Properties

Label 840.2.e.d.491.3
Level $840$
Weight $2$
Character 840.491
Analytic conductor $6.707$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(491,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.3
Character \(\chi\) \(=\) 840.491
Dual form 840.2.e.d.491.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39982 - 0.201241i) q^{2} +(-1.38582 + 1.03899i) q^{3} +(1.91900 + 0.563404i) q^{4} -1.00000 q^{5} +(2.14899 - 1.17551i) q^{6} +1.00000i q^{7} +(-2.57288 - 1.17485i) q^{8} +(0.841016 - 2.87970i) q^{9} +(1.39982 + 0.201241i) q^{10} -2.85691i q^{11} +(-3.24477 + 1.21304i) q^{12} +3.04377i q^{13} +(0.201241 - 1.39982i) q^{14} +(1.38582 - 1.03899i) q^{15} +(3.36515 + 2.16235i) q^{16} +1.28528i q^{17} +(-1.75679 + 3.86183i) q^{18} +3.94860 q^{19} +(-1.91900 - 0.563404i) q^{20} +(-1.03899 - 1.38582i) q^{21} +(-0.574929 + 3.99917i) q^{22} +6.49052 q^{23} +(4.78621 - 1.04506i) q^{24} +1.00000 q^{25} +(0.612531 - 4.26073i) q^{26} +(1.82647 + 4.86457i) q^{27} +(-0.563404 + 1.91900i) q^{28} -8.08470 q^{29} +(-2.14899 + 1.17551i) q^{30} -4.16256i q^{31} +(-4.27546 - 3.70411i) q^{32} +(2.96829 + 3.95918i) q^{33} +(0.258651 - 1.79916i) q^{34} -1.00000i q^{35} +(3.23635 - 5.05233i) q^{36} +4.91028i q^{37} +(-5.52733 - 0.794620i) q^{38} +(-3.16243 - 4.21812i) q^{39} +(2.57288 + 1.17485i) q^{40} +5.60633i q^{41} +(1.17551 + 2.14899i) q^{42} +0.729398 q^{43} +(1.60960 - 5.48243i) q^{44} +(-0.841016 + 2.87970i) q^{45} +(-9.08557 - 1.30616i) q^{46} +2.24535 q^{47} +(-6.91016 + 0.499713i) q^{48} -1.00000 q^{49} +(-1.39982 - 0.201241i) q^{50} +(-1.33539 - 1.78117i) q^{51} +(-1.71487 + 5.84100i) q^{52} -9.29752 q^{53} +(-1.57779 - 7.17709i) q^{54} +2.85691i q^{55} +(1.17485 - 2.57288i) q^{56} +(-5.47206 + 4.10254i) q^{57} +(11.3171 + 1.62698i) q^{58} +13.8177i q^{59} +(3.24477 - 1.21304i) q^{60} +6.42611i q^{61} +(-0.837678 + 5.82684i) q^{62} +(2.87970 + 0.841016i) q^{63} +(5.23947 + 6.04549i) q^{64} -3.04377i q^{65} +(-3.35833 - 6.13949i) q^{66} -10.4615 q^{67} +(-0.724130 + 2.46645i) q^{68} +(-8.99471 + 6.74356i) q^{69} +(-0.201241 + 1.39982i) q^{70} +7.47462 q^{71} +(-5.54705 + 6.42108i) q^{72} +6.39674 q^{73} +(0.988150 - 6.87351i) q^{74} +(-1.38582 + 1.03899i) q^{75} +(7.57737 + 2.22465i) q^{76} +2.85691 q^{77} +(3.57798 + 6.54103i) q^{78} +7.77084i q^{79} +(-3.36515 - 2.16235i) q^{80} +(-7.58538 - 4.84375i) q^{81} +(1.12822 - 7.84786i) q^{82} +4.35530i q^{83} +(-1.21304 - 3.24477i) q^{84} -1.28528i q^{85} +(-1.02103 - 0.146785i) q^{86} +(11.2040 - 8.39990i) q^{87} +(-3.35644 + 7.35051i) q^{88} +9.27251i q^{89} +(1.75679 - 3.86183i) q^{90} -3.04377 q^{91} +(12.4553 + 3.65678i) q^{92} +(4.32484 + 5.76857i) q^{93} +(-3.14310 - 0.451858i) q^{94} -3.94860 q^{95} +(9.77356 + 0.691099i) q^{96} -18.4478 q^{97} +(1.39982 + 0.201241i) q^{98} +(-8.22707 - 2.40271i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{2} + 4 q^{3} - 2 q^{4} - 44 q^{5} - 6 q^{6} - 22 q^{8} + 4 q^{9} - 2 q^{10} + 6 q^{12} + 4 q^{14} - 4 q^{15} + 22 q^{16} + 2 q^{18} + 16 q^{19} + 2 q^{20} + 16 q^{23} + 10 q^{24} + 44 q^{25}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39982 0.201241i −0.989824 0.142299i
\(3\) −1.38582 + 1.03899i −0.800106 + 0.599859i
\(4\) 1.91900 + 0.563404i 0.959502 + 0.281702i
\(5\) −1.00000 −0.447214
\(6\) 2.14899 1.17551i 0.877323 0.479900i
\(7\) 1.00000i 0.377964i
\(8\) −2.57288 1.17485i −0.909652 0.415371i
\(9\) 0.841016 2.87970i 0.280339 0.959901i
\(10\) 1.39982 + 0.201241i 0.442663 + 0.0636380i
\(11\) 2.85691i 0.861392i −0.902497 0.430696i \(-0.858268\pi\)
0.902497 0.430696i \(-0.141732\pi\)
\(12\) −3.24477 + 1.21304i −0.936684 + 0.350175i
\(13\) 3.04377i 0.844189i 0.906552 + 0.422094i \(0.138705\pi\)
−0.906552 + 0.422094i \(0.861295\pi\)
\(14\) 0.201241 1.39982i 0.0537840 0.374118i
\(15\) 1.38582 1.03899i 0.357818 0.268265i
\(16\) 3.36515 + 2.16235i 0.841288 + 0.540587i
\(17\) 1.28528i 0.311726i 0.987779 + 0.155863i \(0.0498158\pi\)
−0.987779 + 0.155863i \(0.950184\pi\)
\(18\) −1.75679 + 3.86183i −0.414079 + 0.910241i
\(19\) 3.94860 0.905870 0.452935 0.891543i \(-0.350377\pi\)
0.452935 + 0.891543i \(0.350377\pi\)
\(20\) −1.91900 0.563404i −0.429102 0.125981i
\(21\) −1.03899 1.38582i −0.226725 0.302412i
\(22\) −0.574929 + 3.99917i −0.122575 + 0.852626i
\(23\) 6.49052 1.35337 0.676683 0.736274i \(-0.263417\pi\)
0.676683 + 0.736274i \(0.263417\pi\)
\(24\) 4.78621 1.04506i 0.976982 0.213322i
\(25\) 1.00000 0.200000
\(26\) 0.612531 4.26073i 0.120127 0.835598i
\(27\) 1.82647 + 4.86457i 0.351505 + 0.936186i
\(28\) −0.563404 + 1.91900i −0.106473 + 0.362658i
\(29\) −8.08470 −1.50129 −0.750646 0.660705i \(-0.770258\pi\)
−0.750646 + 0.660705i \(0.770258\pi\)
\(30\) −2.14899 + 1.17551i −0.392351 + 0.214618i
\(31\) 4.16256i 0.747617i −0.927506 0.373809i \(-0.878052\pi\)
0.927506 0.373809i \(-0.121948\pi\)
\(32\) −4.27546 3.70411i −0.755802 0.654800i
\(33\) 2.96829 + 3.95918i 0.516714 + 0.689205i
\(34\) 0.258651 1.79916i 0.0443583 0.308554i
\(35\) 1.00000i 0.169031i
\(36\) 3.23635 5.05233i 0.539391 0.842055i
\(37\) 4.91028i 0.807245i 0.914926 + 0.403622i \(0.132249\pi\)
−0.914926 + 0.403622i \(0.867751\pi\)
\(38\) −5.52733 0.794620i −0.896652 0.128904i
\(39\) −3.16243 4.21812i −0.506394 0.675440i
\(40\) 2.57288 + 1.17485i 0.406809 + 0.185760i
\(41\) 5.60633i 0.875561i 0.899082 + 0.437781i \(0.144235\pi\)
−0.899082 + 0.437781i \(0.855765\pi\)
\(42\) 1.17551 + 2.14899i 0.181385 + 0.331597i
\(43\) 0.729398 0.111232 0.0556161 0.998452i \(-0.482288\pi\)
0.0556161 + 0.998452i \(0.482288\pi\)
\(44\) 1.60960 5.48243i 0.242656 0.826508i
\(45\) −0.841016 + 2.87970i −0.125371 + 0.429281i
\(46\) −9.08557 1.30616i −1.33959 0.192583i
\(47\) 2.24535 0.327519 0.163759 0.986500i \(-0.447638\pi\)
0.163759 + 0.986500i \(0.447638\pi\)
\(48\) −6.91016 + 0.499713i −0.997395 + 0.0721274i
\(49\) −1.00000 −0.142857
\(50\) −1.39982 0.201241i −0.197965 0.0284598i
\(51\) −1.33539 1.78117i −0.186991 0.249414i
\(52\) −1.71487 + 5.84100i −0.237810 + 0.810001i
\(53\) −9.29752 −1.27711 −0.638556 0.769575i \(-0.720468\pi\)
−0.638556 + 0.769575i \(0.720468\pi\)
\(54\) −1.57779 7.17709i −0.214709 0.976678i
\(55\) 2.85691i 0.385226i
\(56\) 1.17485 2.57288i 0.156996 0.343816i
\(57\) −5.47206 + 4.10254i −0.724792 + 0.543394i
\(58\) 11.3171 + 1.62698i 1.48601 + 0.213632i
\(59\) 13.8177i 1.79892i 0.437006 + 0.899459i \(0.356039\pi\)
−0.437006 + 0.899459i \(0.643961\pi\)
\(60\) 3.24477 1.21304i 0.418898 0.156603i
\(61\) 6.42611i 0.822779i 0.911460 + 0.411389i \(0.134956\pi\)
−0.911460 + 0.411389i \(0.865044\pi\)
\(62\) −0.837678 + 5.82684i −0.106385 + 0.740009i
\(63\) 2.87970 + 0.841016i 0.362809 + 0.105958i
\(64\) 5.23947 + 6.04549i 0.654933 + 0.755687i
\(65\) 3.04377i 0.377533i
\(66\) −3.35833 6.13949i −0.413382 0.755719i
\(67\) −10.4615 −1.27807 −0.639035 0.769178i \(-0.720666\pi\)
−0.639035 + 0.769178i \(0.720666\pi\)
\(68\) −0.724130 + 2.46645i −0.0878137 + 0.299101i
\(69\) −8.99471 + 6.74356i −1.08284 + 0.811829i
\(70\) −0.201241 + 1.39982i −0.0240529 + 0.167311i
\(71\) 7.47462 0.887074 0.443537 0.896256i \(-0.353723\pi\)
