Properties

Label 840.2.dd.b.73.10
Level $840$
Weight $2$
Character 840.73
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(73,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.dd (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 73.10
Character \(\chi\) \(=\) 840.73
Dual form 840.2.dd.b.817.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 + 0.965926i) q^{3} +(-0.0101553 - 2.23604i) q^{5} +(-2.07473 + 1.64180i) q^{7} +(-0.866025 + 0.500000i) q^{9} +(0.922533 - 1.59787i) q^{11} +(-4.81186 + 4.81186i) q^{13} +(2.15723 - 0.588540i) q^{15} +(-2.51042 + 0.672666i) q^{17} +(2.31260 + 4.00554i) q^{19} +(-2.12284 - 1.57910i) q^{21} +(-0.995848 + 3.71655i) q^{23} +(-4.99979 + 0.0454155i) q^{25} +(-0.707107 - 0.707107i) q^{27} +2.58536i q^{29} +(5.63490 + 3.25331i) q^{31} +(1.78220 + 0.477538i) q^{33} +(3.69221 + 4.62251i) q^{35} +(-7.85903 - 2.10582i) q^{37} +(-5.89331 - 3.40250i) q^{39} +7.23170i q^{41} +(-0.333540 - 0.333540i) q^{43} +(1.12682 + 1.93139i) q^{45} +(-1.06734 + 3.98335i) q^{47} +(1.60898 - 6.81258i) q^{49} +(-1.29949 - 2.25079i) q^{51} +(4.34910 - 1.16534i) q^{53} +(-3.58229 - 2.04660i) q^{55} +(-3.27051 + 3.27051i) q^{57} +(4.10291 - 7.10646i) q^{59} +(-5.56336 + 3.21201i) q^{61} +(0.975866 - 2.45920i) q^{63} +(10.8084 + 10.7107i) q^{65} +(-1.65608 - 6.18056i) q^{67} -3.84766 q^{69} -8.70813 q^{71} +(-0.813014 - 3.03421i) q^{73} +(-1.33791 - 4.81768i) q^{75} +(0.709387 + 4.82977i) q^{77} +(-6.74536 + 3.89444i) q^{79} +(0.500000 - 0.866025i) q^{81} +(-0.681980 + 0.681980i) q^{83} +(1.52961 + 5.60659i) q^{85} +(-2.49727 + 0.669141i) q^{87} +(0.659941 + 1.14305i) q^{89} +(2.08318 - 17.8834i) q^{91} +(-1.68404 + 6.28491i) q^{93} +(8.93308 - 5.21175i) q^{95} +(-10.1590 - 10.1590i) q^{97} +1.84507i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{7} - 4 q^{11} - 16 q^{13} - 4 q^{15} + 4 q^{17} - 8 q^{19} + 48 q^{23} - 20 q^{25} + 24 q^{33} - 4 q^{37} + 12 q^{39} + 16 q^{43} + 4 q^{45} - 12 q^{47} + 12 q^{49} - 52 q^{53} + 56 q^{55} + 8 q^{57}+ \cdots - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.258819 + 0.965926i 0.149429 + 0.557678i
\(4\) 0 0
\(5\) −0.0101553 2.23604i −0.00454159 0.999990i
\(6\) 0 0
\(7\) −2.07473 + 1.64180i −0.784173 + 0.620542i
\(8\) 0 0
\(9\) −0.866025 + 0.500000i −0.288675 + 0.166667i
\(10\) 0 0
\(11\) 0.922533 1.59787i 0.278154 0.481777i −0.692772 0.721157i \(-0.743611\pi\)
0.970926 + 0.239380i \(0.0769440\pi\)
\(12\) 0 0
\(13\) −4.81186 + 4.81186i −1.33457 + 1.33457i −0.433341 + 0.901230i \(0.642666\pi\)
−0.901230 + 0.433341i \(0.857334\pi\)
\(14\) 0 0
\(15\) 2.15723 0.588540i 0.556993 0.151960i
\(16\) 0 0
\(17\) −2.51042 + 0.672666i −0.608867 + 0.163146i −0.550062 0.835124i \(-0.685396\pi\)
−0.0588056 + 0.998269i \(0.518729\pi\)
\(18\) 0 0
\(19\) 2.31260 + 4.00554i 0.530547 + 0.918934i 0.999365 + 0.0356392i \(0.0113467\pi\)
−0.468818 + 0.883295i \(0.655320\pi\)
\(20\) 0 0
\(21\) −2.12284 1.57910i −0.463241 0.344588i
\(22\) 0 0
\(23\) −0.995848 + 3.71655i −0.207649 + 0.774955i 0.780977 + 0.624559i \(0.214721\pi\)
−0.988626 + 0.150396i \(0.951945\pi\)
\(24\) 0 0
\(25\) −4.99979 + 0.0454155i −0.999959 + 0.00908310i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 2.58536i 0.480090i 0.970762 + 0.240045i \(0.0771622\pi\)
−0.970762 + 0.240045i \(0.922838\pi\)
\(30\) 0 0
\(31\) 5.63490 + 3.25331i 1.01206 + 0.584312i 0.911793 0.410649i \(-0.134698\pi\)
0.100264 + 0.994961i \(0.468031\pi\)
\(32\) 0 0
\(33\) 1.78220 + 0.477538i 0.310241 + 0.0831288i
\(34\) 0 0
\(35\) 3.69221 + 4.62251i 0.624097 + 0.781347i
\(36\) 0 0
\(37\) −7.85903 2.10582i −1.29202 0.346195i −0.453591 0.891210i \(-0.649857\pi\)
−0.838426 + 0.545015i \(0.816524\pi\)
\(38\) 0 0
\(39\) −5.89331 3.40250i −0.943684 0.544836i
\(40\) 0 0
\(41\) 7.23170i 1.12940i 0.825296 + 0.564701i \(0.191008\pi\)
−0.825296 + 0.564701i \(0.808992\pi\)
\(42\) 0 0
\(43\) −0.333540 0.333540i −0.0508644 0.0508644i 0.681217 0.732081i \(-0.261451\pi\)
−0.732081 + 0.681217i \(0.761451\pi\)
\(44\) 0 0
\(45\) 1.12682 + 1.93139i 0.167976 + 0.287915i
\(46\) 0 0
\(47\) −1.06734 + 3.98335i −0.155687 + 0.581031i 0.843359 + 0.537351i \(0.180575\pi\)
−0.999046 + 0.0436803i \(0.986092\pi\)
\(48\) 0 0
\(49\) 1.60898 6.81258i 0.229854 0.973225i
\(50\) 0 0
\(51\) −1.29949 2.25079i −0.181965 0.315173i
\(52\) 0 0
\(53\) 4.34910 1.16534i 0.597395 0.160072i 0.0525643 0.998618i \(-0.483261\pi\)
0.544831 + 0.838546i \(0.316594\pi\)
\(54\) 0 0
\(55\) −3.58229 2.04660i −0.483036 0.275963i
\(56\) 0 0
\(57\) −3.27051 + 3.27051i −0.433190 + 0.433190i
\(58\) 0 0
\(59\) 4.10291 7.10646i 0.534154 0.925182i −0.465050 0.885285i \(-0.653964\pi\)
0.999204 0.0398973i \(-0.0127031\pi\)
\(60\) 0 0
\(61\) −5.56336 + 3.21201i −0.712315 + 0.411255i −0.811918 0.583772i \(-0.801576\pi\)
0.0996028 + 0.995027i \(0.468243\pi\)
\(62\) 0 0
\(63\) 0.975866 2.45920i 0.122948 0.309831i
\(64\) 0 0
\(65\) 10.8084 + 10.7107i 1.34062 + 1.32850i
\(66\) 0 0
\(67\) −1.65608 6.18056i −0.202322 0.755076i −0.990249 0.139307i \(-0.955512\pi\)
0.787927 0.615768i \(-0.211154\pi\)
\(68\) 0 0
\(69\) −3.84766 −0.463204
\(70\) 0 0
\(71\) −8.70813 −1.03346 −0.516732 0.856147i \(-0.672852\pi\)
−0.516732 + 0.856147i \(0.672852\pi\)
\(72\) 0 0
\(73\) −0.813014 3.03421i −0.0951561 0.355127i 0.901887 0.431972i \(-0.142182\pi\)
−0.997043 + 0.0768447i \(0.975515\pi\)
\(74\) 0 0
\(75\) −1.33791 4.81768i −0.154489 0.556297i
\(76\) 0 0
