109820 + 0.0225395i
\(616\) 0 0
\(617\) 25.8390i 1.04024i −0.854093 0.520120i \(-0.825887\pi\)
0.854093 0.520120i \(-0.174113\pi\)
\(618\) 0 0
\(619\) 23.7203i 0.953398i 0.879066 + 0.476699i \(0.158167\pi\)
−0.879066 + 0.476699i \(0.841833\pi\)
\(620\) 0 0
\(621\) 18.7630 27.0015i 0.752934 1.08353i
\(622\) 0 0
\(623\) 43.7778 + 4.53619i 1.75392 + 0.181739i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 4.08221 + 0.837832i 0.163028 + 0.0334598i
\(628\) 0 0
\(629\) −1.45182 −0.0578880
\(630\) 0 0
\(631\) 15.2580 0.607411 0.303706 0.952766i \(-0.401776\pi\)
0.303706 + 0.952766i \(0.401776\pi\)
\(632\) 0 0
\(633\) −37.1783 7.63048i −1.47771 0.303284i
\(634\) 0 0
\(635\) −6.25616 −0.248268
\(636\) 0 0
\(637\) 6.23106 29.7445i 0.246884 1.17852i
\(638\) 0 0
\(639\) 0.268279 0.626044i 0.0106130 0.0247659i
\(640\) 0 0
\(641\) 20.3042i 0.801967i −0.916085 0.400984i \(-0.868668\pi\)
0.916085 0.400984i \(-0.131332\pi\)
\(642\) 0 0
\(643\) 35.2942i 1.39187i −0.718105 0.695934i \(-0.754990\pi\)
0.718105 0.695934i \(-0.245010\pi\)
\(644\) 0 0
\(645\) −10.4930 2.15358i −0.413161 0.0847972i
\(646\) 0 0
\(647\) −36.1983 −1.42310 −0.711551 0.702635i \(-0.752007\pi\)
−0.711551 + 0.702635i \(0.752007\pi\)
\(648\) 0 0
\(649\) 29.1276i 1.14336i
\(650\) 0 0
\(651\) −7.57420 + 24.0017i −0.296856 + 0.940700i
\(652\) 0 0
\(653\) 29.0293i 1.13601i 0.823027 + 0.568003i \(0.192284\pi\)
−0.823027 + 0.568003i \(0.807716\pi\)
\(654\) 0 0
\(655\) 9.05057 0.353635
\(656\) 0 0
\(657\) −18.6415 + 43.5008i −0.727273 + 1.69713i
\(658\) 0 0
\(659\) 1.26171i 0.0491491i −0.999698 0.0245745i \(-0.992177\pi\)
0.999698 0.0245745i \(-0.00782310\pi\)
\(660\) 0 0
\(661\) 10.5711i 0.411170i −0.978639 0.205585i \(-0.934090\pi\)
0.978639 0.205585i \(-0.0659097\pi\)
\(662\) 0 0
\(663\) 1.19590 5.82685i 0.0464450 0.226296i
\(664\) 0 0
\(665\) 0.209504 2.02188i 0.00812421 0.0784051i
\(666\) 0 0
\(667\) −37.7504 −1.46170
\(668\) 0 0
\(669\) −1.66356 + 8.10541i −0.0643168 + 0.313373i
\(670\) 0 0
\(671\) −41.1385 −1.58813
\(672\) 0 0
\(673\) −18.2901 −0.705030 −0.352515 0.935806i \(-0.614673\pi\)
−0.352515 + 0.935806i \(0.614673\pi\)
\(674\) 0 0
\(675\) −4.26708 2.96514i −0.164240 0.114128i
\(676\) 0 0
\(677\) −8.52037 −0.327464 −0.163732 0.986505i \(-0.552353\pi\)
−0.163732 + 0.986505i \(0.552353\pi\)
\(678\) 0 0