0.443537 + 0.896256i \(0.353723\pi\)
\(72\) −5.54705 + 6.42108i −0.653726 + 0.756731i
\(73\) 6.39674 0.748681 0.374341 0.927291i \(-0.377869\pi\)
0.374341 + 0.927291i \(0.377869\pi\)
\(74\) 0.988150 6.87351i 0.114870 0.799030i
\(75\) −1.38582 + 1.03899i −0.160021 + 0.119972i
\(76\) 7.57737 + 2.22465i 0.869185 + 0.255185i
\(77\) 2.85691 0.325576
\(78\) 3.57798 + 6.54103i 0.405126 + 0.740626i
\(79\) 7.77084i 0.874288i 0.899392 + 0.437144i \(0.144010\pi\)
−0.899392 + 0.437144i \(0.855990\pi\)
\(80\) −3.36515 2.16235i −0.376235 0.241758i
\(81\) −7.58538 4.84375i −0.842821 0.538195i
\(82\) 1.12822 7.84786i 0.124591 0.866651i
\(83\) 4.35530i 0.478056i 0.971013 + 0.239028i \(0.0768288\pi\)
−0.971013 + 0.239028i \(0.923171\pi\)
\(84\) −1.21304 3.24477i −0.132354 0.354033i
\(85\) 1.28528i 0.139408i
\(86\) −1.02103 0.146785i −0.110100 0.0158282i
\(87\) 11.2040 8.39990i 1.20119 0.900563i
\(88\) −3.35644 + 7.35051i −0.357798 + 0.783567i
\(89\) 9.27251i 0.982884i 0.870910 + 0.491442i \(0.163530\pi\)
−0.870910 + 0.491442i \(0.836470\pi\)
\(90\) 1.75679 3.86183i 0.185182 0.407072i
\(91\) −3.04377 −0.319073
\(92\) 12.4553 + 3.65678i 1.29856 + 0.381246i
\(93\) 4.32484 + 5.76857i 0.448465 + 0.598173i
\(94\) −3.14310 0.451858i −0.324186 0.0466056i
\(95\) −3.94860 −0.405118
\(96\) 9.77356 + 0.691099i 0.997509 + 0.0705350i
\(97\) −18.4478 −1.87310 −0.936548 0.350540i \(-0.885998\pi\)
−0.936548 + 0.350540i \(0.885998\pi\)
\(98\) 1.39982 + 0.201241i 0.141403 + 0.0203284i
\(99\) −8.22707 2.40271i −0.826851 0.241481i
\(100\) 1.91900 + 0.563404i 0.191900 + 0.0563404i
\(101\) 3.65249 0.363436 0.181718 0.983351i \(-0.441834\pi\)
0.181718 + 0.983351i \(0.441834\pi\)
\(102\) 1.51086 + 2.76205i 0.149597 + 0.273484i
\(103\) 11.1466i 1.09831i 0.835720 + 0.549156i \(0.185051\pi\)
−0.835720 + 0.549156i \(0.814949\pi\)
\(104\) 3.57596 7.83126i 0.350652 0.767918i
\(105\) 1.03899 + 1.38582i 0.101395 + 0.135243i
\(106\) 13.0149 + 1.87104i 1.26412 + 0.181732i
\(107\) 7.64658i 0.739223i 0.929186 + 0.369611i \(0.120509\pi\)
−0.929186 + 0.369611i \(0.879491\pi\)
\(108\) 0.764293 + 10.3642i 0.0735441 + 0.997292i
\(109\) 9.65989i 0.925249i 0.886554 + 0.462625i \(0.153092\pi\)
−0.886554 + 0.462625i \(0.846908\pi\)
\(110\) 0.574929 3.99917i 0.0548173 0.381306i
\(111\) −5.10171 6.80478i −0.484233 0.645881i
\(112\) −2.16235 + 3.36515i −0.204323 + 0.317977i
\(113\) 13.9427i 1.31162i 0.754926 + 0.655809i \(0.227673\pi\)
−0.754926 + 0.655809i \(0.772327\pi\)
\(114\) 8.48551 4.64162i 0.794741 0.434728i
\(115\) −6.49052 −0.605244
\(116\) −15.5146 4.55495i −1.44049 0.422917i
\(117\) 8.76514 + 2.55986i 0.810338 + 0.236659i
\(118\) 2.78070 19.3424i 0.255984 1.78061i
\(119\) −1.28528 −0.117821
\(120\) −4.78621 + 1.04506i −0.436920 + 0.0954004i
\(121\) 2.83804 0.258003
\(122\) 1.29320 8.99541i 0.117081 0.814406i
\(123\) −5.82490 7.76938i −0.525213 0.700542i
\(124\) 2.34520 7.98796i 0.210605 0.717340i
\(125\) −1.00000 −0.0894427
\(126\) −3.86183 1.75679i −0.344039 0.156507i
\(127\) 18.5692i 1.64775i −0.566770 0.823876i \(-0.691807\pi\)
0.566770 0.823876i \(-0.308193\pi\)
\(128\) −6.11772 9.51701i −0.540735 0.841193i
\(129\) −1.01082 + 0.757834i −0.0889975 + 0.0667236i
\(130\) −0.612531 + 4.26073i −0.0537225 + 0.373691i
\(131\) 12.8703i 1.12448i −0.826974 0.562241i \(-0.809939\pi\)
0.826974 0.562241i \(-0.190061\pi\)
\(132\) 3.46555 + 9.27003i 0.301638 + 0.806853i
\(133\) 3.94860i 0.342387i
\(134\) 14.6442 + 2.10527i 1.26506 + 0.181868i
\(135\) −1.82647 4.86457i −0.157198 0.418675i
\(136\) 1.51001 3.30687i 0.129482 0.283562i
\(137\) 11.4022i 0.974159i 0.873358 + 0.487080i \(0.161938\pi\)
−0.873358 + 0.487080i \(0.838062\pi\)
\(138\) 13.9481 7.62967i 1.18734 0.649481i
\(139\) 6.49495 0.550894 0.275447 0.961316i \(-0.411174\pi\)
0.275447 + 0.961316i \(0.411174\pi\)
\(140\) 0.563404 1.91900i 0.0476163 0.162185i
\(141\) −3.11167 + 2.33289i −0.262050 + 0.196465i
\(142\) −10.4631 1.50420i −0.878047 0.126230i
\(143\) 8.69578 0.727178
\(144\) 9.05707 7.87207i 0.754756 0.656006i
\(145\) 8.08470 0.671398
\(146\) −8.95429 1.28729i −0.741063 0.106537i
\(147\) 1.38582 1.03899i 0.114301 0.0856941i
\(148\) −2.76647 + 9.42284i −0.227402 + 0.774553i
\(149\) −0.0620351 −0.00508211 −0.00254106 0.999997i \(-0.500809\pi\)
−0.00254106 + 0.999997i \(0.500809\pi\)
\(150\) 2.14899 1.17551i 0.175465 0.0959801i
\(151\) 10.0164i 0.815125i −0.913177 0.407563i \(-0.866379\pi\)
0.913177 0.407563i \(-0.133621\pi\)
\(152\) −10.1593 4.63900i −0.824027 0.376273i
\(153\) 3.70122 + 1.08094i 0.299226 + 0.0873887i
\(154\) −3.99917 0.574929i −0.322263 0.0463291i
\(155\) 4.16256i 0.334344i
\(156\) −3.69221 9.87632i −0.295613 0.790739i
\(157\) 3.29079i 0.262634i −0.991340 0.131317i \(-0.958079\pi\)
0.991340 0.131317i \(-0.0419205\pi\)
\(158\) 1.56381 10.8778i 0.124410 0.865391i
\(159\) 12.8847 9.66000i 1.02183 0.766088i
\(160\) 4.27546 + 3.70411i 0.338005 + 0.292836i
\(161\) 6.49052i 0.511524i
\(162\) 9.64343 + 8.30688i 0.757659 + 0.652650i
\(163\) −15.2336 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(164\) −3.15863 + 10.7586i −0.246647 + 0.840103i
\(165\) −2.96829 3.95918i −0.231081 0.308222i
\(166\) 0.876465 6.09664i 0.0680269 0.473191i
\(167\) 12.3172 0.953130 0.476565 0.879139i \(-0.341882\pi\)
0.476565 + 0.879139i \(0.341882\pi\)
\(168\) 1.04506 + 4.78621i 0.0806281 + 0.369264i
\(169\) 3.73549 0.287345
\(170\) −0.258651 + 1.79916i −0.0198376 + 0.137989i
\(171\) 3.32083 11.3708i 0.253950 0.869546i
\(172\) 1.39972 + 0.410946i 0.106727 + 0.0313343i
\(173\) 11.6711 0.887339 0.443670 0.896190i \(-0.353676\pi\)
0.443670 + 0.896190i \(0.353676\pi\)
\(174\) −17.3740 + 9.50366i −1.31712 + 0.720470i
\(175\) 1.00000i 0.0755929i
\(176\) 6.17764 9.61395i 0.465657 0.724679i
\(177\) −14.3564 19.1490i −1.07910 1.43932i
\(178\) 1.86601 12.9799i 0.139863 0.972882i
\(179\) 9.73630i 0.727725i 0.931453 + 0.363863i \(0.118542\pi\)
−0.931453 + 0.363863i \(0.881458\pi\)
\(180\) −3.23635 + 5.05233i −0.241223 + 0.376579i
\(181\) 18.2683i 1.35787i −0.734198 0.678935i \(-0.762442\pi\)
0.734198 0.678935i \(-0.237558\pi\)
\(182\) 4.26073 + 0.612531i 0.315826 + 0.0454038i
\(183\) −6.67664 8.90546i −0.493551 0.658310i
\(184\) −16.6993 7.62537i −1.23109 0.562149i
\(185\) 4.91028i 0.361011i
\(186\) −4.89313 8.94531i −0.358782 0.655902i
\(187\) 3.67193 0.268518
\(188\) 4.30884 + 1.26504i 0.314255 + 0.0922626i
\(189\) −4.86457 + 1.82647i −0.353845 + 0.132856i
\(190\) 5.52733 + 0.794620i 0.400995 + 0.0576478i
\(191\) 10.5098 0.760460 0.380230 0.924892i \(-0.375845\pi\)
0.380230 + 0.924892i \(0.375845\pi\)
\(192\) −13.5422 2.93426i −0.977321 0.211762i
\(193\) −10.4765 −0.754118 −0.377059 0.926189i \(-0.623065\pi\)
−0.377059 + 0.926189i \(0.623065\pi\)
\(194\) 25.8237 + 3.71247i 1.85403 + 0.266540i
\(195\) 3.16243 + 4.21812i 0.226466 + 0.302066i
\(196\) −1.91900 0.563404i −0.137072 0.0402431i
\(197\) 11.0037 0.783985 0.391992 0.919968i \(-0.371786\pi\)
0.391992 + 0.919968i \(0.371786\pi\)
\(198\) 11.0329 + 5.01899i 0.784075 + 0.356684i
\(199\) 20.7285i 1.46940i 0.678392 + 0.734701i \(0.262677\pi\)