\(77\) 0.709387 + 4.82977i 0.0808422 + 0.550403i
\(78\) 0 0
\(79\) −6.74536 + 3.89444i −0.758912 + 0.438158i −0.828905 0.559389i \(-0.811036\pi\)
0.0699928 + 0.997547i \(0.477702\pi\)
\(80\) 0 0
\(81\) 0.500000 0.866025i 0.0555556 0.0962250i
\(82\) 0 0
\(83\) −0.681980 + 0.681980i −0.0748570 + 0.0748570i −0.743544 0.668687i \(-0.766857\pi\)
0.668687 + 0.743544i \(0.266857\pi\)
\(84\) 0 0
\(85\) 1.52961 + 5.60659i 0.165909 + 0.608120i
\(86\) 0 0
\(87\) −2.49727 + 0.669141i −0.267735 + 0.0717395i
\(88\) 0 0
\(89\) 0.659941 + 1.14305i 0.0699536 + 0.121163i 0.898881 0.438193i \(-0.144382\pi\)
−0.828927 + 0.559357i \(0.811048\pi\)
\(90\) 0 0
\(91\) 2.08318 17.8834i 0.218377 1.87469i
\(92\) 0 0
\(93\) −1.68404 + 6.28491i −0.174626 + 0.651715i
\(94\) 0 0
\(95\) 8.93308 5.21175i 0.916515 0.534715i
\(96\) 0 0
\(97\) −10.1590 10.1590i −1.03149 1.03149i −0.999488 0.0319978i \(-0.989813\pi\)
−0.0319978 0.999488i \(-0.510187\pi\)
\(98\) 0 0
\(99\) 1.84507i 0.185436i
\(100\) 0 0
\(101\) −1.47692 0.852702i −0.146959 0.0848470i 0.424717 0.905326i \(-0.360373\pi\)
−0.571677 + 0.820479i \(0.693707\pi\)
\(102\) 0 0
\(103\) 12.5511 + 3.36305i 1.23670 + 0.331372i 0.817183 0.576378i \(-0.195534\pi\)
0.419512 + 0.907750i \(0.362201\pi\)
\(104\) 0 0
\(105\) −3.50939 + 4.76279i −0.342481 + 0.464801i
\(106\) 0 0
\(107\) 11.8778 + 3.18264i 1.14827 + 0.307678i 0.782271 0.622938i \(-0.214061\pi\)
0.365998 + 0.930616i \(0.380728\pi\)
\(108\) 0 0
\(109\) −2.91372 1.68224i −0.279083 0.161129i 0.353925 0.935274i \(-0.384847\pi\)
−0.633008 + 0.774145i \(0.718180\pi\)
\(110\) 0 0
\(111\) 8.13627i 0.772260i
\(112\) 0 0
\(113\) −12.9390 12.9390i −1.21720 1.21720i −0.968609 0.248587i \(-0.920034\pi\)
−0.248587 0.968609i \(-0.579966\pi\)
\(114\) 0 0
\(115\) 8.32049 + 2.18902i 0.775890 + 0.204127i
\(116\) 0 0
\(117\) 1.76126 6.57313i 0.162829 0.607686i
\(118\) 0 0
\(119\) 4.10406 5.51722i 0.376219 0.505762i
\(120\) 0 0
\(121\) 3.79786 + 6.57810i 0.345260 + 0.598009i
\(122\) 0 0
\(123\) −6.98528 + 1.87170i −0.629842 + 0.168766i
\(124\) 0 0
\(125\) 0.152326 + 11.1793i 0.0136244 + 0.999907i
\(126\) 0 0
\(127\) −9.20357 + 9.20357i −0.816685 + 0.816685i −0.985626 0.168941i \(-0.945965\pi\)
0.168941 + 0.985626i \(0.445965\pi\)
\(128\) 0 0
\(129\) 0.235849 0.408502i 0.0207653 0.0359666i
\(130\) 0 0
\(131\) −4.02477 + 2.32370i −0.351646 + 0.203023i −0.665410 0.746478i \(-0.731743\pi\)
0.313764 + 0.949501i \(0.398410\pi\)
\(132\) 0 0
\(133\) −11.3743 4.51357i −0.986278 0.391376i
\(134\) 0 0
\(135\) −1.57394 + 1.58830i −0.135463 + 0.136699i
\(136\) 0 0
\(137\) 3.44285 + 12.8489i 0.294142 + 1.09775i 0.941896 + 0.335904i \(0.109042\pi\)
−0.647754 + 0.761849i \(0.724292\pi\)
\(138\) 0 0
\(139\) 20.2234 1.71533 0.857664 0.514211i \(-0.171915\pi\)
0.857664 + 0.514211i \(0.171915\pi\)
\(140\) 0 0
\(141\) −4.12387 −0.347292
\(142\) 0 0
\(143\) 3.24965 + 12.1279i 0.271749 + 1.01418i
\(144\) 0 0
\(145\) 5.78099 0.0262552i 0.480085 0.00218037i
\(146\) 0 0
\(147\) 6.99688 0.209068i 0.577093 0.0172436i
\(148\) 0 0
\(149\) 15.6505 9.03581i 1.28214 0.740243i 0.304899 0.952385i \(-0.401377\pi\)
0.977239 + 0.212142i \(0.0680440\pi\)
\(150\) 0 0
\(151\) 0.599963 1.03917i 0.0488243 0.0845661i −0.840580 0.541687i \(-0.817786\pi\)
0.889405 + 0.457121i \(0.151119\pi\)
\(152\) 0 0
\(153\) 1.83776 1.83776i 0.148574 0.148574i
\(154\) 0 0
\(155\) 7.21732 12.6329i 0.579709 1.01470i
\(156\) 0 0
\(157\) 0.683081 0.183031i 0.0545158 0.0146075i −0.231458 0.972845i \(-0.574350\pi\)
0.285974 + 0.958237i \(0.407683\pi\)
\(158\) 0 0
\(159\) 2.25126 + 3.89930i 0.178537 + 0.309234i
\(160\) 0 0
\(161\) −4.03573 9.34582i −0.318060 0.736553i
\(162\) 0 0
\(163\) 0.884617 3.30144i 0.0692886 0.258588i −0.922589 0.385784i \(-0.873931\pi\)
0.991878 + 0.127196i \(0.0405976\pi\)
\(164\) 0 0
\(165\) 1.04970 3.98992i 0.0817189 0.310615i
\(166\) 0 0
\(167\) 4.49985 + 4.49985i 0.348209 + 0.348209i 0.859442 0.511233i \(-0.170811\pi\)
−0.511233 + 0.859442i \(0.670811\pi\)
\(168\) 0 0
\(169\) 33.3081i 2.56216i
\(170\) 0 0
\(171\) −4.00554 2.31260i −0.306311 0.176849i
\(172\) 0 0
\(173\) 24.3539 + 6.52561i 1.85159 + 0.496133i 0.999623 0.0274585i \(-0.00874140\pi\)
0.851970 + 0.523591i \(0.175408\pi\)
\(174\) 0 0
\(175\) 10.2986 8.30289i 0.778504 0.627639i
\(176\) 0 0
\(177\) 7.92622 + 2.12382i 0.595771 + 0.159636i
\(178\) 0 0
\(179\) 19.0980 + 11.0262i 1.42745 + 0.824137i 0.996919 0.0784393i \(-0.0249937\pi\)
0.430529 + 0.902577i \(0.358327\pi\)
\(180\) 0 0
\(181\) 24.6589i 1.83288i 0.400168 + 0.916442i \(0.368952\pi\)
−0.400168 + 0.916442i \(0.631048\pi\)
\(182\) 0 0
\(183\) −4.54246 4.54246i −0.335788 0.335788i
\(184\) 0 0
\(185\) −4.62890 + 17.5945i −0.340323 + 1.29358i
\(186\) 0 0
\(187\) −1.24111 + 4.63190i −0.0907593 + 0.338718i
\(188\) 0 0
\(189\) 2.62798 + 0.306125i 0.191158 + 0.0222673i
\(190\) 0 0
\(191\) −12.3948 21.4685i −0.896860 1.55341i −0.831486 0.555546i \(-0.812509\pi\)
−0.0653737 0.997861i \(-0.520824\pi\)
\(192\) 0 0
\(193\) 13.4705 3.60942i 0.969631 0.259812i 0.260959 0.965350i \(-0.415961\pi\)
0.708672 + 0.705538i \(0.249295\pi\)
\(194\) 0 0
\(195\) −7.54830 + 13.2123i −0.540545 + 0.946149i
\(196\) 0 0
\(197\) −1.09593 + 1.09593i −0.0780819 + 0.0780819i −0.745069 0.666987i \(-0.767584\pi\)
0.666987 + 0.745069i \(0.267584\pi\)
\(198\) 0 0
\(199\) 6.98766 12.1030i 0.495342 0.857957i −0.504644 0.863328i \(-0.668376\pi\)
0.999986 + 0.00537047i \(0.00170948\pi\)