\(679\) −1.66721 + 16.0899i −0.0639816 + 0.617473i
\(680\) 0 0
\(681\) 33.8193 + 6.94108i 1.29596 + 0.265983i
\(682\) 0 0
\(683\) 14.6010i 0.558692i 0.960190 + 0.279346i \(0.0901177\pi\)
−0.960190 + 0.279346i \(0.909882\pi\)
\(684\) 0 0
\(685\) 5.29111i 0.202163i
\(686\) 0 0
\(687\) 2.10387 10.2508i 0.0802678 0.391092i
\(688\) 0 0
\(689\) 43.6577 1.66323
\(690\) 0 0
\(691\) 33.8458i 1.28756i −0.765212 0.643778i \(-0.777366\pi\)
0.765212 0.643778i \(-0.222634\pi\)
\(692\) 0 0
\(693\) 12.0933 21.7163i 0.459386 0.824932i
\(694\) 0 0
\(695\) 18.3215i 0.694975i
\(696\) 0 0
\(697\) 1.26975 0.0480951
\(698\) 0 0
\(699\) 2.27243 11.0721i 0.0859512 0.418784i
\(700\) 0 0
\(701\) 1.51324i 0.0571545i −0.999592 0.0285772i \(-0.990902\pi\)
0.999592 0.0285772i \(-0.00909765\pi\)
\(702\) 0 0
\(703\) 1.41007i 0.0531818i
\(704\) 0 0
\(705\) −5.50905 1.13068i −0.207483 0.0425838i
\(706\) 0 0
\(707\) 3.17070 + 0.328543i 0.119246 + 0.0123561i
\(708\) 0 0
\(709\) 2.87428 0.107946 0.0539729 0.998542i \(-0.482812\pi\)
0.0539729 + 0.998542i \(0.482812\pi\)
\(710\) 0 0
\(711\) −37.5968 16.1114i −1.40999 0.604226i
\(712\) 0 0
\(713\) −34.7539 −1.30154
\(714\) 0 0
\(715\) 13.5958 0.508453
\(716\) 0 0
\(717\) 1.19319 5.81361i 0.0445604 0.217113i
\(718\) 0 0
\(719\) 24.5502 0.915566 0.457783 0.889064i \(-0.348644\pi\)
0.457783 + 0.889064i \(0.348644\pi\)
\(720\) 0 0
\(721\) 0.388752 3.75176i 0.0144779 0.139723i
\(722\) 0 0
\(723\) 4.06315 19.7970i 0.151110 0.736260i
\(724\) 0 0
\(725\) 5.96574i 0.221562i
\(726\) 0 0
\(727\) 43.1067i 1.59874i 0.600839 + 0.799370i \(0.294833\pi\)
−0.600839 + 0.799370i \(0.705167\pi\)
\(728\) 0 0
\(729\) 9.41588 + 25.3050i 0.348736 + 0.937221i
\(730\) 0 0
\(731\) −4.89211 −0.180941
\(732\) 0 0
\(733\) 14.8194i 0.547367i 0.961820 + 0.273684i \(0.0882421\pi\)
−0.961820 + 0.273684i \(0.911758\pi\)
\(734\) 0 0
\(735\) −11.1247 4.82097i −0.410340 0.177824i
\(736\) 0 0
\(737\) 8.27425i 0.304786i
\(738\) 0 0
\(739\) −14.3445 −0.527672 −0.263836 0.964568i \(-0.584988\pi\)
−0.263836 + 0.964568i \(0.584988\pi\)
\(740\) 0 0
\(741\) −5.65928 1.16151i −0.207899 0.0426691i
\(742\) 0 0
\(743\) 3.81720i 0.140040i 0.997546 + 0.0700198i \(0.0223062\pi\)
−0.997546 + 0.0700198i \(0.977694\pi\)
\(744\) 0 0
\(745\) 23.3480i 0.855403i
\(746\) 0 0
\(747\) 7.58007 + 3.24830i 0.277340 + 0.118849i
\(748\) 0 0