−0.678392 + 0.734701i \(0.737323\pi\)
\(200\) −2.57288 1.17485i −0.181930 0.0830743i
\(201\) 14.4977 10.8693i 1.02259 0.766662i
\(202\) −5.11283 0.735031i −0.359738 0.0517166i
\(203\) 8.08470i 0.567435i
\(204\) −1.55909 4.17043i −0.109158 0.291989i
\(205\) 5.60633i 0.391563i
\(206\) 2.24316 15.6033i 0.156289 1.08714i
\(207\) 5.45863 18.6908i 0.379401 1.29910i
\(208\) −6.58168 + 10.2427i −0.456357 + 0.710206i
\(209\) 11.2808i 0.780310i
\(210\) −1.17551 2.14899i −0.0811180 0.148295i
\(211\) 23.1084 1.59085 0.795423 0.606055i \(-0.207249\pi\)
0.795423 + 0.606055i \(0.207249\pi\)
\(212\) −17.8420 5.23826i −1.22539 0.359765i
\(213\) −10.3585 + 7.76603i −0.709753 + 0.532119i
\(214\) 1.53881 10.7039i 0.105191 0.731700i
\(215\) −0.729398 −0.0497445
\(216\) 1.01582 14.6618i 0.0691179 0.997608i
\(217\) 4.16256 0.282573
\(218\) 1.94397 13.5221i 0.131662 0.915834i
\(219\) −8.86475 + 6.64612i −0.599024 + 0.449103i
\(220\) −1.60960 + 5.48243i −0.108519 + 0.369625i
\(221\) −3.91209 −0.263155
\(222\) 5.77208 + 10.5522i 0.387397 + 0.708214i
\(223\) 14.3613i 0.961702i −0.876802 0.480851i \(-0.840328\pi\)
0.876802 0.480851i \(-0.159672\pi\)
\(224\) 3.70411 4.27546i 0.247491 0.285666i
\(225\) 0.841016 2.87970i 0.0560677 0.191980i
\(226\) 2.80585 19.5173i 0.186642 1.29827i
\(227\) 21.6874i 1.43944i −0.694262 0.719722i \(-0.744269\pi\)
0.694262 0.719722i \(-0.255731\pi\)
\(228\) −12.8123 + 4.78981i −0.848515 + 0.317213i
\(229\) 13.2057i 0.872658i 0.899787 + 0.436329i \(0.143722\pi\)
−0.899787 + 0.436329i \(0.856278\pi\)
\(230\) 9.08557 + 1.30616i 0.599085 + 0.0861256i
\(231\) −3.95918 + 2.96829i −0.260495 + 0.195299i
\(232\) 20.8010 + 9.49830i 1.36565 + 0.623594i
\(233\) 20.2597i 1.32725i −0.748063 0.663627i \(-0.769016\pi\)
0.748063 0.663627i \(-0.230984\pi\)
\(234\) −11.7545 5.34725i −0.768415 0.349561i
\(235\) −2.24535 −0.146471
\(236\) −7.78497 + 26.5163i −0.506758 + 1.72606i
\(237\) −8.07379 10.7690i −0.524449 0.699523i
\(238\) 1.79916 + 0.258651i 0.116622 + 0.0167658i
\(239\) −12.8981 −0.834311 −0.417155 0.908835i \(-0.636973\pi\)
−0.417155 + 0.908835i \(0.636973\pi\)
\(240\) 6.91016 0.499713i 0.446049 0.0322563i
\(241\) −20.5868 −1.32611 −0.663055 0.748571i \(-0.730740\pi\)
−0.663055 + 0.748571i \(0.730740\pi\)
\(242\) −3.97275 0.571130i −0.255378 0.0367136i
\(243\) 15.5446 1.16852i 0.997186 0.0749607i
\(244\) −3.62049 + 12.3317i −0.231778 + 0.789458i
\(245\) 1.00000 0.0638877
\(246\) 6.59030 + 12.0480i 0.420182 + 0.768150i
\(247\) 12.0186i 0.764726i
\(248\) −4.89037 + 10.7098i −0.310539 + 0.680071i
\(249\) −4.52509 6.03567i −0.286766 0.382495i
\(250\) 1.39982 + 0.201241i 0.0885325 + 0.0127276i
\(251\) 13.9970i 0.883480i 0.897143 + 0.441740i \(0.145639\pi\)
−0.897143 + 0.441740i \(0.854361\pi\)
\(252\) 5.05233 + 3.23635i 0.318267 + 0.203871i
\(253\) 18.5428i 1.16578i
\(254\) −3.73689 + 25.9936i −0.234473 + 1.63098i
\(255\) 1.33539 + 1.78117i 0.0836251 + 0.111541i
\(256\) 6.64850 + 14.5533i 0.415531 + 0.909579i
\(257\) 29.6479i 1.84938i 0.380717 + 0.924692i \(0.375677\pi\)
−0.380717 + 0.924692i \(0.624323\pi\)
\(258\) 1.56747 0.857415i 0.0975865 0.0533803i
\(259\) −4.91028 −0.305110
\(260\) 1.71487 5.84100i 0.106352 0.362243i
\(261\) −6.79936 + 23.2816i −0.420870 + 1.44109i
\(262\) −2.59003 + 18.0161i −0.160013 + 1.11304i
\(263\) −29.4334 −1.81494 −0.907471 0.420114i \(-0.861990\pi\)
−0.907471 + 0.420114i \(0.861990\pi\)
\(264\) −2.98564 13.6738i −0.183754 0.841565i
\(265\) 9.29752 0.571142
\(266\) 0.794620 5.52733i 0.0487213 0.338903i
\(267\) −9.63401 12.8501i −0.589592 0.786411i
\(268\) −20.0756 5.89402i −1.22631 0.360035i
\(269\) 2.30022 0.140247 0.0701234 0.997538i \(-0.477661\pi\)
0.0701234 + 0.997538i \(0.477661\pi\)
\(270\) 1.57779 + 7.17709i 0.0960209 + 0.436784i
\(271\) 5.90367i 0.358623i −0.983792 0.179311i \(-0.942613\pi\)
0.983792 0.179311i \(-0.0573869\pi\)
\(272\) −2.77922 + 4.32516i −0.168515 + 0.262251i
\(273\) 4.21812 3.16243i 0.255292 0.191399i
\(274\) 2.29460 15.9611i 0.138622 0.964246i
\(275\) 2.85691i 0.172278i
\(276\) −21.0602 + 7.87326i −1.26768 + 0.473914i
\(277\) 7.11393i 0.427435i −0.976896 0.213717i \(-0.931443\pi\)
0.976896 0.213717i \(-0.0685572\pi\)
\(278\) −9.09177 1.30705i −0.545288 0.0783917i
\(279\) −11.9869 3.50077i −0.717638 0.209586i
\(280\) −1.17485 + 2.57288i −0.0702106 + 0.153759i
\(281\) 6.26029i 0.373458i −0.982412 0.186729i \(-0.940211\pi\)
0.982412 0.186729i \(-0.0597886\pi\)
\(282\) 4.82525 2.63944i 0.287340 0.157176i
\(283\) 5.22868 0.310813 0.155406 0.987851i \(-0.450331\pi\)
0.155406 + 0.987851i \(0.450331\pi\)
\(284\) 14.3438 + 4.21123i 0.851150 + 0.249890i
\(285\) 5.47206 4.10254i 0.324137 0.243013i
\(286\) −12.1725 1.74995i −0.719778 0.103477i
\(287\) −5.60633 −0.330931
\(288\) −14.2625 + 9.19685i −0.840424 + 0.541929i
\(289\) 15.3481 0.902827
\(290\) −11.3171 1.62698i −0.664566 0.0955393i
\(291\) 25.5655 19.1671i 1.49867 1.12359i
\(292\) 12.2754 + 3.60395i 0.718361 + 0.210905i
\(293\) −6.39839 −0.373798 −0.186899 0.982379i \(-0.559844\pi\)
−0.186899 + 0.982379i \(0.559844\pi\)
\(294\) −2.14899 + 1.17551i −0.125332 + 0.0685572i
\(295\) 13.8177i 0.804500i
\(296\) 5.76883 12.6336i 0.335306 0.734312i
\(297\) 13.8976 5.21808i 0.806423 0.302783i
\(298\) 0.0868381 + 0.0124840i 0.00503039 + 0.000723179i
\(299\) 19.7556i 1.14250i
\(300\) −3.24477 + 1.21304i −0.187337 + 0.0700349i
\(301\) 0.729398i 0.0420418i
\(302\) −2.01572 + 14.0212i −0.115992 + 0.806830i
\(303\) −5.06170 + 3.79488i −0.290787 + 0.218010i
\(304\) 13.2876 + 8.53824i 0.762098 + 0.489702i
\(305\) 6.42611i 0.367958i
\(306\) −4.96352 2.25796i −0.283746 0.129079i
\(307\) 21.1230 1.20555 0.602776 0.797910i \(-0.294061\pi\)
0.602776 + 0.797910i \(0.294061\pi\)
\(308\) 5.48243 + 1.60960i 0.312390 + 0.0917153i
\(309\) −11.5812 15.4473i −0.658832 0.878766i
\(310\) 0.837678 5.82684i 0.0475769 0.330942i
\(311\) 3.94554 0.223731 0.111866 0.993723i \(-0.464317\pi\)
0.111866 + 0.993723i \(0.464317\pi\)
\(312\) 3.18092 + 14.5681i 0.180084 + 0.824757i
\(313\) 16.8063 0.949948 0.474974 0.880000i \(-0.342457\pi\)
0.474974 + 0.880000i \(0.342457\pi\)
\(314\) −0.662242 + 4.60652i −0.0373725 + 0.259961i
\(315\) −2.87970 0.841016i −0.162253 0.0473859i
\(316\) −4.37812 + 14.9123i −0.246288 + 0.838881i
\(317\) 9.68195 0.543792 0.271896 0.962327i \(-0.412349\pi\)
0.271896 + 0.962327i \(0.412349\pi\)
\(318\) −19.9803 + 10.9293i −1.12044 + 0.612887i
\(319\) 23.0973i 1.29320i
\(320\) −5.23947 6.04549i −0.292895 0.337953i
\(321\) −7.94469 10.5968i −0.443429 0.591456i
\(322\) 1.30616 9.08557i 0.0727894 0.506319i
\(323\) 5.07505i 0.282383i
\(324\) −11.8274 13.5688i −0.657078 0.753823i
\(325\) 3.04377i 0.168838i
\(326\) 21.3243 + 3.06562i 1.18104 + 0.169789i
\(327\) −10.0365 13.3869i −0.555019 0.740297i
\(328\) 6.58658 14.4244i 0.363683 0.796456i
\(329\) 2.24535i 0.123790i
\(330\) 3.35833 + 6.13949i 0.184870 + 0.337968i
\(331\) 26.0727 1.43309 0.716543 0.697543i \(-0.245724\pi\)
0.716543 + 0.697543i \(0.245724\pi\)
\(332\) −2.45379 + 8.35783i −0.134669 + 0.458696i
\(333\) 14.1401 + 4.12962i 0.774875 + 0.226302i