\(200\) 0 0
\(201\) 5.54134 3.19929i 0.390856 0.225661i
\(202\) 0 0
\(203\) −4.24465 5.36392i −0.297916 0.376474i
\(204\) 0 0
\(205\) 16.1704 0.0734402i 1.12939 0.00512928i
\(206\) 0 0
\(207\) −0.995848 3.71655i −0.0692162 0.258318i
\(208\) 0 0
\(209\) 8.53380 0.590295
\(210\) 0 0
\(211\) −10.1097 −0.695978 −0.347989 0.937499i \(-0.613135\pi\)
−0.347989 + 0.937499i \(0.613135\pi\)
\(212\) 0 0
\(213\) −2.25383 8.41141i −0.154430 0.576340i
\(214\) 0 0
\(215\) −0.742424 + 0.749198i −0.0506329 + 0.0510949i
\(216\) 0 0
\(217\) −17.0322 + 2.50165i −1.15622 + 0.169823i
\(218\) 0 0
\(219\) 2.72040 1.57062i 0.183827 0.106133i
\(220\) 0 0
\(221\) 8.84305 15.3166i 0.594848 1.03031i
\(222\) 0 0
\(223\) −20.7866 + 20.7866i −1.39197 + 1.39197i −0.571070 + 0.820901i \(0.693472\pi\)
−0.820901 + 0.571070i \(0.806528\pi\)
\(224\) 0 0
\(225\) 4.30724 2.53923i 0.287149 0.169282i
\(226\) 0 0
\(227\) 8.55694 2.29283i 0.567944 0.152180i 0.0365905 0.999330i \(-0.488350\pi\)
0.531354 + 0.847150i \(0.321684\pi\)
\(228\) 0 0
\(229\) −6.08921 10.5468i −0.402386 0.696953i 0.591627 0.806212i \(-0.298486\pi\)
−0.994013 + 0.109258i \(0.965152\pi\)
\(230\) 0 0
\(231\) −4.48159 + 1.93525i −0.294867 + 0.127330i
\(232\) 0 0
\(233\) 4.10496 15.3199i 0.268925 1.00364i −0.690880 0.722970i \(-0.742777\pi\)
0.959804 0.280671i \(-0.0905568\pi\)
\(234\) 0 0
\(235\) 8.91779 + 2.34616i 0.581732 + 0.153046i
\(236\) 0 0
\(237\) −5.50756 5.50756i −0.357755 0.357755i
\(238\) 0 0
\(239\) 20.9394i 1.35446i −0.735773 0.677228i \(-0.763181\pi\)
0.735773 0.677228i \(-0.236819\pi\)
\(240\) 0 0
\(241\) −18.2216 10.5203i −1.17376 0.677670i −0.219196 0.975681i \(-0.570344\pi\)
−0.954563 + 0.298011i \(0.903677\pi\)
\(242\) 0 0
\(243\) 0.965926 + 0.258819i 0.0619642 + 0.0166032i
\(244\) 0 0
\(245\) −15.2496 3.52857i −0.974259 0.225432i
\(246\) 0 0
\(247\) −30.4020 8.14620i −1.93444 0.518330i
\(248\) 0 0
\(249\) −0.835252 0.482233i −0.0529319 0.0305603i
\(250\) 0 0
\(251\) 15.0184i 0.947950i 0.880538 + 0.473975i \(0.157181\pi\)
−0.880538 + 0.473975i \(0.842819\pi\)
\(252\) 0 0
\(253\) 5.01988 + 5.01988i 0.315597 + 0.315597i
\(254\) 0 0
\(255\) −5.01966 + 2.92858i −0.314343 + 0.183395i
\(256\) 0 0
\(257\) 3.48224 12.9959i 0.217216 0.810663i −0.768158 0.640260i \(-0.778827\pi\)
0.985375 0.170403i \(-0.0545068\pi\)
\(258\) 0 0
\(259\) 19.7627 8.53396i 1.22799 0.530274i
\(260\) 0 0
\(261\) −1.29268 2.23899i −0.0800150 0.138590i
\(262\) 0 0
\(263\) −14.0656 + 3.76888i −0.867324 + 0.232399i −0.664930 0.746905i \(-0.731539\pi\)
−0.202394 + 0.979304i \(0.564872\pi\)
\(264\) 0 0
\(265\) −2.64992 9.71295i −0.162783 0.596662i
\(266\) 0 0
\(267\) −0.933298 + 0.933298i −0.0571169 + 0.0571169i
\(268\) 0 0
\(269\) −12.0245 + 20.8271i −0.733147 + 1.26985i 0.222384 + 0.974959i \(0.428616\pi\)
−0.955532 + 0.294889i \(0.904717\pi\)
\(270\) 0 0
\(271\) −6.31280 + 3.64470i −0.383475 + 0.221400i −0.679329 0.733834i \(-0.737729\pi\)
0.295854 + 0.955233i \(0.404396\pi\)
\(272\) 0 0
\(273\) 17.8132 2.61637i 1.07811 0.158350i
\(274\) 0 0
\(275\) −4.53991 + 8.03094i −0.273767 + 0.484284i
\(276\) 0 0
\(277\) −1.37637 5.13667i −0.0826979 0.308633i 0.912170 0.409811i \(-0.134405\pi\)
−0.994868 + 0.101178i \(0.967739\pi\)
\(278\) 0 0
\(279\) −6.50662 −0.389541
\(280\) 0 0
\(281\) −12.7351 −0.759714 −0.379857 0.925045i \(-0.624027\pi\)
−0.379857 + 0.925045i \(0.624027\pi\)
\(282\) 0 0
\(283\) 7.83365 + 29.2356i 0.465662 + 1.73788i 0.654684 + 0.755903i \(0.272802\pi\)
−0.189021 + 0.981973i \(0.560532\pi\)
\(284\) 0 0
\(285\) 7.34622 + 7.27979i 0.435153 + 0.431218i
\(286\) 0 0
\(287\) −11.8730 15.0038i −0.700841 0.885646i
\(288\) 0 0
\(289\) −8.87268 + 5.12264i −0.521922 + 0.301332i
\(290\) 0 0
\(291\) 7.18347 12.4421i 0.421102 0.729371i
\(292\) 0 0
\(293\) 16.6287 16.6287i 0.971457 0.971457i −0.0281472 0.999604i \(-0.508961\pi\)
0.999604 + 0.0281472i \(0.00896073\pi\)
\(294\) 0 0
\(295\) −15.9320 9.10213i −0.927598 0.529947i
\(296\) 0 0
\(297\) −1.78220 + 0.477538i −0.103414 + 0.0277096i
\(298\) 0 0
\(299\) −13.0917 22.6754i −0.757111 1.31135i
\(300\) 0 0
\(301\) 1.23961 + 0.144398i 0.0714500 + 0.00832298i
\(302\) 0 0
\(303\) 0.441391 1.64729i 0.0253572 0.0946345i
\(304\) 0 0
\(305\) 7.23869 + 12.4073i 0.414486 + 0.710440i
\(306\) 0 0
\(307\) 22.7973 + 22.7973i 1.30111 + 1.30111i 0.927644 + 0.373465i \(0.121830\pi\)
0.373465 + 0.927644i \(0.378170\pi\)
\(308\) 0 0
\(309\) 12.9938i 0.739194i
\(310\) 0 0
\(311\) 9.06971 + 5.23640i 0.514296 + 0.296929i 0.734598 0.678503i \(-0.237371\pi\)
−0.220302 + 0.975432i \(0.570704\pi\)
\(312\) 0 0
\(313\) 17.6280 + 4.72341i 0.996395 + 0.266983i 0.719934 0.694042i \(-0.244172\pi\)
0.276460 + 0.961025i \(0.410839\pi\)
\(314\) 0 0
\(315\) −5.50880 2.15711i −0.310386 0.121539i
\(316\) 0 0
\(317\) −4.85327 1.30043i −0.272587 0.0730394i 0.119936 0.992782i \(-0.461731\pi\)
−0.392523 + 0.919742i \(0.628398\pi\)
\(318\) 0 0
\(319\) 4.13109 + 2.38508i 0.231296 + 0.133539i
\(320\) 0 0
\(321\) 12.2968i 0.686340i
\(322\) 0 0
\(323\) −8.50000 8.50000i −0.472953 0.472953i
\(324\) 0 0
\(325\) 23.8398 24.2769i 1.32239 1.34664i
\(326\) 0 0
\(327\) 0.870789 3.24983i 0.0481547 0.179716i
\(328\) 0 0
\(329\) −4.32544 10.0167i −0.238469 0.552239i
\(330\) 0 0
\(331\) 7.83310 + 13.5673i 0.430546 + 0.745728i 0.996920 0.0784204i \(-0.0249876\pi\)
−0.566374 + 0.824148i \(0.691654\pi\)
\(332\) 0 0
\(333\) 7.85903 2.10582i 0.430672 0.115398i