\(749\) −3.05914 + 29.5231i −0.111779 + 1.07875i
\(750\) 0 0
\(751\) 23.2840 0.849644 0.424822 0.905277i \(-0.360337\pi\)
0.424822 + 0.905277i \(0.360337\pi\)
\(752\) 0 0
\(753\) −36.6094 7.51372i −1.33412 0.273815i
\(754\) 0 0
\(755\) −9.14170 −0.332701
\(756\) 0 0
\(757\) 43.1461 1.56817 0.784086 0.620652i \(-0.213132\pi\)
0.784086 + 0.620652i \(0.213132\pi\)
\(758\) 0 0
\(759\) 33.6223 + 6.90064i 1.22041 + 0.250477i
\(760\) 0 0
\(761\) 19.4395 0.704682 0.352341 0.935872i \(-0.385386\pi\)
0.352341 + 0.935872i \(0.385386\pi\)
\(762\) 0 0
\(763\) −42.5757 4.41163i −1.54134 0.159712i
\(764\) 0 0
\(765\) −2.18127 0.934743i −0.0788640 0.0337957i
\(766\) 0 0
\(767\) 40.3805i 1.45805i
\(768\) 0 0
\(769\) 29.2444i 1.05458i −0.849686 0.527290i \(-0.823208\pi\)
0.849686 0.527290i \(-0.176792\pi\)
\(770\) 0 0
\(771\) −29.2038 5.99380i −1.05175 0.215861i
\(772\) 0 0
\(773\) 17.6142 0.633539 0.316770 0.948503i \(-0.397402\pi\)
0.316770 + 0.948503i \(0.397402\pi\)
\(774\) 0 0
\(775\) 5.49220i 0.197286i
\(776\) 0 0
\(777\) 8.02068 + 2.53108i 0.287740 + 0.0908022i
\(778\) 0 0
\(779\) 1.23323i 0.0441850i
\(780\) 0 0
\(781\) 0.710988 0.0254411
\(782\) 0 0
\(783\) 17.6893 25.4563i 0.632163 0.909733i
\(784\) 0 0
\(785\) 15.2610i 0.544689i
\(786\) 0 0
\(787\) 14.8565i 0.529578i 0.964306 + 0.264789i \(0.0853023\pi\)
−0.964306 + 0.264789i \(0.914698\pi\)
\(788\) 0 0
\(789\) 8.41068 40.9797i 0.299428 1.45892i
\(790\) 0 0
\(791\) 1.33900 12.9224i 0.0476093 0.459468i
\(792\) 0 0
\(793\) 57.0314 2.02524
\(794\) 0 0
\(795\) 3.50179 17.0619i 0.124196 0.605123i
\(796\) 0 0
\(797\) 23.6741 0.838579 0.419290 0.907853i \(-0.362279\pi\)
0.419290 + 0.907853i \(0.362279\pi\)
\(798\) 0 0
\(799\) −2.56847 −0.0908658
\(800\) 0 0
\(801\) −45.8708 19.6571i −1.62076 0.694548i
\(802\) 0 0
\(803\) −49.4032 −1.74340
\(804\) 0 0
\(805\) 1.72554 16.6528i 0.0608172 0.586934i
\(806\) 0 0
\(807\) 26.9656 + 5.53443i 0.949235 + 0.194821i
\(808\) 0 0
\(809\) 38.1376i 1.34085i −0.741979 0.670423i \(-0.766113\pi\)
0.741979 0.670423i \(-0.233887\pi\)
\(810\) 0 0
\(811\) 32.4174i 1.13833i −0.822224 0.569164i \(-0.807267\pi\)
0.822224 0.569164i \(-0.192733\pi\)
\(812\) 0 0
\(813\) 9.59048 46.7281i 0.336353 1.63883i
\(814\) 0 0
\(815\) 5.02683 0.176082
\(816\) 0 0
\(817\) 4.75142i 0.166231i
\(818\) 0 0
\(819\) −16.7653 + 30.1059i −0.585826 + 1.05198i