\(334\) −17.2418 2.47872i −0.943430 0.135629i
\(335\) 10.4615 0.571570
\(336\) −0.499713 6.91016i −0.0272616 0.376980i
\(337\) 26.0027 1.41646 0.708228 0.705984i \(-0.249495\pi\)
0.708228 + 0.705984i \(0.249495\pi\)
\(338\) −5.22902 0.751734i −0.284421 0.0408889i
\(339\) −14.4863 19.3221i −0.786786 1.04943i
\(340\) 0.724130 2.46645i 0.0392715 0.133762i
\(341\) −11.8921 −0.643991
\(342\) −6.93685 + 15.2488i −0.375102 + 0.824560i
\(343\) 1.00000i 0.0539949i
\(344\) −1.87666 0.856932i −0.101183 0.0462027i
\(345\) 8.99471 6.74356i 0.484259 0.363061i
\(346\) −16.3375 2.34871i −0.878309 0.126267i
\(347\) 24.3234i 1.30575i 0.757466 + 0.652874i \(0.226437\pi\)
−0.757466 + 0.652874i \(0.773563\pi\)
\(348\) 26.2330 9.80707i 1.40624 0.525714i
\(349\) 23.4782i 1.25676i 0.777906 + 0.628381i \(0.216282\pi\)
−0.777906 + 0.628381i \(0.783718\pi\)
\(350\) 0.201241 1.39982i 0.0107568 0.0748236i
\(351\) −14.8066 + 5.55935i −0.790318 + 0.296736i
\(352\) −10.5823 + 12.2146i −0.564040 + 0.651042i
\(353\) 1.69751i 0.0903495i 0.998979 + 0.0451747i \(0.0143845\pi\)
−0.998979 + 0.0451747i \(0.985616\pi\)
\(354\) 16.2429 + 29.6942i 0.863301 + 1.57823i
\(355\) −7.47462 −0.396712
\(356\) −5.22417 + 17.7940i −0.276880 + 0.943079i
\(357\) 1.78117 1.33539i 0.0942695 0.0706761i
\(358\) 1.95934 13.6291i 0.103555 0.720320i
\(359\) 4.28103 0.225944 0.112972 0.993598i \(-0.463963\pi\)
0.112972 + 0.993598i \(0.463963\pi\)
\(360\) 5.54705 6.42108i 0.292355 0.338421i
\(361\) −3.40858 −0.179399
\(362\) −3.67633 + 25.5723i −0.193224 + 1.34405i
\(363\) −3.93302 + 2.94868i −0.206430 + 0.154766i
\(364\) −5.84100 1.71487i −0.306152 0.0898836i
\(365\) −6.39674 −0.334821
\(366\) 7.55396 + 13.8097i 0.394852 + 0.721843i
\(367\) 32.0443i 1.67270i 0.548195 + 0.836351i \(0.315315\pi\)
−0.548195 + 0.836351i \(0.684685\pi\)
\(368\) 21.8416 + 14.0348i 1.13857 + 0.731612i
\(369\) 16.1446 + 4.71501i 0.840452 + 0.245454i
\(370\) −0.988150 + 6.87351i −0.0513715 + 0.357337i
\(371\) 9.29752i 0.482703i
\(372\) 5.04935 + 13.5065i 0.261796 + 0.700281i
\(373\) 21.9064i 1.13427i 0.823624 + 0.567136i \(0.191949\pi\)
−0.823624 + 0.567136i \(0.808051\pi\)
\(374\) −5.14005 0.738944i −0.265786 0.0382099i
\(375\) 1.38582 1.03899i 0.0715636 0.0536530i
\(376\) −5.77704 2.63795i −0.297928 0.136042i
\(377\) 24.6079i 1.26737i
\(378\) 7.17709 1.57779i 0.369150 0.0811525i
\(379\) −21.0759 −1.08260 −0.541299 0.840830i \(-0.682067\pi\)
−0.541299 + 0.840830i \(0.682067\pi\)
\(380\) −7.57737 2.22465i −0.388711 0.114122i
\(381\) 19.2932 + 25.7337i 0.988419 + 1.31838i
\(382\) −14.7118 2.11500i −0.752721 0.108213i
\(383\) 17.9894 0.919213 0.459607 0.888123i \(-0.347990\pi\)
0.459607 + 0.888123i \(0.347990\pi\)
\(384\) 18.3661 + 6.83268i 0.937242 + 0.348679i
\(385\) −2.85691 −0.145602
\(386\) 14.6653 + 2.10831i 0.746444 + 0.107310i
\(387\) 0.613435 2.10045i 0.0311827 0.106772i
\(388\) −35.4015 10.3936i −1.79724 0.527654i
\(389\) 6.91343 0.350525 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(390\) −3.57798 6.54103i −0.181178 0.331218i
\(391\) 8.34212i 0.421879i
\(392\) 2.57288 + 1.17485i 0.129950 + 0.0593388i
\(393\) 13.3720 + 17.8359i 0.674530 + 0.899704i
\(394\) −15.4033 2.21441i −0.776007 0.111560i
\(395\) 7.77084i 0.390993i
\(396\) −14.4341 9.24597i −0.725340 0.464628i
\(397\) 31.2585i 1.56882i −0.620244 0.784409i \(-0.712966\pi\)
0.620244 0.784409i \(-0.287034\pi\)
\(398\) 4.17142 29.0161i 0.209094 1.45445i
\(399\) −4.10254 5.47206i −0.205384 0.273946i
\(400\) 3.36515 + 2.16235i 0.168258 + 0.108117i
\(401\) 21.4911i 1.07321i 0.843832 + 0.536607i \(0.180294\pi\)
−0.843832 + 0.536607i \(0.819706\pi\)
\(402\) −22.4816 + 12.2976i −1.12128 + 0.613346i
\(403\) 12.6698 0.631130
\(404\) 7.00914 + 2.05783i 0.348718 + 0.102381i
\(405\) 7.58538 + 4.84375i 0.376921 + 0.240688i
\(406\) −1.62698 + 11.3171i −0.0807454 + 0.561661i
\(407\) 14.0282 0.695354
\(408\) 1.34319 + 6.15162i 0.0664979 + 0.304550i
\(409\) 6.16866 0.305021 0.152510 0.988302i \(-0.451264\pi\)
0.152510 + 0.988302i \(0.451264\pi\)
\(410\) −1.12822 + 7.84786i −0.0557190 + 0.387578i
\(411\) −11.8468 15.8015i −0.584358 0.779430i
\(412\) −6.28006 + 21.3905i −0.309396 + 1.05383i
\(413\) −13.8177 −0.679927
\(414\) −11.4025 + 25.0652i −0.560400 + 1.23189i
\(415\) 4.35530i 0.213793i
\(416\) 11.2744 13.0135i 0.552775 0.638040i
\(417\) −9.00085 + 6.74816i −0.440774 + 0.330459i
\(418\) −2.27016 + 15.7911i −0.111037 + 0.772369i
\(419\) 28.6257i 1.39846i 0.714899 + 0.699228i \(0.246473\pi\)
−0.714899 + 0.699228i \(0.753527\pi\)
\(420\) 1.21304 + 3.24477i 0.0591903 + 0.158329i
\(421\) 37.0133i 1.80392i −0.431823 0.901958i \(-0.642129\pi\)
0.431823 0.901958i \(-0.357871\pi\)
\(422\) −32.3476 4.65035i −1.57466 0.226376i
\(423\) 1.88838 6.46595i 0.0918161 0.314385i
\(424\) 23.9214 + 10.9232i 1.16173 + 0.530476i
\(425\) 1.28528i 0.0623451i
\(426\) 16.0629 8.78650i 0.778251 0.425707i
\(427\) −6.42611 −0.310981
\(428\) −4.30811 + 14.6738i −0.208240 + 0.709286i
\(429\) −12.0508 + 9.03480i −0.581819 + 0.436204i
\(430\) 1.02103 + 0.146785i 0.0492383 + 0.00707860i
\(431\) −17.5103 −0.843442 −0.421721 0.906726i \(-0.638574\pi\)
−0.421721 + 0.906726i \(0.638574\pi\)
\(432\) −4.37253 + 20.3195i −0.210373 + 0.977621i
\(433\) −37.2684 −1.79101 −0.895503 0.445055i \(-0.853184\pi\)
−0.895503 + 0.445055i \(0.853184\pi\)
\(434\) −5.82684 0.837678i −0.279697 0.0402098i
\(435\) −11.2040 + 8.39990i −0.537190 + 0.402744i
\(436\) −5.44242 + 18.5374i −0.260644 + 0.887779i
\(437\) 25.6284 1.22597
\(438\) 13.7465 7.51943i 0.656835 0.359292i
\(439\) 11.5022i 0.548972i 0.961591 + 0.274486i \(0.0885077\pi\)
−0.961591 + 0.274486i \(0.911492\pi\)
\(440\) 3.35644 7.35051i 0.160012 0.350422i
\(441\) −0.841016 + 2.87970i −0.0400484 + 0.137129i
\(442\) 5.47622 + 0.787273i 0.260477 + 0.0374467i
\(443\) 18.7110i 0.888989i −0.895782 0.444494i \(-0.853383\pi\)
0.895782 0.444494i \(-0.146617\pi\)
\(444\) −5.95636 15.9327i −0.282676 0.756133i
\(445\) 9.27251i 0.439559i
\(446\) −2.89008 + 20.1032i −0.136849 + 0.951916i
\(447\) 0.0859697 0.0644536i 0.00406623 0.00304855i
\(448\) −6.04549 + 5.23947i −0.285623 + 0.247542i
\(449\) 28.1448i 1.32824i −0.747628 0.664118i \(-0.768807\pi\)
0.747628 0.664118i \(-0.231193\pi\)
\(450\) −1.75679 + 3.86183i −0.0828158 + 0.182048i
\(451\) 16.0168 0.754202
\(452\) −7.85537 + 26.7561i −0.369485 + 1.25850i
\(453\) 10.4069 + 13.8810i 0.488960 + 0.652186i
\(454\) −4.36440 + 30.3585i −0.204832 + 1.42480i
\(455\) 3.04377 0.142694
\(456\) 18.8988 4.12652i 0.885019 0.193242i
\(457\) −8.45271 −0.395401 −0.197700 0.980262i \(-0.563347\pi\)
−0.197700 + 0.980262i \(0.563347\pi\)
\(458\) 2.65753 18.4856i 0.124178 0.863777i
\(459\) −6.25232 + 2.34752i −0.291833 + 0.109573i
\(460\) −12.4553 3.65678i −0.580733 0.170498i
\(461\) −7.28165 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(462\) 6.13949 3.35833i 0.285635 0.156244i
\(463\) 5.39911i 0.250918i 0.992099 + 0.125459i \(0.0400404\pi\)
−0.992099 + 0.125459i \(0.959960\pi\)
\(464\) −27.2063 17.4819i −1.26302 0.811579i
\(465\) −4.32484 5.76857i −0.200560 0.267511i