\(334\) 0 0
\(335\) −13.8032 + 3.76583i −0.754149 + 0.205749i
\(336\) 0 0
\(337\) −7.66529 + 7.66529i −0.417555 + 0.417555i −0.884360 0.466805i \(-0.845405\pi\)
0.466805 + 0.884360i \(0.345405\pi\)
\(338\) 0 0
\(339\) 9.14924 15.8470i 0.496919 0.860688i
\(340\) 0 0
\(341\) 10.3968 6.00257i 0.563016 0.325057i
\(342\) 0 0
\(343\) 7.84669 + 16.7759i 0.423682 + 0.905811i
\(344\) 0 0
\(345\) 0.0390742 + 8.60354i 0.00210368 + 0.463199i
\(346\) 0 0
\(347\) 6.64247 + 24.7900i 0.356587 + 1.33080i 0.878476 + 0.477786i \(0.158561\pi\)
−0.521890 + 0.853013i \(0.674773\pi\)
\(348\) 0 0
\(349\) −9.53988 −0.510658 −0.255329 0.966854i \(-0.582184\pi\)
−0.255329 + 0.966854i \(0.582184\pi\)
\(350\) 0 0
\(351\) 6.80500 0.363224
\(352\) 0 0
\(353\) 9.68151 + 36.1319i 0.515295 + 1.92311i 0.349453 + 0.936954i \(0.386368\pi\)
0.165842 + 0.986152i \(0.446966\pi\)
\(354\) 0 0
\(355\) 0.0884338 + 19.4718i 0.00469358 + 1.03345i
\(356\) 0 0
\(357\) 6.39143 + 2.53626i 0.338270 + 0.134233i
\(358\) 0 0
\(359\) −0.601952 + 0.347537i −0.0317698 + 0.0183423i −0.515801 0.856709i \(-0.672506\pi\)
0.484031 + 0.875051i \(0.339172\pi\)
\(360\) 0 0
\(361\) −1.19624 + 2.07194i −0.0629598 + 0.109050i
\(362\) 0 0
\(363\) −5.37099 + 5.37099i −0.281904 + 0.281904i
\(364\) 0 0
\(365\) −6.77637 + 1.84875i −0.354692 + 0.0967680i
\(366\) 0 0
\(367\) −16.2014 + 4.34114i −0.845705 + 0.226606i −0.655553 0.755149i \(-0.727565\pi\)
−0.190151 + 0.981755i \(0.560898\pi\)
\(368\) 0 0
\(369\) −3.61585 6.26283i −0.188234 0.326030i
\(370\) 0 0
\(371\) −7.10994 + 9.55812i −0.369130 + 0.496233i
\(372\) 0 0
\(373\) 0.671018 2.50427i 0.0347440 0.129666i −0.946376 0.323069i \(-0.895286\pi\)
0.981120 + 0.193402i \(0.0619522\pi\)
\(374\) 0 0
\(375\) −10.7590 + 3.04055i −0.555590 + 0.157013i
\(376\) 0 0
\(377\) −12.4404 12.4404i −0.640714 0.640714i
\(378\) 0 0
\(379\) 2.58019i 0.132535i −0.997802 0.0662676i \(-0.978891\pi\)
0.997802 0.0662676i \(-0.0211091\pi\)
\(380\) 0 0
\(381\) −11.2720 6.50791i −0.577484 0.333410i
\(382\) 0 0
\(383\) 9.40464 + 2.51997i 0.480555 + 0.128764i 0.490961 0.871182i \(-0.336646\pi\)
−0.0104062 + 0.999946i \(0.503312\pi\)
\(384\) 0 0
\(385\) 10.7924 1.63527i 0.550030 0.0833410i
\(386\) 0 0
\(387\) 0.455625 + 0.122084i 0.0231607 + 0.00620589i
\(388\) 0 0
\(389\) −2.03441 1.17457i −0.103149 0.0595531i 0.447538 0.894265i \(-0.352301\pi\)
−0.550687 + 0.834712i \(0.685634\pi\)
\(390\) 0 0
\(391\) 10.0000i 0.505722i
\(392\) 0 0
\(393\) −3.28621 3.28621i −0.165767 0.165767i
\(394\) 0 0
\(395\) 8.77663 + 15.0434i 0.441600 + 0.756915i
\(396\) 0 0
\(397\) 8.71857 32.5381i 0.437572 1.63304i −0.297262 0.954796i \(-0.596074\pi\)
0.734835 0.678246i \(-0.237260\pi\)
\(398\) 0 0
\(399\) 1.41589 12.1549i 0.0708831 0.608508i
\(400\) 0 0
\(401\) 16.9813 + 29.4124i 0.848004 + 1.46879i 0.882987 + 0.469398i \(0.155529\pi\)
−0.0349828 + 0.999388i \(0.511138\pi\)
\(402\) 0 0
\(403\) −42.7688 + 11.4599i −2.13047 + 0.570857i
\(404\) 0 0
\(405\) −1.94155 1.10923i −0.0964764 0.0551180i
\(406\) 0 0
\(407\) −10.6151 + 10.6151i −0.526169 + 0.526169i
\(408\) 0 0
\(409\) −5.63530 + 9.76063i −0.278648 + 0.482632i −0.971049 0.238881i \(-0.923220\pi\)
0.692401 + 0.721513i \(0.256553\pi\)
\(410\) 0 0
\(411\) −11.5200 + 6.65107i −0.568239 + 0.328073i
\(412\) 0 0
\(413\) 3.15496 + 21.4801i 0.155245 + 1.05697i
\(414\) 0 0
\(415\) 1.53186 + 1.51801i 0.0751962 + 0.0745163i
\(416\) 0 0
\(417\) 5.23420 + 19.5343i 0.256320 + 0.956600i
\(418\) 0 0
\(419\) −35.0802 −1.71378 −0.856890 0.515500i \(-0.827606\pi\)
−0.856890 + 0.515500i \(0.827606\pi\)
\(420\) 0 0
\(421\) −16.9301 −0.825123 −0.412561 0.910930i \(-0.635366\pi\)
−0.412561 + 0.910930i \(0.635366\pi\)
\(422\) 0 0
\(423\) −1.06734 3.98335i −0.0518956 0.193677i
\(424\) 0 0
\(425\) 12.5211 3.47721i 0.607361 0.168669i
\(426\) 0 0
\(427\) 6.26897 15.7980i 0.303377 0.764517i
\(428\) 0 0
\(429\) −10.8735 + 6.27784i −0.524980 + 0.303097i
\(430\) 0 0
\(431\) 4.81829 8.34553i 0.232089 0.401990i −0.726334 0.687342i \(-0.758777\pi\)
0.958423 + 0.285352i \(0.0921106\pi\)
\(432\) 0 0
\(433\) −19.5507 + 19.5507i −0.939547 + 0.939547i −0.998274 0.0587275i \(-0.981296\pi\)
0.0587275 + 0.998274i \(0.481296\pi\)
\(434\) 0 0
\(435\) 1.52159 + 5.57721i 0.0729547 + 0.267407i
\(436\) 0 0
\(437\) −17.1898 + 4.60599i −0.822300 + 0.220335i
\(438\) 0 0
\(439\) 14.3141 + 24.7928i 0.683177 + 1.18330i 0.974006 + 0.226522i \(0.0727354\pi\)
−0.290830 + 0.956775i \(0.593931\pi\)
\(440\) 0 0
\(441\) 2.01287 + 6.70435i 0.0958509 + 0.319255i
\(442\) 0 0
\(443\) 3.98556 14.8743i 0.189360 0.706701i −0.804295 0.594230i \(-0.797457\pi\)
0.993655 0.112471i \(-0.0358764\pi\)
\(444\) 0 0
\(445\) 2.54921 1.48727i 0.120844 0.0705032i
\(446\) 0 0
\(447\) 12.7786 + 12.7786i 0.604406 + 0.604406i
\(448\) 0 0
\(449\) 1.49829i 0.0707086i −0.999375 0.0353543i \(-0.988744\pi\)
0.999375 0.0353543i \(-0.0112560\pi\)
\(450\) 0 0
\(451\) 11.5553 + 6.67148i 0.544120 + 0.314148i
\(452\) 0 0
\(453\) 1.15904 + 0.310563i 0.0544564 + 0.0145915i
\(454\) 0 0
\(455\) −40.0093 4.47647i −1.87567 0.209860i
\(456\) 0 0
\(457\) −23.6542 6.33813i −1.10650 0.296485i −0.341090 0.940031i \(-0.610796\pi\)
−0.765408 + 0.643545i \(0.777463\pi\)
\(458\) 0 0
\(459\) 2.25079 + 1.29949i 0.105058 + 0.0606551i
\(460\) 0 0
\(461\) 29.0857i 1.35465i −0.735682 0.677327i \(-0.763138\pi\)
0.735682 0.677327i \(-0.236862\pi\)
\(462\) 0 0