\(820\) 0 0
\(821\) 30.2789i 1.05674i −0.849014 0.528370i \(-0.822803\pi\)
0.849014 0.528370i \(-0.177197\pi\)
\(822\) 0 0
\(823\) −20.2258 −0.705027 −0.352513 0.935807i \(-0.614673\pi\)
−0.352513 + 0.935807i \(0.614673\pi\)
\(824\) 0 0
\(825\) 1.09052 5.31337i 0.0379669 0.184988i
\(826\) 0 0
\(827\) 35.8039i 1.24502i −0.782611 0.622512i \(-0.786112\pi\)
0.782611 0.622512i \(-0.213888\pi\)
\(828\) 0 0
\(829\) 51.3995i 1.78518i 0.450871 + 0.892589i \(0.351113\pi\)
−0.450871 + 0.892589i \(0.648887\pi\)
\(830\) 0 0
\(831\) −50.1991 10.3029i −1.74139 0.357403i
\(832\) 0 0
\(833\) −5.41963 1.13534i −0.187779 0.0393371i
\(834\) 0 0
\(835\) −21.9872 −0.760898
\(836\) 0 0
\(837\) 16.2851 23.4356i 0.562897 0.810054i
\(838\) 0 0
\(839\) −39.5046 −1.36385 −0.681925 0.731422i \(-0.738857\pi\)
−0.681925 + 0.731422i \(0.738857\pi\)
\(840\) 0 0
\(841\) −6.59010 −0.227245
\(842\) 0 0
\(843\) −3.33686 + 16.2583i −0.114927 + 0.559966i
\(844\) 0 0
\(845\) −5.84820 −0.201184
\(846\) 0 0
\(847\) −3.13948 0.325308i −0.107874 0.0111777i
\(848\) 0 0
\(849\) −1.88656 + 9.19199i −0.0647467 + 0.315468i
\(850\) 0 0
\(851\) 11.6138i 0.398115i
\(852\) 0 0
\(853\) 50.6339i 1.73367i −0.498594 0.866836i \(-0.666150\pi\)
0.498594 0.866836i \(-0.333850\pi\)
\(854\) 0 0
\(855\) −0.907861 + 2.11854i −0.0310482 + 0.0724525i
\(856\) 0 0
\(857\) 39.4930 1.34905 0.674527 0.738250i \(-0.264348\pi\)
0.674527 + 0.738250i \(0.264348\pi\)
\(858\) 0 0
\(859\) 16.7650i 0.572014i 0.958228 + 0.286007i \(0.0923280\pi\)
−0.958228 + 0.286007i \(0.907672\pi\)
\(860\) 0 0
\(861\) −7.01478 2.21365i −0.239063 0.0754411i
\(862\) 0 0
\(863\) 28.8252i 0.981220i 0.871379 + 0.490610i \(0.163226\pi\)
−0.871379 + 0.490610i \(0.836774\pi\)
\(864\) 0 0
\(865\) −18.9508 −0.644348
\(866\) 0 0
\(867\) 27.7819 + 5.70197i 0.943524 + 0.193649i
\(868\) 0 0
\(869\) 42.6981i 1.44843i
\(870\) 0 0
\(871\) 11.4708i 0.388674i
\(872\) 0 0
\(873\) 7.22465 16.8591i 0.244517 0.570594i
\(874\) 0 0
\(875\) −2.63166 0.272689i −0.0889664 0.00921856i
\(876\) 0 0
\(877\) −26.8225 −0.905733 −0.452866 0.891578i \(-0.649599\pi\)
−0.452866 + 0.891578i \(0.649599\pi\)
\(878\) 0 0
\(879\) 6.65260 + 1.36538i 0.224387 + 0.0460531i
\(880\) 0 0
\(881\) 12.0356 0.405491 0.202745 0.979232i \(-0.435014\pi\)
0.202745 + 0.979232i \(0.435014\pi\)
\(882\) 0 0