\(466\) −4.07708 + 28.3599i −0.188867 + 1.31375i
\(467\) 19.8769i 0.919795i −0.887972 0.459897i \(-0.847886\pi\)
0.887972 0.459897i \(-0.152114\pi\)
\(468\) 15.3781 + 9.85069i 0.710854 + 0.455348i
\(469\) 10.4615i 0.483065i
\(470\) 3.14310 + 0.451858i 0.144980 + 0.0208426i
\(471\) 3.41908 + 4.56045i 0.157543 + 0.210135i
\(472\) 16.2337 35.5515i 0.747219 1.63639i
\(473\) 2.08383i 0.0958145i
\(474\) 9.13470 + 16.6995i 0.419571 + 0.767033i
\(475\) 3.94860 0.181174
\(476\) −2.46645 0.724130i −0.113050 0.0331905i
\(477\) −7.81936 + 26.7741i −0.358024 + 1.22590i
\(478\) 18.0551 + 2.59564i 0.825821 + 0.118722i
\(479\) −4.94246 −0.225827 −0.112913 0.993605i \(-0.536018\pi\)
−0.112913 + 0.993605i \(0.536018\pi\)
\(480\) −9.77356 0.691099i −0.446100 0.0315442i
\(481\) −14.9457 −0.681467
\(482\) 28.8178 + 4.14290i 1.31261 + 0.188704i
\(483\) −6.74356 8.99471i −0.306842 0.409274i
\(484\) 5.44621 + 1.59896i 0.247555 + 0.0726800i
\(485\) 18.4478 0.837674
\(486\) −21.9948 1.49249i −0.997706 0.0677008i
\(487\) 34.2345i 1.55132i −0.631154 0.775658i \(-0.717418\pi\)
0.631154 0.775658i \(-0.282582\pi\)
\(488\) 7.54970 16.5336i 0.341759 0.748442i
\(489\) 21.1110 15.8275i 0.954674 0.715743i
\(490\) −1.39982 0.201241i −0.0632375 0.00909115i
\(491\) 21.4705i 0.968951i 0.874805 + 0.484476i \(0.160990\pi\)
−0.874805 + 0.484476i \(0.839010\pi\)
\(492\) −6.80070 18.1912i −0.306599 0.820125i
\(493\) 10.3911i 0.467991i
\(494\) 2.41864 16.8239i 0.108820 0.756944i
\(495\) 8.22707 + 2.40271i 0.369779 + 0.107994i
\(496\) 9.00089 14.0076i 0.404152 0.628961i
\(497\) 7.47462i 0.335283i
\(498\) 5.11970 + 9.35951i 0.229419 + 0.419409i
\(499\) −7.35182 −0.329113 −0.164556 0.986368i \(-0.552619\pi\)
−0.164556 + 0.986368i \(0.552619\pi\)
\(500\) −1.91900 0.563404i −0.0858205 0.0251962i
\(501\) −17.0694 + 12.7973i −0.762605 + 0.571743i
\(502\) 2.81676 19.5933i 0.125718 0.874490i
\(503\) −14.3257 −0.638752 −0.319376 0.947628i \(-0.603473\pi\)
−0.319376 + 0.947628i \(0.603473\pi\)
\(504\) −6.42108 5.54705i −0.286018 0.247085i
\(505\) −3.65249 −0.162534
\(506\) −3.73159 + 25.9567i −0.165889 + 1.15392i
\(507\) −5.17673 + 3.88112i −0.229907 + 0.172367i
\(508\) 10.4620 35.6344i 0.464175 1.58102i
\(509\) −15.3543 −0.680570 −0.340285 0.940322i \(-0.610523\pi\)
−0.340285 + 0.940322i \(0.610523\pi\)
\(510\) −1.51086 2.76205i −0.0669019 0.122306i
\(511\) 6.39674i 0.282975i
\(512\) −6.37801 21.7099i −0.281871 0.959452i
\(513\) 7.21200 + 19.2082i 0.318418 + 0.848063i
\(514\) 5.96637 41.5017i 0.263165 1.83056i
\(515\) 11.1466i 0.491180i
\(516\) −2.36673 + 0.884789i −0.104189 + 0.0389507i
\(517\) 6.41479i 0.282122i
\(518\) 6.87351 + 0.988150i 0.302005 + 0.0434168i
\(519\) −16.1741 + 12.1261i −0.709965 + 0.532278i
\(520\) −3.57596 + 7.83126i −0.156816 + 0.343423i
\(521\) 11.8887i 0.520855i 0.965493 + 0.260428i \(0.0838636\pi\)
−0.965493 + 0.260428i \(0.916136\pi\)
\(522\) 14.2031 31.2217i 0.621653 1.36654i
\(523\) −11.4811 −0.502035 −0.251017 0.967983i \(-0.580765\pi\)
−0.251017 + 0.967983i \(0.580765\pi\)
\(524\) 7.25116 24.6981i 0.316769 1.07894i
\(525\) −1.03899 1.38582i −0.0453451 0.0604823i
\(526\) 41.2016 + 5.92322i 1.79647 + 0.258265i
\(527\) 5.35004 0.233051
\(528\) 1.42764 + 19.7417i 0.0621300 + 0.859149i
\(529\) 19.1268 0.831600
\(530\) −13.0149 1.87104i −0.565330 0.0812730i
\(531\) 39.7910 + 11.6209i 1.72678 + 0.504306i
\(532\) −2.22465 + 7.57737i −0.0964510 + 0.328521i
\(533\) −17.0643 −0.739139
\(534\) 10.8999 + 19.9266i 0.471686 + 0.862307i
\(535\) 7.64658i 0.330590i
\(536\) 26.9161 + 12.2906i 1.16260 + 0.530874i
\(537\) −10.1159 13.4928i −0.436532 0.582257i
\(538\) −3.21989 0.462898i −0.138820 0.0199570i
\(539\) 2.85691i 0.123056i
\(540\) −0.764293 10.3642i −0.0328899 0.446003i
\(541\) 27.7212i 1.19183i −0.803049 0.595913i \(-0.796790\pi\)
0.803049 0.595913i \(-0.203210\pi\)
\(542\) −1.18806 + 8.26409i −0.0510316 + 0.354973i
\(543\) 18.9805 + 25.3166i 0.814530 + 1.08644i
\(544\) 4.76081 5.49516i 0.204118 0.235603i
\(545\) 9.65989i 0.413784i
\(546\) −6.54103 + 3.57798i −0.279930 + 0.153123i
\(547\) 4.66664 0.199531 0.0997655 0.995011i \(-0.468191\pi\)
0.0997655 + 0.995011i \(0.468191\pi\)
\(548\) −6.42406 + 21.8809i −0.274422 + 0.934708i
\(549\) 18.5053 + 5.40446i 0.789786 + 0.230657i
\(550\) −0.574929 + 3.99917i −0.0245151 + 0.170525i
\(551\) −31.9232 −1.35998
\(552\) 31.0650 6.78297i 1.32221 0.288702i
\(553\) −7.77084 −0.330450
\(554\) −1.43162 + 9.95824i −0.0608235 + 0.423085i
\(555\) 5.10171 + 6.80478i 0.216556 + 0.288847i
\(556\) 12.4638 + 3.65928i 0.528584 + 0.155188i
\(557\) −36.4827 −1.54582 −0.772911 0.634514i \(-0.781200\pi\)
−0.772911 + 0.634514i \(0.781200\pi\)
\(558\) 16.0751 + 7.31272i 0.680512 + 0.309572i
\(559\) 2.22012i 0.0939009i
\(560\) 2.16235 3.36515i 0.0913759 0.142204i
\(561\) −5.08865 + 3.81508i −0.214843 + 0.161073i
\(562\) −1.25983 + 8.76329i −0.0531426 + 0.369657i
\(563\) 40.6742i 1.71421i −0.515139 0.857107i \(-0.672260\pi\)
0.515139 0.857107i \(-0.327740\pi\)
\(564\) −7.28566 + 2.72370i −0.306782 + 0.114689i
\(565\) 13.9427i 0.586574i
\(566\) −7.31923 1.05223i −0.307650 0.0442284i
\(567\) 4.84375 7.58538i 0.203418 0.318556i
\(568\) −19.2313 8.78154i −0.806929 0.368465i
\(569\) 30.0628i 1.26030i −0.776474 0.630149i \(-0.782994\pi\)
0.776474 0.630149i \(-0.217006\pi\)
\(570\) −8.48551 + 4.64162i −0.355419 + 0.194416i
\(571\) −17.9374 −0.750655 −0.375327 0.926892i \(-0.622470\pi\)
−0.375327 + 0.926892i \(0.622470\pi\)
\(572\) 16.6872 + 4.89924i 0.697728 + 0.204847i
\(573\) −14.5647 + 10.9195i −0.608449 + 0.456169i
\(574\) 7.84786 + 1.12822i 0.327563 + 0.0470912i
\(575\) 6.49052 0.270673
\(576\) 21.8157 10.0038i 0.908988 0.416823i
\(577\) −10.0101 −0.416724 −0.208362 0.978052i \(-0.566813\pi\)
−0.208362 + 0.978052i \(0.566813\pi\)
\(578\) −21.4846 3.08866i −0.893640 0.128471i
\(579\) 14.5186 10.8850i 0.603374 0.452365i
\(580\) 15.5146 + 4.55495i 0.644208 + 0.189134i
\(581\) −4.35530 −0.180688
\(582\) −39.6443 + 21.6856i −1.64331 + 0.898899i
\(583\) 26.5622i 1.10010i
\(584\) −16.4581 7.51519i −0.681040 0.310981i
\(585\) −8.76514 2.55986i −0.362394 0.105837i
\(586\) 8.95660 + 1.28762i 0.369994 + 0.0531911i
\(587\) 16.4546i 0.679154i −0.940578 0.339577i \(-0.889716\pi\)
0.940578 0.339577i \(-0.110284\pi\)
\(588\) 3.24477 1.21304i 0.133812 0.0500249i
\(589\) 16.4363i 0.677244i
\(590\) −2.78070 + 19.3424i −0.114480 + 0.796313i
\(591\) −15.2493 + 11.4327i −0.627271 + 0.470280i
\(592\) −10.6177 + 16.5238i −0.436386 + 0.679125i
\(593\) 34.3939i 1.41239i 0.708019 + 0.706194i \(0.249589\pi\)
−0.708019 + 0.706194i \(0.750411\pi\)
\(594\) −20.5043 + 4.50760i −0.841303 + 0.184949i
\(595\) 1.28528 0.0526913
\(596\) −0.119046 0.0349508i −0.00487630 0.00143164i
\(597\) −21.5366 28.7260i −0.881433 1.17568i
\(598\) 3.97564 27.6543i 0.162576 1.13087i
\(599\) 12.3780 0.505751 0.252876 0.967499i \(-0.418624\pi\)
0.252876 + 0.967499i \(0.418624\pi\)
\(600\) 4.78621 1.04506i 0.195396 0.0426644i
\(601\) −39.1651 −1.59758 −0.798789 0.601611i \(-0.794526\pi\)
−0.798789 + 0.601611i \(0.794526\pi\)