\(463\) 14.6935 + 14.6935i 0.682865 + 0.682865i 0.960645 0.277780i \(-0.0895985\pi\)
−0.277780 + 0.960645i \(0.589599\pi\)
\(464\) 0 0
\(465\) 14.0704 + 3.70176i 0.652501 + 0.171665i
\(466\) 0 0
\(467\) −0.445798 + 1.66374i −0.0206291 + 0.0769887i −0.975473 0.220119i \(-0.929355\pi\)
0.954844 + 0.297108i \(0.0960221\pi\)
\(468\) 0 0
\(469\) 13.5832 + 10.1040i 0.627212 + 0.466561i
\(470\) 0 0
\(471\) 0.353589 + 0.612434i 0.0162925 + 0.0282195i
\(472\) 0 0
\(473\) −0.840658 + 0.225254i −0.0386535 + 0.0103572i
\(474\) 0 0
\(475\) −11.7444 19.9218i −0.538872 0.914077i
\(476\) 0 0
\(477\) −3.18376 + 3.18376i −0.145774 + 0.145774i
\(478\) 0 0
\(479\) −20.7120 + 35.8742i −0.946355 + 1.63913i −0.193338 + 0.981132i \(0.561932\pi\)
−0.753016 + 0.658002i \(0.771402\pi\)
\(480\) 0 0
\(481\) 47.9495 27.6837i 2.18631 1.26227i
\(482\) 0 0
\(483\) 7.98284 6.31709i 0.363232 0.287438i
\(484\) 0 0
\(485\) −22.6127 + 22.8190i −1.02679 + 1.03616i
\(486\) 0 0
\(487\) −0.749951 2.79886i −0.0339835 0.126828i 0.946850 0.321675i \(-0.104246\pi\)
−0.980834 + 0.194847i \(0.937579\pi\)
\(488\) 0 0
\(489\) 3.41790 0.154563
\(490\) 0 0
\(491\) −5.54659 −0.250314 −0.125157 0.992137i \(-0.539943\pi\)
−0.125157 + 0.992137i \(0.539943\pi\)
\(492\) 0 0
\(493\) −1.73909 6.49036i −0.0783245 0.292311i
\(494\) 0 0
\(495\) 4.12565 0.0187372i 0.185434 0.000842176i
\(496\) 0 0
\(497\) 18.0670 14.2970i 0.810415 0.641309i
\(498\) 0 0
\(499\) 2.26033 1.30500i 0.101186 0.0584199i −0.448553 0.893756i \(-0.648060\pi\)
0.549739 + 0.835336i \(0.314727\pi\)
\(500\) 0 0
\(501\) −3.18188 + 5.51117i −0.142156 + 0.246221i
\(502\) 0 0
\(503\) −25.6046 + 25.6046i −1.14165 + 1.14165i −0.153507 + 0.988148i \(0.549057\pi\)
−0.988148 + 0.153507i \(0.950943\pi\)
\(504\) 0 0
\(505\) −1.89168 + 3.31112i −0.0841787 + 0.147343i
\(506\) 0 0
\(507\) 32.1731 8.62077i 1.42886 0.382862i
\(508\) 0 0
\(509\) −7.10908 12.3133i −0.315104 0.545777i 0.664355 0.747417i \(-0.268706\pi\)
−0.979460 + 0.201640i \(0.935373\pi\)
\(510\) 0 0
\(511\) 6.66835 + 4.96035i 0.294990 + 0.219433i
\(512\) 0 0
\(513\) 1.19709 4.46760i 0.0528528 0.197249i
\(514\) 0 0
\(515\) 7.39248 28.0990i 0.325752 1.23819i
\(516\) 0 0
\(517\) 5.38024 + 5.38024i 0.236623 + 0.236623i
\(518\) 0 0
\(519\) 25.2130i 1.10673i
\(520\) 0 0
\(521\) −31.4173 18.1388i −1.37642 0.794676i −0.384693 0.923045i \(-0.625693\pi\)
−0.991726 + 0.128369i \(0.959026\pi\)
\(522\) 0 0
\(523\) −10.4329 2.79549i −0.456200 0.122238i 0.0233990 0.999726i \(-0.492551\pi\)
−0.479599 + 0.877488i \(0.659218\pi\)
\(524\) 0 0
\(525\) 10.6855 + 7.79878i 0.466352 + 0.340367i
\(526\) 0 0
\(527\) −16.3344 4.37678i −0.711537 0.190656i
\(528\) 0 0
\(529\) 7.09753 + 4.09776i 0.308588 + 0.178163i
\(530\) 0 0
\(531\) 8.20583i 0.356103i
\(532\) 0 0
\(533\) −34.7980 34.7980i −1.50727 1.50727i
\(534\) 0 0
\(535\) 6.99591 26.5916i 0.302460 1.14965i
\(536\) 0 0
\(537\) −5.70758 + 21.3010i −0.246300 + 0.919206i
\(538\) 0 0
\(539\) −9.40130 8.85578i −0.404943 0.381445i
\(540\) 0 0
\(541\) 16.0657 + 27.8266i 0.690719 + 1.19636i 0.971603 + 0.236618i \(0.0760390\pi\)
−0.280884 + 0.959742i \(0.590628\pi\)
\(542\) 0 0
\(543\) −23.8187 + 6.38220i −1.02216 + 0.273886i
\(544\) 0 0
\(545\) −3.73196 + 6.53229i −0.159860 + 0.279812i
\(546\) 0 0
\(547\) 5.85090 5.85090i 0.250166 0.250166i −0.570872 0.821039i \(-0.693395\pi\)
0.821039 + 0.570872i \(0.193395\pi\)
\(548\) 0 0
\(549\) 3.21201 5.56336i 0.137085 0.237438i
\(550\) 0 0
\(551\) −10.3558 + 5.97891i −0.441171 + 0.254710i
\(552\) 0 0
\(553\) 7.60089 19.1544i 0.323223 0.814529i
\(554\) 0 0
\(555\) −18.1931 + 0.0826264i −0.772252 + 0.00350729i
\(556\) 0 0
\(557\) −6.97465 26.0298i −0.295525 1.10292i −0.940799 0.338965i \(-0.889923\pi\)
0.645274 0.763951i \(-0.276743\pi\)
\(558\) 0 0
\(559\) 3.20990 0.135764
\(560\) 0 0
\(561\) −4.79530 −0.202458
\(562\) 0 0
\(563\) −6.45205 24.0794i −0.271921 1.01482i −0.957876 0.287181i \(-0.907282\pi\)
0.685955 0.727644i \(-0.259385\pi\)
\(564\) 0 0
\(565\) −28.8007 + 29.0635i −1.21166 + 1.22271i
\(566\) 0 0
\(567\) 0.384478 + 2.61767i 0.0161465 + 0.109932i
\(568\) 0 0
\(569\) −14.7838 + 8.53545i −0.619770 + 0.357825i −0.776780 0.629773i \(-0.783148\pi\)
0.157009 + 0.987597i \(0.449815\pi\)
\(570\) 0 0
\(571\) 3.24772 5.62522i 0.135913 0.235408i −0.790033 0.613064i \(-0.789937\pi\)
0.925946 + 0.377656i \(0.123270\pi\)
\(572\) 0 0
\(573\) 17.5290 17.5290i 0.732283 0.732283i
\(574\) 0 0
\(575\) 4.81024 18.6272i 0.200601 0.776809i
\(576\) 0 0
\(577\) −13.2903 + 3.56113i −0.553284 + 0.148252i −0.524619 0.851337i \(-0.675792\pi\)
−0.0286647 + 0.999589i \(0.509126\pi\)
\(578\) 0 0
\(579\) 6.97287 + 12.0774i 0.289782 + 0.501918i
\(580\) 0 0
\(581\) 0.295247 2.53460i 0.0122489 0.105153i
\(582\) 0 0
\(583\) 2.15013 8.02438i 0.0890491 0.332336i
\(584\) 0 0
\(585\) −14.7157 3.87152i −0.608419 0.160067i
\(586\) 0 0
\(587\) 12.8207 + 12.8207i 0.529169 + 0.529169i 0.920325 0.391156i \(-0.127925\pi\)
−0.391156 + 0.920325i \(0.627925\pi\)
\(588\) 0 0
\(589\) 30.0944i 1.24002i
\(590\) 0 0
\(591\) −1.34224 0.774940i −0.0552122 0.0318768i
\(592\) 0 0
\(593\) 3.44851 + 0.924024i 0.141613 + 0.0379451i 0.328929 0.944355i \(-0.393312\pi\)
−0.187316 + 0.982300i \(0.559979\pi\)
\(594\) 0 0
\(595\) −12.3784 9.12084i −0.507466 0.373918i
\(596\) 0 0
\(597\) 13.4991 + 3.61708i 0.552482 + 0.148037i
\(598\) 0 0
\(599\) 2.21549 + 1.27911i 0.0905225 + 0.0522632i 0.544578 0.838710i \(-0.316690\pi\)
−0.454055 + 0.890973i \(0.650023\pi\)