\(883\) 5.41892 0.182361 0.0911807 0.995834i \(-0.470936\pi\)
0.0911807 + 0.995834i \(0.470936\pi\)
\(884\) 0 0
\(885\) −15.7811 3.23892i −0.530476 0.108875i
\(886\) 0 0
\(887\) −26.8010 −0.899889 −0.449945 0.893056i \(-0.648556\pi\)
−0.449945 + 0.893056i \(0.648556\pi\)
\(888\) 0 0
\(889\) 16.4641 + 1.70598i 0.552188 + 0.0572168i
\(890\) 0 0
\(891\) −20.4082 + 19.4390i −0.683700 + 0.651231i
\(892\) 0 0
\(893\) 2.49460i 0.0834786i
\(894\) 0 0
\(895\) 1.39906i 0.0467654i
\(896\) 0 0
\(897\) −46.6115 9.56655i −1.55631 0.319418i
\(898\) 0 0
\(899\) −32.7651 −1.09278
\(900\) 0 0
\(901\) 7.95471i 0.265010i
\(902\) 0 0
\(903\) 27.0267 + 8.52882i 0.899393 + 0.283821i
\(904\) 0 0
\(905\) 13.3999i 0.445427i
\(906\) 0 0
\(907\) −50.7667 −1.68568 −0.842840 0.538165i \(-0.819118\pi\)
−0.842840 + 0.538165i \(0.819118\pi\)
\(908\) 0 0
\(909\) −3.32228 1.42370i −0.110193 0.0472213i
\(910\) 0 0
\(911\) 9.33951i 0.309432i −0.987959 0.154716i \(-0.950554\pi\)
0.987959 0.154716i \(-0.0494462\pi\)
\(912\) 0 0
\(913\) 8.60856i 0.284902i
\(914\) 0 0
\(915\) 4.57449 22.2885i 0.151228 0.736834i
\(916\) 0 0
\(917\) −23.8180 2.46799i −0.786541 0.0815002i
\(918\) 0 0
\(919\) −6.07625 −0.200437 −0.100219 0.994965i \(-0.531954\pi\)
−0.100219 + 0.994965i \(0.531954\pi\)
\(920\) 0 0
\(921\) 7.00506 34.1311i 0.230825 1.12466i
\(922\) 0 0
\(923\) −0.985662 −0.0324435
\(924\) 0 0
\(925\) 1.83534 0.0603455
\(926\) 0 0
\(927\) −1.68461 + 3.93113i −0.0553299 + 0.129115i
\(928\) 0 0
\(929\) −18.6804 −0.612883 −0.306442 0.951889i \(-0.599138\pi\)
−0.306442 + 0.951889i \(0.599138\pi\)
\(930\) 0 0
\(931\) −1.10269 + 5.26377i −0.0361391 + 0.172513i
\(932\) 0 0
\(933\) 13.4399 + 2.75840i 0.440001 + 0.0903059i
\(934\) 0 0
\(935\) 2.47723i 0.0810142i
\(936\) 0 0
\(937\) 60.6614i 1.98172i 0.134889 + 0.990861i \(0.456932\pi\)
−0.134889 + 0.990861i \(0.543068\pi\)
\(938\) 0 0
\(939\) −2.48617 + 12.1135i −0.0811332 + 0.395309i
\(940\) 0 0
\(941\) 37.6348 1.22686 0.613429 0.789750i \(-0.289790\pi\)
0.613429 + 0.789750i \(0.289790\pi\)
\(942\) 0 0
\(943\) 10.1573i 0.330766i
\(944\) 0 0
\(945\) 10.4209 + 8.96683i 0.338993 + 0.291691i
\(946\) 0 0
\(947\) 9.53338i 0.309793i 0.987931 + 0.154897i \(0.0495044\pi\)
−0.987931 + 0.154897i \(0.950496\pi\)
\(948\) 0 0
\(949\) 68.4890 2.22325
\(950\) 0 0
\(951\) 3.79596 18.4952i 0.123092 0.599748i