\(602\) 0.146785 1.02103i 0.00598251 0.0416140i
\(603\) −8.79825 + 30.1259i −0.358292 + 1.22682i
\(604\) 5.64329 19.2216i 0.229622 0.782114i
\(605\) −2.83804 −0.115383
\(606\) 7.84917 4.29354i 0.318851 0.174413i
\(607\) 14.2863i 0.579862i 0.957048 + 0.289931i \(0.0936323\pi\)
−0.957048 + 0.289931i \(0.906368\pi\)
\(608\) −16.8821 14.6260i −0.684659 0.593164i
\(609\) 8.39990 + 11.2040i 0.340381 + 0.454008i
\(610\) −1.29320 + 8.99541i −0.0523600 + 0.364213i
\(611\) 6.83433i 0.276488i
\(612\) 6.49365 + 4.15961i 0.262490 + 0.168142i
\(613\) 43.0830i 1.74011i −0.492958 0.870053i \(-0.664085\pi\)
0.492958 0.870053i \(-0.335915\pi\)
\(614\) −29.5684 4.25081i −1.19328 0.171549i
\(615\) 5.82490 + 7.76938i 0.234882 + 0.313292i
\(616\) −7.35051 3.35644i −0.296161 0.135235i
\(617\) 9.35216i 0.376504i 0.982121 + 0.188252i \(0.0602822\pi\)
−0.982121 + 0.188252i \(0.939718\pi\)
\(618\) 13.1030 + 23.9541i 0.527080 + 0.963574i
\(619\) 19.0055 0.763894 0.381947 0.924184i \(-0.375254\pi\)
0.381947 + 0.924184i \(0.375254\pi\)
\(620\) −2.34520 + 7.98796i −0.0941855 + 0.320804i
\(621\) 11.8547 + 31.5735i 0.475715 + 1.26700i
\(622\) −5.52305 0.794005i −0.221454 0.0318367i
\(623\) −9.27251 −0.371495
\(624\) −1.52101 21.0329i −0.0608891 0.841990i
\(625\) 1.00000 0.0400000
\(626\) −23.5258 3.38212i −0.940281 0.135177i
\(627\) 11.7206 + 15.6332i 0.468076 + 0.624330i
\(628\) 1.85404 6.31504i 0.0739844 0.251997i
\(629\) −6.31107 −0.251639
\(630\) 3.86183 + 1.75679i 0.153859 + 0.0699921i
\(631\) 30.7556i 1.22436i 0.790718 + 0.612181i \(0.209708\pi\)
−0.790718 + 0.612181i \(0.790292\pi\)
\(632\) 9.12955 19.9935i 0.363154 0.795297i
\(633\) −32.0241 + 24.0093i −1.27284 + 0.954283i
\(634\) −13.5530 1.94841i −0.538259 0.0773811i
\(635\) 18.5692i 0.736897i
\(636\) 30.1683 11.2783i 1.19625 0.447212i
\(637\) 3.04377i 0.120598i
\(638\) 4.64813 32.3321i 0.184021 1.28004i
\(639\) 6.28627 21.5247i 0.248681 0.851504i
\(640\) 6.11772 + 9.51701i 0.241824 + 0.376193i
\(641\) 21.8643i 0.863587i 0.901972 + 0.431794i \(0.142119\pi\)
−0.901972 + 0.431794i \(0.857881\pi\)
\(642\) 8.98864 + 16.4325i 0.354753 + 0.648537i
\(643\) 32.0015 1.26202 0.631008 0.775777i \(-0.282642\pi\)
0.631008 + 0.775777i \(0.282642\pi\)
\(644\) −3.65678 + 12.4553i −0.144097 + 0.490809i
\(645\) 1.01082 0.757834i 0.0398009 0.0298397i
\(646\) 1.02131 7.10416i 0.0401828 0.279510i
\(647\) 31.5018 1.23846 0.619232 0.785208i \(-0.287444\pi\)
0.619232 + 0.785208i \(0.287444\pi\)
\(648\) 13.8256 + 21.3741i 0.543123 + 0.839653i
\(649\) 39.4761 1.54957
\(650\) 0.612531 4.26073i 0.0240254 0.167120i
\(651\) −5.76857 + 4.32484i −0.226088 + 0.169504i
\(652\) −29.2333 8.58265i −1.14486 0.336122i
\(653\) 29.7838 1.16553 0.582766 0.812640i \(-0.301971\pi\)
0.582766 + 0.812640i \(0.301971\pi\)
\(654\) 11.3553 + 20.7590i 0.444027 + 0.811743i
\(655\) 12.8703i 0.502883i
\(656\) −12.1228 + 18.8661i −0.473317 + 0.736599i
\(657\) 5.37976 18.4207i 0.209884 0.718660i
\(658\) 0.451858 3.14310i 0.0176152 0.122531i
\(659\) 8.89311i 0.346426i −0.984884 0.173213i \(-0.944585\pi\)
0.984884 0.173213i \(-0.0554149\pi\)
\(660\) −3.46555 9.27003i −0.134896 0.360836i
\(661\) 41.8860i 1.62918i 0.580040 + 0.814588i \(0.303037\pi\)
−0.580040 + 0.814588i \(0.696963\pi\)
\(662\) −36.4971 5.24690i −1.41850 0.203927i
\(663\) 5.42146 4.06460i 0.210552 0.157856i
\(664\) 5.11681 11.2057i 0.198571 0.434865i
\(665\) 3.94860i 0.153120i
\(666\) −18.9626 8.62631i −0.734787 0.334263i
\(667\) −52.4739 −2.03180
\(668\) 23.6367 + 6.93953i 0.914530 + 0.268498i
\(669\) 14.9212 + 19.9022i 0.576886 + 0.769464i
\(670\) −14.6442 2.10527i −0.565754 0.0813339i
\(671\) 18.3588 0.708735
\(672\) −0.691099 + 9.77356i −0.0266597 + 0.377023i
\(673\) 14.7424 0.568277 0.284139 0.958783i \(-0.408292\pi\)
0.284139 + 0.958783i \(0.408292\pi\)
\(674\) −36.3991 5.23281i −1.40204 0.201560i
\(675\) 1.82647 + 4.86457i 0.0703009 + 0.187237i
\(676\) 7.16842 + 2.10459i 0.275708 + 0.0809457i
\(677\) 7.62818 0.293175 0.146587 0.989198i \(-0.453171\pi\)
0.146587 + 0.989198i \(0.453171\pi\)
\(678\) 16.3898 + 29.9628i 0.629446 + 1.15071i
\(679\) 18.4478i 0.707963i
\(680\) −1.51001 + 3.30687i −0.0579061 + 0.126813i
\(681\) 22.5329 + 30.0549i 0.863464 + 1.15171i
\(682\) 16.6468 + 2.39317i 0.637438 + 0.0916393i
\(683\) 18.2715i 0.699141i −0.936910 0.349570i \(-0.886328\pi\)
0.936910 0.349570i \(-0.113672\pi\)
\(684\) 12.7790 19.9496i 0.488619 0.762793i
\(685\) 11.4022i 0.435657i
\(686\) −0.201241 + 1.39982i −0.00768342 + 0.0534455i
\(687\) −13.7205 18.3008i −0.523472 0.698219i
\(688\) 2.45454 + 1.57721i 0.0935783 + 0.0601307i
\(689\) 28.2995i 1.07812i
\(690\) −13.9481 + 7.62967i −0.530994 + 0.290457i
\(691\) −39.1887 −1.49081 −0.745404 0.666614i \(-0.767743\pi\)
−0.745404 + 0.666614i \(0.767743\pi\)
\(692\) 22.3969 + 6.57555i 0.851404 + 0.249965i
\(693\) 2.40271 8.22707i 0.0912714 0.312520i
\(694\) 4.89487 34.0484i 0.185807 1.29246i
\(695\) −6.49495 −0.246367
\(696\) −38.6951 + 8.44899i −1.46674 + 0.320258i
\(697\) −7.20569 −0.272935
\(698\) 4.72479 32.8654i 0.178836 1.24397i
\(699\) 21.0495 + 28.0763i 0.796166 + 1.06194i
\(700\) −0.563404 + 1.91900i −0.0212947 + 0.0725315i
\(701\) −10.8563 −0.410036 −0.205018 0.978758i \(-0.565725\pi\)
−0.205018 + 0.978758i \(0.565725\pi\)
\(702\) 21.8454 4.80241i 0.824501 0.181255i
\(703\) 19.3887i 0.731259i
\(704\) 17.2715 14.9687i 0.650943 0.564154i
\(705\) 3.11167 2.33289i 0.117192 0.0878618i
\(706\) 0.341609 2.37622i 0.0128566 0.0894300i
\(707\) 3.65249i 0.137366i
\(708\) −16.7615 44.8354i −0.629935 1.68502i
\(709\) 18.5207i 0.695559i −0.937576 0.347780i \(-0.886936\pi\)
0.937576 0.347780i \(-0.113064\pi\)
\(710\) 10.4631 + 1.50420i 0.392675 + 0.0564517i
\(711\) 22.3777 + 6.53540i 0.839230 + 0.245097i
\(712\) 10.8938 23.8571i 0.408262 0.894082i
\(713\) 27.0171i 1.01180i
\(714\) −2.76205 + 1.51086i −0.103367 + 0.0565425i
\(715\) −8.69578 −0.325204
\(716\) −5.48547 + 18.6840i −0.205002 + 0.698254i
\(717\) 17.8745 13.4010i 0.667537 0.500469i
\(718\) −5.99268 0.861519i −0.223645 0.0321516i
\(719\) 6.32683 0.235951 0.117976 0.993017i \(-0.462360\pi\)
0.117976 + 0.993017i \(0.462360\pi\)
\(720\) −9.05707 + 7.87207i −0.337537 + 0.293375i
\(721\) −11.1466 −0.415123
\(722\) 4.77140 + 0.685946i 0.177573 + 0.0255283i
\(723\) 28.5296 21.3893i 1.06103 0.795478i
\(724\) 10.2924 35.0569i 0.382514 1.30288i
\(725\) −8.08470 −0.300258
\(726\) 6.09893 3.33614i 0.226352 0.123816i
\(727\) 25.4813i 0.945048i 0.881318 + 0.472524i \(0.156657\pi\)
−0.881318 + 0.472524i \(0.843343\pi\)
\(728\) 7.83126 + 3.57596i 0.290246 + 0.132534i
\(729\) −20.3280 + 17.7700i −0.752889 + 0.658148i
\(730\) 8.95429 + 1.28729i 0.331413 + 0.0476446i
\(731\) 0.937479i 0.0346739i
\(732\) −7.79513 20.8512i −0.288116 0.770684i
\(733\) 12.4086i 0.458321i −0.973389 0.229161i \(-0.926402\pi\)
0.973389 0.229161i \(-0.0735981\pi\)
\(734\) 6.44864 44.8564i 0.238024 1.65568i
\(735\) −1.38582 + 1.03899i −0.0511169 + 0.0383236i
\(736\) −27.7499 24.0416i −1.02288 0.886184i
\(737\) 29.8875i 1.10092i
\(738\) −21.6507 9.84912i −0.796972 0.362551i