\(600\) 0 0
\(601\) 23.0850i 0.941656i 0.882225 + 0.470828i \(0.156045\pi\)
−0.882225 + 0.470828i \(0.843955\pi\)
\(602\) 0 0
\(603\) 4.52449 + 4.52449i 0.184251 + 0.184251i
\(604\) 0 0
\(605\) 14.6703 8.55900i 0.596434 0.347973i
\(606\) 0 0
\(607\) 3.94371 14.7181i 0.160070 0.597390i −0.838548 0.544828i \(-0.816595\pi\)
0.998618 0.0525616i \(-0.0167386\pi\)
\(608\) 0 0
\(609\) 4.08255 5.48830i 0.165433 0.222397i
\(610\) 0 0
\(611\) −14.0315 24.3032i −0.567653 0.983203i
\(612\) 0 0
\(613\) −28.9598 + 7.75975i −1.16967 + 0.313413i −0.790823 0.612044i \(-0.790347\pi\)
−0.378851 + 0.925458i \(0.623681\pi\)
\(614\) 0 0
\(615\) 4.25615 + 15.6004i 0.171624 + 0.629069i
\(616\) 0 0
\(617\) 20.8619 20.8619i 0.839867 0.839867i −0.148974 0.988841i \(-0.547597\pi\)
0.988841 + 0.148974i \(0.0475971\pi\)
\(618\) 0 0
\(619\) −1.95304 + 3.38276i −0.0784993 + 0.135965i −0.902603 0.430475i \(-0.858346\pi\)
0.824103 + 0.566439i \(0.191680\pi\)
\(620\) 0 0
\(621\) 3.33217 1.92383i 0.133715 0.0772006i
\(622\) 0 0
\(623\) −3.24586 1.28803i −0.130043 0.0516038i
\(624\) 0 0
\(625\) 24.9959 0.454136i 0.999835 0.0181654i
\(626\) 0 0
\(627\) 2.20871 + 8.24302i 0.0882074 + 0.329194i
\(628\) 0 0
\(629\) 21.1460 0.843147
\(630\) 0 0
\(631\) 3.08630 0.122864 0.0614318 0.998111i \(-0.480433\pi\)
0.0614318 + 0.998111i \(0.480433\pi\)
\(632\) 0 0
\(633\) −2.61657 9.76519i −0.103999 0.388131i
\(634\) 0 0
\(635\) 20.6731 + 20.4861i 0.820386 + 0.812968i
\(636\) 0 0
\(637\) 25.0390 + 40.5234i 0.992081 + 1.60560i
\(638\) 0 0
\(639\) 7.54146 4.35406i 0.298336 0.172244i
\(640\) 0 0
\(641\) 11.7935 20.4270i 0.465816 0.806817i −0.533422 0.845849i \(-0.679094\pi\)
0.999238 + 0.0390324i \(0.0124276\pi\)
\(642\) 0 0
\(643\) 16.3072 16.3072i 0.643092 0.643092i −0.308222 0.951314i \(-0.599734\pi\)
0.951314 + 0.308222i \(0.0997340\pi\)
\(644\) 0 0
\(645\) −0.915823 0.523220i −0.0360605 0.0206018i
\(646\) 0 0
\(647\) 20.5609 5.50928i 0.808333 0.216592i 0.169093 0.985600i \(-0.445916\pi\)
0.639239 + 0.769008i \(0.279249\pi\)
\(648\) 0 0
\(649\) −7.57015 13.1119i −0.297154 0.514686i
\(650\) 0 0
\(651\) −6.82465 15.8043i −0.267479 0.619420i
\(652\) 0 0
\(653\) 4.79324 17.8886i 0.187574 0.700036i −0.806491 0.591247i \(-0.798636\pi\)
0.994065 0.108789i \(-0.0346973\pi\)
\(654\) 0 0
\(655\) 5.23678 + 8.97597i 0.204618 + 0.350720i
\(656\) 0 0
\(657\) 2.22120 + 2.22120i 0.0866571 + 0.0866571i
\(658\) 0 0
\(659\) 29.9043i 1.16491i 0.812865 + 0.582453i \(0.197907\pi\)
−0.812865 + 0.582453i \(0.802093\pi\)
\(660\) 0 0
\(661\) 15.7238 + 9.07814i 0.611585 + 0.353099i 0.773586 0.633692i \(-0.218461\pi\)
−0.162000 + 0.986791i \(0.551795\pi\)
\(662\) 0 0
\(663\) 17.0835 + 4.57750i 0.663466 + 0.177775i
\(664\) 0 0
\(665\) −9.97704 + 25.4793i −0.386893 + 0.988045i
\(666\) 0 0
\(667\) −9.60864 2.57463i −0.372048 0.0996900i
\(668\) 0 0
\(669\) −25.4582 14.6983i −0.984272 0.568270i
\(670\) 0 0
\(671\) 11.8527i 0.457569i
\(672\) 0 0
\(673\) 9.53778 + 9.53778i 0.367654 + 0.367654i 0.866621 0.498967i \(-0.166287\pi\)
−0.498967 + 0.866621i \(0.666287\pi\)
\(674\) 0 0
\(675\) 3.56750 + 3.50327i 0.137313 + 0.134841i
\(676\) 0 0
\(677\) 6.47060 24.1486i 0.248685 0.928106i −0.722810 0.691047i \(-0.757150\pi\)
0.971495 0.237059i \(-0.0761835\pi\)
\(678\) 0 0
\(679\) 37.7560 + 4.39808i 1.44894 + 0.168783i
\(680\) 0 0
\(681\) 4.42940 + 7.67194i 0.169735 + 0.293989i
\(682\) 0 0
\(683\) 40.6157 10.8829i 1.55412 0.416424i 0.623322 0.781966i \(-0.285783\pi\)
0.930795 + 0.365541i \(0.119116\pi\)
\(684\) 0 0
\(685\) 28.6957 7.82884i 1.09641 0.299125i
\(686\) 0 0
\(687\) 8.61144 8.61144i 0.328547 0.328547i
\(688\) 0 0
\(689\) −15.3198 + 26.5347i −0.583639 + 1.01089i
\(690\) 0 0
\(691\) −21.3081 + 12.3022i −0.810598 + 0.467999i −0.847164 0.531332i \(-0.821692\pi\)
0.0365653 + 0.999331i \(0.488358\pi\)
\(692\) 0 0
\(693\) −3.02923 3.82801i −0.115071 0.145414i
\(694\) 0 0
\(695\) −0.205375 45.2205i −0.00779032 1.71531i
\(696\) 0 0
\(697\) −4.86452 18.1546i −0.184257 0.687656i
\(698\) 0 0
\(699\) 15.8603 0.599893
\(700\) 0 0
\(701\) 5.48135 0.207028 0.103514 0.994628i \(-0.466991\pi\)
0.103514 + 0.994628i \(0.466991\pi\)
\(702\) 0 0
\(703\) −9.73984 36.3496i −0.367345 1.37095i
\(704\) 0 0
\(705\) 0.0418792 + 9.22115i 0.00157726 + 0.347289i
\(706\) 0 0
\(707\) 4.46418 0.655690i 0.167893 0.0246597i
\(708\) 0 0
\(709\) 4.20161 2.42580i 0.157795 0.0911028i −0.419023 0.907975i \(-0.637627\pi\)
0.576818 + 0.816873i \(0.304294\pi\)
\(710\) 0 0
\(711\) 3.89444 6.74536i 0.146053 0.252971i
\(712\) 0 0
\(713\) −17.7026 + 17.7026i −0.662967 + 0.662967i
\(714\) 0 0
\(715\) 27.0854 7.38953i 1.01294 0.276353i
\(716\) 0 0
\(717\) 20.2259 5.41951i 0.755350 0.202395i
\(718\) 0 0
\(719\) −22.6273 39.1916i −0.843856 1.46160i −0.886611 0.462515i \(-0.846947\pi\)
0.0427557 0.999086i \(-0.486386\pi\)
\(720\) 0 0
\(721\) −31.5615 + 13.6290i −1.17541 + 0.507569i
\(722\) 0 0
\(723\) 5.44569 20.3236i 0.202527 0.755843i
\(724\) 0 0
\(725\) −0.117416 12.9263i −0.00436070 0.480070i
\(726\) 0 0
\(727\) −18.6646 18.6646i −0.692232 0.692232i 0.270491 0.962723i \(-0.412814\pi\)
−0.962723 + 0.270491i \(0.912814\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 1.06169 + 0.612967i 0.0392680 + 0.0226714i
\(732\) 0 0
\(733\) 44.1182 + 11.8214i 1.62954 + 0.436635i 0.953785 0.300489i \(-0.0971498\pi\)
0.675758 + 0.737124i \(0.263817\pi\)
\(734\) 0 0