\(952\) 0 0
\(953\) 0.837324i 0.0271236i −0.999908 0.0135618i \(-0.995683\pi\)
0.999908 0.0135618i \(-0.00431699\pi\)
\(954\) 0 0
\(955\) 22.3132i 0.722037i
\(956\) 0 0
\(957\) 31.6982 + 6.50574i 1.02466 + 0.210301i
\(958\) 0 0
\(959\) 1.44282 13.9244i 0.0465912 0.449642i
\(960\) 0 0
\(961\) 0.835734 0.0269592
\(962\) 0 0
\(963\) 13.2564 30.9346i 0.427183 0.996852i
\(964\) 0 0
\(965\) −10.2441 −0.329769
\(966\) 0 0
\(967\) −17.8394 −0.573677 −0.286838 0.957979i \(-0.592604\pi\)
−0.286838 + 0.957979i \(0.592604\pi\)
\(968\) 0 0
\(969\) −0.211634 + 1.03116i −0.00679867 + 0.0331255i
\(970\) 0 0
\(971\) −17.5383 −0.562830 −0.281415 0.959586i \(-0.590804\pi\)
−0.281415 + 0.959586i \(0.590804\pi\)
\(972\) 0 0
\(973\) −4.99607 + 48.2160i −0.160167 + 1.54574i
\(974\) 0 0
\(975\) −1.51181 + 7.36607i −0.0484168 + 0.235903i
\(976\) 0 0
\(977\) 0.391252i 0.0125173i 0.999980 + 0.00625863i \(0.00199220\pi\)
−0.999980 + 0.00625863i \(0.998008\pi\)
\(978\) 0 0
\(979\) 52.0947i 1.66495i
\(980\) 0 0
\(981\) 44.6112 + 19.1173i 1.42432 + 0.610368i
\(982\) 0 0
\(983\) 29.5956 0.943952 0.471976 0.881611i \(-0.343541\pi\)
0.471976 + 0.881611i \(0.343541\pi\)
\(984\) 0 0
\(985\) 1.79870i 0.0573114i
\(986\) 0 0
\(987\) 14.1896 + 4.47782i 0.451661 + 0.142531i
\(988\) 0 0
\(989\) 39.1341i 1.24439i
\(990\) 0 0
\(991\) 9.06251 0.287880 0.143940 0.989586i \(-0.454023\pi\)
0.143940 + 0.989586i \(0.454023\pi\)
\(992\) 0 0
\(993\) −41.5865 8.53522i −1.31971 0.270857i
\(994\) 0 0
\(995\) 14.1953i 0.450023i
\(996\) 0 0
\(997\) 0.0383191i 0.00121358i 1.00000 0.000606789i \(0.000193147\pi\)
−1.00000 0.000606789i \(0.999807\pi\)
\(998\) 0 0
\(999\) −7.83153 5.44204i −0.247779 0.172178i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.f.b.41.1 yes 16
3.2 odd 2 840.2.f.a.41.15 16
4.3 odd 2 1680.2.f.l.881.16 16
7.6 odd 2 840.2.f.a.41.16 yes 16
12.11 even 2 1680.2.f.k.881.2 16
21.20 even 2 inner 840.2.f.b.41.2 yes 16
28.27 even 2 1680.2.f.k.881.1 16
84.83 odd 2 1680.2.f.l.881.15 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.f.a.41.15 16 3.2 odd 2
840.2.f.a.41.16 yes 16 7.6 odd 2
840.2.f.b.41.1 yes 16 1.1 even 1 trivial
840.2.f.b.41.2 yes 16 21.20 even 2 inner
1680.2.f.k.881.1 16 28.27 even 2
1680.2.f.k.881.2 16 12.11 even 2
1680.2.f.l.881.15 16 84.83 odd 2
1680.2.f.l.881.16 16 4.3 odd 2