\(739\) −5.75195 −0.211589 −0.105794 0.994388i \(-0.533739\pi\)
−0.105794 + 0.994388i \(0.533739\pi\)
\(740\) 2.76647 9.42284i 0.101697 0.346391i
\(741\) −12.4872 16.6557i −0.458728 0.611861i
\(742\) −1.87104 + 13.0149i −0.0686882 + 0.477791i
\(743\) −34.2168 −1.25529 −0.627646 0.778498i \(-0.715982\pi\)
−0.627646 + 0.778498i \(0.715982\pi\)
\(744\) −4.35012 19.9229i −0.159483 0.730408i
\(745\) 0.0620351 0.00227279
\(746\) 4.40848 30.6651i 0.161406 1.12273i
\(747\) 12.5420 + 3.66287i 0.458886 + 0.134018i
\(748\) 7.04645 + 2.06878i 0.257644 + 0.0756420i
\(749\) −7.64658 −0.279400
\(750\) −2.14899 + 1.17551i −0.0784702 + 0.0429236i
\(751\) 35.6068i 1.29931i −0.760230 0.649655i \(-0.774914\pi\)
0.760230 0.649655i \(-0.225086\pi\)
\(752\) 7.55596 + 4.85524i 0.275537 + 0.177052i
\(753\) −14.5426 19.3973i −0.529963 0.706878i
\(754\) −4.95213 + 34.4468i −0.180346 + 1.25448i
\(755\) 10.0164i 0.364535i
\(756\) −10.3642 + 0.764293i −0.376941 + 0.0277971i
\(757\) 22.8319i 0.829839i 0.909858 + 0.414920i \(0.136190\pi\)
−0.909858 + 0.414920i \(0.863810\pi\)
\(758\) 29.5025 + 4.24134i 1.07158 + 0.154052i
\(759\) 19.2658 + 25.6971i 0.699303 + 0.932747i
\(760\) 10.1593 + 4.63900i 0.368516 + 0.168274i
\(761\) 9.30353i 0.337253i −0.985680 0.168626i \(-0.946067\pi\)
0.985680 0.168626i \(-0.0539331\pi\)
\(762\) −21.8283 39.9051i −0.790757 1.44561i
\(763\) −9.65989 −0.349711
\(764\) 20.1683 + 5.92124i 0.729663 + 0.214223i
\(765\) −3.70122 1.08094i −0.133818 0.0390814i
\(766\) −25.1819 3.62020i −0.909859 0.130803i
\(767\) −42.0580 −1.51863
\(768\) −24.3343 13.2606i −0.878088 0.478499i
\(769\) −29.8781 −1.07743 −0.538717 0.842487i \(-0.681091\pi\)
−0.538717 + 0.842487i \(0.681091\pi\)
\(770\) 3.99917 + 0.574929i 0.144120 + 0.0207190i
\(771\) −30.8037 41.0867i −1.10937 1.47970i
\(772\) −20.1045 5.90253i −0.723578 0.212437i
\(773\) −2.88681 −0.103831 −0.0519156 0.998651i \(-0.516533\pi\)
−0.0519156 + 0.998651i \(0.516533\pi\)
\(774\) −1.28140 + 2.81681i −0.0460589 + 0.101248i
\(775\) 4.16256i 0.149523i
\(776\) 47.4642 + 21.6734i 1.70386 + 0.778030i
\(777\) 6.80478 5.10171i 0.244120 0.183023i
\(778\) −9.67757 1.39127i −0.346958 0.0498793i
\(779\) 22.1371i 0.793145i
\(780\) 3.69221 + 9.87632i 0.132202 + 0.353629i
\(781\) 21.3544i 0.764119i
\(782\) 1.67878 11.6775i 0.0600330 0.417586i
\(783\) −14.7665 39.3286i −0.527711 1.40549i
\(784\) −3.36515 2.16235i −0.120184 0.0772267i
\(785\) 3.29079i 0.117453i
\(786\) −15.1292 27.6581i −0.539639 0.986534i
\(787\) 53.5286 1.90809 0.954044 0.299667i \(-0.0968756\pi\)
0.954044 + 0.299667i \(0.0968756\pi\)
\(788\) 21.1162 + 6.19955i 0.752235 + 0.220850i
\(789\) 40.7895 30.5809i 1.45215 1.08871i
\(790\) −1.56381 + 10.8778i −0.0556380 + 0.387014i
\(791\) −13.9427 −0.495745
\(792\) 18.3445 + 15.8474i 0.651842 + 0.563114i
\(793\) −19.5596 −0.694581
\(794\) −6.29049 + 43.7563i −0.223241 + 1.55285i
\(795\) −12.8847 + 9.66000i −0.456974 + 0.342605i
\(796\) −11.6785 + 39.7780i −0.413933 + 1.40989i
\(797\) 52.7611 1.86889 0.934447 0.356101i \(-0.115894\pi\)
0.934447 + 0.356101i \(0.115894\pi\)
\(798\) 4.64162 + 8.48551i 0.164312 + 0.300384i
\(799\) 2.88590i 0.102096i
\(800\) −4.27546 3.70411i −0.151160 0.130960i
\(801\) 26.7021 + 7.79833i 0.943471 + 0.275540i
\(802\) 4.32489 30.0837i 0.152717 1.06229i
\(803\) 18.2749i 0.644908i
\(804\) 33.9450 12.6902i 1.19715 0.447547i
\(805\) 6.49052i 0.228761i
\(806\) −17.7355 2.54969i −0.624707 0.0898092i
\(807\) −3.18770 + 2.38989i −0.112212 + 0.0841282i
\(808\) −9.39743 4.29112i −0.330600 0.150961i
\(809\) 49.0054i 1.72294i −0.507810 0.861469i \(-0.669545\pi\)
0.507810 0.861469i \(-0.330455\pi\)
\(810\) −9.64343 8.30688i −0.338835 0.291874i
\(811\) −18.9030 −0.663773 −0.331886 0.943319i \(-0.607685\pi\)
−0.331886 + 0.943319i \(0.607685\pi\)
\(812\) 4.55495 15.5146i 0.159847 0.544455i
\(813\) 6.13384 + 8.18145i 0.215123 + 0.286936i
\(814\) −19.6370 2.82306i −0.688278 0.0989482i
\(815\) 15.2336 0.533609
\(816\) −0.642270 8.88147i −0.0224840 0.310914i
\(817\) 2.88010 0.100762
\(818\) −8.63503 1.24139i −0.301917 0.0434042i
\(819\) −2.55986 + 8.76514i −0.0894486 + 0.306279i
\(820\) 3.15863 10.7586i 0.110304 0.375705i
\(821\) 51.1462 1.78502 0.892508 0.451032i \(-0.148944\pi\)
0.892508 + 0.451032i \(0.148944\pi\)
\(822\) 13.4035 + 24.5033i 0.467499 + 0.854652i
\(823\) 2.55019i 0.0888939i −0.999012 0.0444470i \(-0.985847\pi\)
0.999012 0.0444470i \(-0.0141526\pi\)
\(824\) 13.0956 28.6790i 0.456207 0.999081i
\(825\) 2.96829 + 3.95918i 0.103343 + 0.137841i
\(826\) 19.3424 + 2.78070i 0.673008 + 0.0967529i
\(827\) 26.7188i 0.929103i −0.885546 0.464551i \(-0.846216\pi\)
0.885546 0.464551i \(-0.153784\pi\)
\(828\) 21.0056 32.7922i 0.729994 1.13961i
\(829\) 34.0332i 1.18202i −0.806663 0.591011i \(-0.798729\pi\)
0.806663 0.591011i \(-0.201271\pi\)
\(830\) −0.876465 + 6.09664i −0.0304225 + 0.211618i
\(831\) 7.39128 + 9.85866i 0.256401 + 0.341993i
\(832\) −18.4011 + 15.9477i −0.637942 + 0.552887i
\(833\) 1.28528i 0.0445322i
\(834\) 13.9576 7.63488i 0.483312 0.264374i
\(835\) −12.3172 −0.426253
\(836\) 6.35565 21.6479i 0.219815 0.748709i
\(837\) 20.2490 7.60279i 0.699909 0.262791i
\(838\) 5.76067 40.0709i 0.198999 1.38422i
\(839\) 15.2429 0.526243 0.263122 0.964763i \(-0.415248\pi\)
0.263122 + 0.964763i \(0.415248\pi\)
\(840\) −1.04506 4.78621i −0.0360580 0.165140i
\(841\) 36.3624 1.25388
\(842\) −7.44860 + 51.8120i −0.256696 + 1.78556i
\(843\) 6.50435 + 8.67566i 0.224022 + 0.298806i
\(844\) 44.3450 + 13.0193i 1.52642 + 0.448144i
\(845\) −3.73549 −0.128505
\(846\) −3.94461 + 8.67117i −0.135618 + 0.298121i
\(847\) 2.83804i 0.0975161i
\(848\) −31.2876 20.1045i −1.07442 0.690391i
\(849\) −7.24603 + 5.43253i −0.248683 + 0.186444i
\(850\) 0.258651 1.79916i 0.00887165 0.0617107i
\(851\) 31.8702i 1.09250i
\(852\) −24.2534 + 9.06701i −0.830909 + 0.310631i
\(853\) 4.04187i 0.138391i 0.997603 + 0.0691955i \(0.0220432\pi\)
−0.997603 + 0.0691955i \(0.977957\pi\)
\(854\) 8.99541 + 1.29320i 0.307817 + 0.0442523i
\(855\) −3.32083 + 11.3708i −0.113570 + 0.388873i
\(856\) 8.98357 19.6738i 0.307052 0.672435i
\(857\) 6.05379i 0.206794i 0.994640 + 0.103397i \(0.0329712\pi\)
−0.994640 + 0.103397i \(0.967029\pi\)
\(858\) 18.6872 10.2220i 0.637970 0.348973i
\(859\) −43.9905 −1.50094 −0.750468 0.660906i \(-0.770172\pi\)
−0.750468 + 0.660906i \(0.770172\pi\)
\(860\) −1.39972 0.410946i −0.0477300 0.0140131i
\(861\) 7.76938 5.82490i 0.264780 0.198512i
\(862\) 24.5113 + 3.52380i 0.834859 + 0.120021i
\(863\) −39.5265 −1.34550 −0.672750 0.739870i \(-0.734887\pi\)
−0.672750 + 0.739870i \(0.734887\pi\)
\(864\) 10.2099 27.5637i 0.347347 0.937737i
\(865\) −11.6711 −0.396830
\(866\) 52.1692 + 7.49994i 1.77278 + 0.254858i
\(867\) −21.2697 + 15.9464i −0.722357 + 0.541569i
\(868\) 7.98796 + 2.34520i 0.271129 + 0.0796012i
\(869\) 22.2006 0.753104
\(870\) 17.3740 9.50366i 0.589033 0.322204i
\(871\) 31.8422i 1.07893i
\(872\) 11.3489 24.8538i 0.384322 0.841655i
\(873\) −15.5149 + 53.1243i −0.525101 + 1.79799i
\(874\) −35.8753 5.15750i −1.21350 0.174455i
\(875\) 1.00000i 0.0338062i