\(735\) −0.538541 15.6432i −0.0198644 0.577008i
\(736\) 0 0
\(737\) −11.4035 3.05557i −0.420055 0.112553i
\(738\) 0 0
\(739\) −12.5100 7.22266i −0.460188 0.265690i 0.251935 0.967744i \(-0.418933\pi\)
−0.712123 + 0.702054i \(0.752266\pi\)
\(740\) 0 0
\(741\) 31.4745i 1.15624i
\(742\) 0 0
\(743\) 9.54339 + 9.54339i 0.350113 + 0.350113i 0.860152 0.510038i \(-0.170369\pi\)
−0.510038 + 0.860152i \(0.670369\pi\)
\(744\) 0 0
\(745\) −20.3634 34.9034i −0.746058 1.27876i
\(746\) 0 0
\(747\) 0.249622 0.931602i 0.00913319 0.0340855i
\(748\) 0 0
\(749\) −29.8684 + 12.8978i −1.09137 + 0.471277i
\(750\) 0 0
\(751\) 20.2684 + 35.1060i 0.739606 + 1.28104i 0.952673 + 0.303998i \(0.0983215\pi\)
−0.213067 + 0.977038i \(0.568345\pi\)
\(752\) 0 0
\(753\) −14.5066 + 3.88704i −0.528650 + 0.141651i
\(754\) 0 0
\(755\) −2.32971 1.33099i −0.0847870 0.0484397i
\(756\) 0 0
\(757\) −32.0068 + 32.0068i −1.16331 + 1.16331i −0.179560 + 0.983747i \(0.557467\pi\)
−0.983747 + 0.179560i \(0.942533\pi\)
\(758\) 0 0
\(759\) −3.54959 + 6.14808i −0.128842 + 0.223161i
\(760\) 0 0
\(761\) −24.6857 + 14.2523i −0.894857 + 0.516646i −0.875528 0.483167i \(-0.839486\pi\)
−0.0193292 + 0.999813i \(0.506153\pi\)
\(762\) 0 0
\(763\) 8.80706 1.29356i 0.318837 0.0468302i
\(764\) 0 0
\(765\) −4.12797 4.09065i −0.149247 0.147898i
\(766\) 0 0
\(767\) 14.4526 + 53.9380i 0.521855 + 1.94759i
\(768\) 0 0
\(769\) −21.9243 −0.790611 −0.395305 0.918550i \(-0.629361\pi\)
−0.395305 + 0.918550i \(0.629361\pi\)
\(770\) 0 0
\(771\) 13.4544 0.484547
\(772\) 0 0
\(773\) −5.76008 21.4969i −0.207176 0.773190i −0.988775 0.149410i \(-0.952263\pi\)
0.781600 0.623780i \(-0.214404\pi\)
\(774\) 0 0
\(775\) −28.3211 16.0100i −1.01732 0.575095i
\(776\) 0 0
\(777\) 13.3581 + 16.8805i 0.479220 + 0.605586i
\(778\) 0 0
\(779\) −28.9669 + 16.7240i −1.03785 + 0.599200i
\(780\) 0 0
\(781\) −8.03354 + 13.9145i −0.287463 + 0.497900i
\(782\) 0 0
\(783\) 1.82813 1.82813i 0.0653320 0.0653320i
\(784\) 0 0
\(785\) −0.416202 1.52554i −0.0148549 0.0544489i
\(786\) 0 0
\(787\) 13.3749 3.58379i 0.476763 0.127748i −0.0124319 0.999923i \(-0.503957\pi\)
0.489195 + 0.872174i \(0.337291\pi\)
\(788\) 0 0
\(789\) −7.28091 12.6109i −0.259207 0.448960i
\(790\) 0 0
\(791\) 48.0881 + 5.60162i 1.70982 + 0.199171i
\(792\) 0 0
\(793\) 11.3144 42.2259i 0.401786 1.49948i
\(794\) 0 0
\(795\) 8.69614 5.07352i 0.308420 0.179939i
\(796\) 0 0
\(797\) 1.68212 + 1.68212i 0.0595839 + 0.0595839i 0.736271 0.676687i \(-0.236585\pi\)
−0.676687 + 0.736271i \(0.736585\pi\)
\(798\) 0 0
\(799\) 10.7179i 0.379171i
\(800\) 0 0
\(801\) −1.14305 0.659941i −0.0403878 0.0233179i
\(802\) 0 0
\(803\) −5.59832 1.50006i −0.197560 0.0529361i
\(804\) 0 0
\(805\) −20.8567 + 9.11898i −0.735101 + 0.321402i
\(806\) 0 0
\(807\) −23.2296 6.22434i −0.817719 0.219107i
\(808\) 0 0
\(809\) 41.2669 + 23.8255i 1.45087 + 0.837659i 0.998531 0.0541888i \(-0.0172573\pi\)
0.452336 + 0.891847i \(0.350591\pi\)
\(810\) 0 0
\(811\) 2.87597i 0.100989i 0.998724 + 0.0504946i \(0.0160798\pi\)
−0.998724 + 0.0504946i \(0.983920\pi\)
\(812\) 0 0
\(813\) −5.15438 5.15438i −0.180772 0.180772i
\(814\) 0 0
\(815\) −7.39114 1.94452i −0.258900 0.0681135i
\(816\) 0 0
\(817\) 0.564664 2.10735i 0.0197551 0.0737270i
\(818\) 0 0
\(819\) 7.13763 + 16.5291i 0.249409 + 0.577573i
\(820\) 0 0
\(821\) 15.8331 + 27.4238i 0.552580 + 0.957096i 0.998087 + 0.0618181i \(0.0196899\pi\)
−0.445508 + 0.895278i \(0.646977\pi\)
\(822\) 0 0
\(823\) −39.2507 + 10.5172i −1.36819 + 0.366606i −0.866819 0.498623i \(-0.833839\pi\)
−0.501375 + 0.865230i \(0.667172\pi\)
\(824\) 0 0
\(825\) −8.93231 2.30665i −0.310983 0.0803074i
\(826\) 0 0
\(827\) 37.8981 37.8981i 1.31785 1.31785i 0.402369 0.915477i \(-0.368187\pi\)
0.915477 0.402369i \(-0.131813\pi\)
\(828\) 0 0
\(829\) 6.35527 11.0076i 0.220728 0.382311i −0.734302 0.678823i \(-0.762490\pi\)
0.955029 + 0.296512i \(0.0958235\pi\)
\(830\) 0 0
\(831\) 4.60541 2.65894i 0.159760 0.0922375i
\(832\) 0 0
\(833\) 0.543364 + 18.1848i 0.0188264 + 0.630065i
\(834\) 0 0
\(835\) 10.0162 10.1076i 0.346624 0.349787i
\(836\) 0 0
\(837\) −1.68404 6.28491i −0.0582088 0.217238i
\(838\) 0 0
\(839\) 54.5807 1.88434 0.942168 0.335141i \(-0.108784\pi\)
0.942168 + 0.335141i \(0.108784\pi\)
\(840\) 0 0
\(841\) 22.3159 0.769514
\(842\) 0 0
\(843\) −3.29609 12.3012i −0.113523 0.423675i
\(844\) 0 0
\(845\) −74.4784 + 0.338254i −2.56213 + 0.0116363i
\(846\) 0 0
\(847\) −18.6795 7.41241i −0.641834 0.254693i
\(848\) 0 0
\(849\) −26.2119 + 15.1335i −0.899591 + 0.519379i
\(850\) 0 0
\(851\) 15.6528 27.1114i 0.536571 0.929368i
\(852\) 0 0
\(853\) 8.87853 8.87853i 0.303995 0.303995i −0.538579 0.842575i \(-0.681039\pi\)
0.842575 + 0.538579i \(0.181039\pi\)
\(854\) 0 0
\(855\) −5.13040 + 8.98005i −0.175456 + 0.307111i
\(856\) 0 0
\(857\) 1.82789 0.489782i 0.0624396 0.0167306i −0.227464 0.973786i \(-0.573043\pi\)
0.289904 + 0.957056i \(0.406377\pi\)
\(858\) 0 0
\(859\) 4.20573 + 7.28453i 0.143498 + 0.248545i 0.928811 0.370553i \(-0.120832\pi\)
−0.785314 + 0.619098i \(0.787498\pi\)
\(860\) 0 0
\(861\) 11.4196 15.3517i 0.389179 0.523185i
\(862\) 0 0
\(863\) 9.35914 34.9288i 0.318589 1.18899i −0.602013 0.798487i \(-0.705634\pi\)
0.920602 0.390503i \(-0.127699\pi\)
\(864\) 0 0
\(865\) 14.3442 54.5227i 0.487718 1.85383i
\(866\) 0 0
\(867\) −7.24451 7.24451i −0.246037 0.246037i
\(868\) 0 0
\(869\) 14.3710i 0.487502i
\(870\) 0 0
\(871\) 37.7088 + 21.7712i 1.27772 + 0.737689i
\(872\) 0 0
\(873\) 13.8774 + 3.71844i 0.469679 + 0.125850i
\(874\) 0 0
\(875\) −18.6702 22.9439i −0.631169 0.775646i
\(876\) 0 0
\(877\) 36.6078 + 9.80903i 1.23616 + 0.331227i 0.816974 0.576674i \(-0.195650\pi\)
0.419183 + 0.907902i \(0.362316\pi\)
\(878\) 0 0
\(879\) 20.3659 + 11.7582i 0.686924 + 0.396595i
\(880\) 0 0
\(881\) 31.4413i 1.05928i −0.848221 0.529642i \(-0.822326\pi\)
0.848221 0.529642i \(-0.177674\pi\)
\(882\) 0 0
\(883\) −3.66702 3.66702i −0.123405 0.123405i 0.642707 0.766112i \(-0.277811\pi\)
−0.766112 + 0.642707i \(0.777811\pi\)
\(884\) 0 0
\(885\) 4.66847 17.7450i 0.156929 0.596490i
\(886\) 0 0
\(887\) −6.58295 + 24.5679i −0.221034 + 0.824909i 0.762921 + 0.646492i \(0.223765\pi\)
−0.983955 + 0.178418i \(0.942902\pi\)
\(888\) 0 0
\(889\) 3.98447 34.2053i 0.133635 1.14721i
\(890\) 0 0
\(891\) −0.922533 1.59787i −0.0309060 0.0535308i
\(892\) 0 0
\(893\) −18.4238 + 4.93664i −0.616529 + 0.165198i
\(894\) 0 0
\(895\) 24.4611 42.8159i 0.817646 1.43118i
\(896\) 0 0
\(897\) 18.5144 18.5144i 0.618178 0.618178i
\(898\) 0 0
\(899\) −8.41099 + 14.5683i −0.280522 + 0.485878i
\(900\) 0 0
\(901\) −10.1342 + 5.85099i −0.337619 + 0.194925i
\(902\) 0 0
\(903\) 0.181357 + 1.23475i 0.00603519 + 0.0410898i
\(904\) 0 0
\(905\) 55.1385 0.250419i 1.83286 0.00832422i
\(906\) 0 0
\(907\) 11.6247 + 43.3841i 0.385993 + 1.44055i 0.836596 + 0.547821i \(0.184542\pi\)
−0.450603 + 0.892724i \(0.648791\pi\)
\(908\) 0 0
\(909\) 1.70540 0.0565647
\(910\) 0 0
\(911\) 32.3653 1.07231 0.536155 0.844119i \(-0.319876\pi\)
0.536155 + 0.844119i \(0.319876\pi\)
\(912\) 0 0
\(913\) 0.460569 + 1.71887i 0.0152426 + 0.0568862i
\(914\) 0 0
\(915\) −10.1110 + 10.2033i −0.334260 + 0.337310i
\(916\) 0 0
\(917\) 4.53524 11.4289i 0.149767 0.377416i
\(918\) 0 0
\(919\) 0.145073 0.0837577i 0.00478550 0.00276291i −0.497605 0.867404i \(-0.665787\pi\)
0.502391 + 0.864641i \(0.332454\pi\)
\(920\) 0 0
\(921\) −16.1201 + 27.9208i −0.531176 + 0.920023i
\(922\) 0 0
\(923\) 41.9023 41.9023i 1.37923 1.37923i
\(924\) 0 0
\(925\) 39.3892 + 10.1717i 1.29511 + 0.334445i
\(926\) 0 0
\(927\) −12.5511 + 3.36305i −0.412232 + 0.110457i
\(928\) 0 0
\(929\) 17.2974 + 29.9599i 0.567509 + 0.982954i 0.996811 + 0.0797932i \(0.0254260\pi\)
−0.429303 + 0.903161i \(0.641241\pi\)
\(930\) 0 0
\(931\) 31.0090 9.30992i 1.01628 0.305120i
\(932\) 0 0
\(933\) −2.71056 + 10.1160i −0.0887398 + 0.331181i
\(934\) 0 0
\(935\) 10.3697 + 2.72815i 0.339127 + 0.0892200i
\(936\) 0 0
\(937\) −5.99941 5.99941i −0.195992 0.195992i 0.602287 0.798279i \(-0.294256\pi\)
−0.798279 + 0.602287i \(0.794256\pi\)
\(938\) 0 0
\(939\) 18.2499i 0.595562i
\(940\) 0 0
\(941\) 34.0383 + 19.6520i 1.10962 + 0.640637i 0.938730 0.344654i \(-0.112004\pi\)
0.170886 + 0.985291i \(0.445337\pi\)
\(942\) 0 0
\(943\) −26.8770 7.20167i −0.875235 0.234519i
\(944\) 0 0
\(945\) 0.657821 5.87939i 0.0213989 0.191257i
\(946\) 0 0
\(947\) 23.4522 + 6.28399i 0.762094 + 0.204202i 0.618876 0.785489i \(-0.287588\pi\)
0.143218 + 0.989691i \(0.454255\pi\)
\(948\) 0 0
\(949\) 18.5123 + 10.6881i 0.600935 + 0.346950i
\(950\) 0 0
\(951\) 5.02448i 0.162930i
\(952\) 0 0
\(953\) −41.7677 41.7677i −1.35299 1.35299i −0.882298 0.470690i \(-0.844005\pi\)
−0.470690 0.882298i \(-0.655995\pi\)
\(954\) 0 0
\(955\) −47.8787 + 27.9335i −1.54932 + 0.903905i
\(956\) 0 0
\(957\) −1.23461 + 4.60763i −0.0399093 + 0.148943i
\(958\) 0 0
\(959\) −28.2383 21.0054i −0.911861 0.678301i
\(960\) 0 0
\(961\) 5.66804 + 9.81734i 0.182840 + 0.316688i
\(962\) 0 0
\(963\) −11.8778 + 3.18264i −0.382756 + 0.102559i
\(964\) 0 0
\(965\) −8.20762 30.0841i −0.264213 0.968441i
\(966\) 0 0
\(967\) −18.6667 + 18.6667i −0.600281 + 0.600281i −0.940387 0.340106i \(-0.889537\pi\)
0.340106 + 0.940387i \(0.389537\pi\)
\(968\) 0 0
\(969\) 6.01041 10.4103i 0.193082 0.334428i
\(970\) 0 0
\(971\) −25.7352 + 14.8582i −0.825881 + 0.476822i −0.852440 0.522825i \(-0.824878\pi\)
0.0265596 + 0.999647i \(0.491545\pi\)
\(972\) 0 0
\(973\) −41.9581 + 33.2028i −1.34511 + 1.06443i
\(974\) 0 0
\(975\) 29.6198 + 16.7442i 0.948594 + 0.536242i
\(976\) 0 0
\(977\) 6.07326 + 22.6657i 0.194301 + 0.725140i 0.992447 + 0.122676i \(0.0391477\pi\)
−0.798146 + 0.602464i \(0.794186\pi\)
\(978\) 0 0
\(979\) 2.43527 0.0778316
\(980\) 0 0
\(981\) 3.36447 0.107419
\(982\) 0 0
\(983\) 8.83444 + 32.9706i 0.281775 + 1.05160i 0.951164 + 0.308686i \(0.0998894\pi\)
−0.669389 + 0.742912i \(0.733444\pi\)
\(984\) 0 0
\(985\) 2.46168 + 2.43942i 0.0784357 + 0.0777264i
\(986\) 0 0
\(987\) 8.55590 6.77057i 0.272337 0.215510i
\(988\) 0 0
\(989\) 1.57178 0.907465i 0.0499796 0.0288557i
\(990\) 0 0
\(991\) 17.7855 30.8053i 0.564974 0.978564i −0.432078 0.901836i \(-0.642219\pi\)
0.997052 0.0767277i \(-0.0244472\pi\)
\(992\) 0 0
\(993\) −11.0777 + 11.0777i −0.351539 + 0.351539i
\(994\) 0 0
\(995\) −27.1338 15.5018i −0.860198 0.491440i
\(996\) 0 0
\(997\) −12.8447 + 3.44172i −0.406795 + 0.109000i −0.456413 0.889768i \(-0.650866\pi\)
0.0496183 + 0.998768i \(0.484200\pi\)
\(998\) 0 0
\(999\) 4.06813 + 7.04621i 0.128710 + 0.222932i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.dd.b.73.10 yes 48
5.2 odd 4 840.2.dd.a.577.12 yes 48
7.5 odd 6 840.2.dd.a.313.12 48
35.12 even 12 inner 840.2.dd.b.817.10 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.dd.a.313.12 48 7.5 odd 6
840.2.dd.a.577.12 yes 48 5.2 odd 4
840.2.dd.b.73.10 yes 48 1.1 even 1 trivial
840.2.dd.b.817.10 yes 48 35.12 even 12 inner