\(876\) −20.7559 + 7.75950i −0.701278 + 0.262169i
\(877\) 29.6435i 1.00099i −0.865740 0.500495i \(-0.833152\pi\)
0.865740 0.500495i \(-0.166848\pi\)
\(878\) 2.31473 16.1011i 0.0781182 0.543386i
\(879\) 8.86704 6.64784i 0.299078 0.224226i
\(880\) −6.17764 + 9.61395i −0.208248 + 0.324086i
\(881\) 14.7690i 0.497581i −0.968557 0.248790i \(-0.919967\pi\)
0.968557 0.248790i \(-0.0800330\pi\)
\(882\) 1.75679 3.86183i 0.0591541 0.130034i
\(883\) 54.1838 1.82343 0.911715 0.410823i \(-0.134759\pi\)
0.911715 + 0.410823i \(0.134759\pi\)
\(884\) −7.50731 2.20408i −0.252498 0.0741314i
\(885\) 14.3564 + 19.1490i 0.482587 + 0.643685i
\(886\) −3.76543 + 26.1921i −0.126502 + 0.879942i
\(887\) −10.5944 −0.355725 −0.177862 0.984055i \(-0.556918\pi\)
−0.177862 + 0.984055i \(0.556918\pi\)
\(888\) 5.13153 + 23.5016i 0.172203 + 0.788663i
\(889\) 18.5692 0.622792
\(890\) −1.86601 + 12.9799i −0.0625488 + 0.435086i
\(891\) −13.8382 + 21.6708i −0.463597 + 0.725999i
\(892\) 8.09120 27.5593i 0.270913 0.922755i
\(893\) 8.86600 0.296689
\(894\) −0.133313 + 0.0729229i −0.00445865 + 0.00243891i
\(895\) 9.73630i 0.325449i
\(896\) 9.51701 6.11772i 0.317941 0.204379i
\(897\) −20.5258 27.3778i −0.685337 0.914118i
\(898\) −5.66390 + 39.3977i −0.189007 + 1.31472i
\(899\) 33.6530i 1.12239i
\(900\) 3.23635 5.05233i 0.107878 0.168411i
\(901\) 11.9499i 0.398109i
\(902\) −22.4207 3.22324i −0.746527 0.107322i
\(903\) −0.757834 1.01082i −0.0252191 0.0336379i
\(904\) 16.3805 35.8730i 0.544809 1.19312i
\(905\) 18.2683i 0.607258i
\(906\) −11.7744 21.5252i −0.391179 0.715128i
\(907\) 22.1956 0.736994 0.368497 0.929629i \(-0.379873\pi\)
0.368497 + 0.929629i \(0.379873\pi\)
\(908\) 12.2188 41.6182i 0.405494 1.38115i
\(909\) 3.07180 10.5181i 0.101885 0.348863i
\(910\) −4.26073 0.612531i −0.141242 0.0203052i
\(911\) −0.0887953 −0.00294192 −0.00147096 0.999999i \(-0.500468\pi\)
−0.00147096 + 0.999999i \(0.500468\pi\)
\(912\) −27.2854 + 1.97317i −0.903511 + 0.0653381i
\(913\) 12.4427 0.411794
\(914\) 11.8323 + 1.70103i 0.391377 + 0.0562652i
\(915\) 6.67664 + 8.90546i 0.220723 + 0.294405i
\(916\) −7.44015 + 25.3418i −0.245829 + 0.837317i
\(917\) 12.8703 0.425014
\(918\) 9.22455 2.02789i 0.304456 0.0669304i
\(919\) 43.6803i 1.44088i 0.693518 + 0.720440i \(0.256060\pi\)
−0.693518 + 0.720440i \(0.743940\pi\)
\(920\) 16.6993 + 7.62537i 0.550561 + 0.251401i
\(921\) −29.2727 + 21.9465i −0.964569 + 0.723161i
\(922\) 10.1930 + 1.46537i 0.335689 + 0.0482593i
\(923\) 22.7510i 0.748858i
\(924\) −9.27003 + 3.46555i −0.304962 + 0.114008i
\(925\) 4.91028i 0.161449i
\(926\) 1.08652 7.55780i 0.0357054 0.248365i
\(927\) 32.0990 + 9.37451i 1.05427 + 0.307899i
\(928\) 34.5658 + 29.9466i 1.13468 + 0.983046i
\(929\) 27.2270i 0.893288i −0.894712 0.446644i \(-0.852619\pi\)
0.894712 0.446644i \(-0.147381\pi\)
\(930\) 4.89313 + 8.94531i 0.160452 + 0.293328i
\(931\) −3.94860 −0.129410
\(932\) 11.4144 38.8784i 0.373890 1.27350i
\(933\) −5.46782 + 4.09936i −0.179008 + 0.134207i
\(934\) −4.00006 + 27.8242i −0.130886 + 0.910434i
\(935\) −3.67193 −0.120085
\(936\) −19.5443 16.8839i −0.638824 0.551868i
\(937\) −39.9883 −1.30636 −0.653181 0.757202i \(-0.726566\pi\)
−0.653181 + 0.757202i \(0.726566\pi\)
\(938\) −2.10527 + 14.6442i −0.0687397 + 0.478149i
\(939\) −23.2906 + 17.4615i −0.760059 + 0.569835i
\(940\) −4.30884 1.26504i −0.140539 0.0412611i
\(941\) 57.5225 1.87518 0.937590 0.347742i \(-0.113051\pi\)
0.937590 + 0.347742i \(0.113051\pi\)
\(942\) −3.86836 7.07188i −0.126038 0.230414i
\(943\) 36.3880i 1.18495i
\(944\) −29.8788 + 46.4988i −0.972471 + 1.51341i
\(945\) 4.86457 1.82647i 0.158244 0.0594151i
\(946\) −0.419352 + 2.91699i −0.0136343 + 0.0948395i
\(947\) 49.5149i 1.60902i −0.593940 0.804509i \(-0.702428\pi\)
0.593940 0.804509i \(-0.297572\pi\)
\(948\) −9.42634 25.2146i −0.306153 0.818932i
\(949\) 19.4702i 0.632029i
\(950\) −5.52733 0.794620i −0.179330 0.0257809i
\(951\) −13.4175 + 10.0594i −0.435091 + 0.326199i
\(952\) 3.30687 + 1.51001i 0.107176 + 0.0489396i
\(953\) 53.7496i 1.74112i 0.492062 + 0.870560i \(0.336243\pi\)
−0.492062 + 0.870560i \(0.663757\pi\)
\(954\) 16.3338 35.9054i 0.528825 1.16248i
\(955\) −10.5098 −0.340088
\(956\) −24.7516 7.26686i −0.800523 0.235027i
\(957\) −23.9978 32.0088i −0.775738 1.03470i
\(958\) 6.91856 + 0.994626i 0.223528 + 0.0321349i
\(959\) −11.4022 −0.368198
\(960\) 13.5422 + 2.93426i 0.437071 + 0.0947027i
\(961\) 13.6731 0.441069
\(962\) 20.9214 + 3.00770i 0.674532 + 0.0969721i
\(963\) 22.0199 + 6.43089i 0.709581 + 0.207233i
\(964\) −39.5061 11.5987i −1.27240 0.373567i
\(965\) 10.4765 0.337252
\(966\) 7.62967 + 13.9481i 0.245481 + 0.448772i
\(967\) 2.58376i 0.0830882i −0.999137 0.0415441i \(-0.986772\pi\)
0.999137 0.0415441i \(-0.0132277\pi\)
\(968\) −7.30194 3.33426i −0.234693 0.107167i
\(969\) −5.27290 7.03312i −0.169390 0.225936i
\(970\) −25.8237 3.71247i −0.829149 0.119200i
\(971\) 20.2510i 0.649886i −0.945734 0.324943i \(-0.894655\pi\)
0.945734 0.324943i \(-0.105345\pi\)
\(972\) 30.4885 + 6.51549i 0.977919 + 0.208984i
\(973\) 6.49495i 0.208218i
\(974\) −6.88940 + 47.9223i −0.220751 + 1.53553i
\(975\) −3.16243 4.21812i −0.101279 0.135088i
\(976\) −13.8955 + 21.6248i −0.444784 + 0.692194i
\(977\) 11.0186i 0.352517i 0.984344 + 0.176259i \(0.0563995\pi\)
−0.984344 + 0.176259i \(0.943601\pi\)
\(978\) −32.7368 + 17.9072i −1.04681 + 0.572610i
\(979\) 26.4908 0.846649
\(980\) 1.91900 + 0.563404i 0.0613003 + 0.0179973i
\(981\) 27.8176 + 8.12412i 0.888148 + 0.259383i
\(982\) 4.32075 30.0549i 0.137881 0.959091i
\(983\) −5.70220 −0.181872 −0.0909360 0.995857i \(-0.528986\pi\)
−0.0909360 + 0.995857i \(0.528986\pi\)
\(984\) 5.85894 + 26.8331i 0.186776 + 0.855407i
\(985\) −11.0037 −0.350609
\(986\) −2.09112 + 14.5457i −0.0665947 + 0.463229i
\(987\) −2.33289 3.11167i −0.0742568 0.0990454i
\(988\) −6.77133 + 23.0638i −0.215425 + 0.733756i
\(989\) 4.73417 0.150538
\(990\) −11.0329 5.01899i −0.350649 0.159514i
\(991\) 27.7163i 0.880437i 0.897891 + 0.440218i \(0.145099\pi\)
−0.897891 + 0.440218i \(0.854901\pi\)
\(992\) −15.4186 + 17.7968i −0.489540 + 0.565050i
\(993\) −36.1322 + 27.0892i −1.14662 + 0.859649i
\(994\) 1.50420 10.4631i 0.0477104 0.331871i
\(995\) 20.7285i 0.657136i
\(996\) −5.28315 14.1319i −0.167403 0.447788i
\(997\) 25.2870i 0.800846i 0.916330 + 0.400423i \(0.131137\pi\)
−0.916330 + 0.400423i \(0.868863\pi\)
\(998\) 10.2912 + 1.47949i 0.325763 + 0.0468324i
\(999\) −23.8864 + 8.96848i −0.755731 + 0.283750i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.e.d.491.3 yes 44
3.2 odd 2 840.2.e.c.491.42 yes 44
4.3 odd 2 3360.2.e.c.911.37 44
8.3 odd 2 840.2.e.c.491.41 44
8.5 even 2 3360.2.e.d.911.37 44
12.11 even 2 3360.2.e.d.911.38 44
24.5 odd 2 3360.2.e.c.911.38 44
24.11 even 2 inner 840.2.e.d.491.4 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.e.c.491.41 44 8.3 odd 2
840.2.e.c.491.42 yes 44 3.2 odd 2
840.2.e.d.491.3 yes 44 1.1 even 1 trivial
840.2.e.d.491.4 yes 44 24.11 even 2 inner
3360.2.e.c.911.37 44 4.3 odd 2
3360.2.e.c.911.38 44 24.5 odd 2
3360.2.e.d.911.37 44 8.5 even 2
3360.2.e.d.911.38 44 12.11 even 2