Properties

Label 840.2.dd.b.313.7
Level $840$
Weight $2$
Character 840.313
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(73,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.dd (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 313.7
Character \(\chi\) \(=\) 840.313
Dual form 840.2.dd.b.577.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 + 0.258819i) q^{3} +(-2.22330 + 0.238577i) q^{5} +(-2.64040 - 0.168257i) q^{7} +(0.866025 + 0.500000i) q^{9} +(-0.302014 - 0.523104i) q^{11} +(2.37412 - 2.37412i) q^{13} +(-2.20930 - 0.344985i) q^{15} +(0.730673 - 2.72691i) q^{17} +(3.87343 - 6.70898i) q^{19} +(-2.50688 - 0.845908i) q^{21} +(3.69567 - 0.990253i) q^{23} +(4.88616 - 1.06086i) q^{25} +(0.707107 + 0.707107i) q^{27} -1.06852i q^{29} +(1.47554 - 0.851906i) q^{31} +(-0.156334 - 0.583447i) q^{33} +(5.91054 - 0.255853i) q^{35} +(-0.716371 - 2.67353i) q^{37} +(2.90769 - 1.67875i) q^{39} -8.01044i q^{41} +(-8.31126 - 8.31126i) q^{43} +(-2.04473 - 0.905038i) q^{45} +(-9.12416 + 2.44481i) q^{47} +(6.94338 + 0.888529i) q^{49} +(1.41155 - 2.44488i) q^{51} +(-2.64249 + 9.86190i) q^{53} +(0.796271 + 1.09097i) q^{55} +(5.47786 - 5.47786i) q^{57} +(4.72374 + 8.18175i) q^{59} +(5.59172 + 3.22838i) q^{61} +(-2.20252 - 1.46591i) q^{63} +(-4.71197 + 5.84479i) q^{65} +(-3.06814 - 0.822105i) q^{67} +3.82604 q^{69} -16.5937 q^{71} +(11.5337 + 3.09044i) q^{73} +(4.99424 + 0.239919i) q^{75} +(0.709422 + 1.43202i) q^{77} +(-8.14616 - 4.70319i) q^{79} +(0.500000 + 0.866025i) q^{81} +(2.18915 - 2.18915i) q^{83} +(-0.973929 + 6.23707i) q^{85} +(0.276553 - 1.03211i) q^{87} +(-4.24238 + 7.34801i) q^{89} +(-6.66806 + 5.86914i) q^{91} +(1.64576 - 0.440979i) q^{93} +(-7.01121 + 15.8402i) q^{95} +(-4.19889 - 4.19889i) q^{97} -0.604029i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{7} - 4 q^{11} - 16 q^{13} - 4 q^{15} + 4 q^{17} - 8 q^{19} + 48 q^{23} - 20 q^{25} + 24 q^{33} - 4 q^{37} + 12 q^{39} + 16 q^{43} + 4 q^{45} - 12 q^{47} + 12 q^{49} - 52 q^{53} + 56 q^{55} + 8 q^{57}+ \cdots - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.965926 + 0.258819i 0.557678 + 0.149429i
\(4\) 0 0
\(5\) −2.22330 + 0.238577i −0.994292 + 0.106695i
\(6\) 0 0
\(7\) −2.64040 0.168257i −0.997976 0.0635951i
\(8\) 0 0
\(9\) 0.866025 + 0.500000i 0.288675 + 0.166667i
\(10\) 0 0
\(11\) −0.302014 0.523104i −0.0910608 0.157722i 0.816897 0.576784i \(-0.195692\pi\)
−0.907958 + 0.419062i \(0.862359\pi\)
\(12\) 0 0
\(13\) 2.37412 2.37412i 0.658461 0.658461i −0.296555 0.955016i \(-0.595838\pi\)
0.955016 + 0.296555i \(0.0958377\pi\)
\(14\) 0 0
\(15\) −2.20930 0.344985i −0.570438 0.0890748i
\(16\) 0 0
\(17\) 0.730673 2.72691i 0.177214 0.661372i −0.818950 0.573865i \(-0.805443\pi\)
0.996164 0.0875070i \(-0.0278900\pi\)
\(18\) 0 0
\(19\) 3.87343 6.70898i 0.888627 1.53915i 0.0471270 0.998889i \(-0.484993\pi\)
0.841500 0.540258i \(-0.181673\pi\)
\(20\) 0 0
\(21\) −2.50688 0.845908i −0.547046 0.184592i
\(22\) 0 0
\(23\) 3.69567 0.990253i 0.770601 0.206482i 0.147964 0.988993i \(-0.452728\pi\)
0.622637 + 0.782511i \(0.286061\pi\)
\(24\) 0 0
\(25\) 4.88616 1.06086i 0.977232 0.212172i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 1.06852i 0.198419i −0.995067 0.0992095i \(-0.968369\pi\)
0.995067 0.0992095i \(-0.0316314\pi\)
\(30\) 0 0
\(31\) 1.47554 0.851906i 0.265015 0.153007i −0.361605 0.932331i \(-0.617771\pi\)
0.626620 + 0.779325i \(0.284438\pi\)
\(32\) 0 0
\(33\) −0.156334 0.583447i −0.0272143 0.101565i
\(34\) 0 0
\(35\) 5.91054 0.255853i 0.999064 0.0432471i
\(36\) 0 0
\(37\) −0.716371 2.67353i −0.117771 0.439526i 0.881709 0.471794i \(-0.156394\pi\)
−0.999479 + 0.0322684i \(0.989727\pi\)
\(38\) 0 0
\(39\) 2.90769 1.67875i 0.465602 0.268816i
\(40\) 0 0
\(41\) 8.01044i 1.25102i −0.780216 0.625511i \(-0.784891\pi\)
0.780216 0.625511i \(-0.215109\pi\)
\(42\) 0 0
\(43\) −8.31126 8.31126i −1.26746 1.26746i −0.947398 0.320058i \(-0.896298\pi\)
−0.320058 0.947398i \(-0.603702\pi\)
\(44\) 0 0
\(45\) −2.04473 0.905038i −0.304810 0.134915i
\(46\) 0 0
\(47\) −9.12416 + 2.44481i −1.33090 + 0.356612i −0.853049 0.521831i \(-0.825249\pi\)
−0.477846 + 0.878443i \(0.658582\pi\)
\(48\) 0 0
\(49\) 6.94338 + 0.888529i 0.991911 + 0.126933i
\(50\) 0 0
\(51\) 1.41155 2.44488i 0.197657 0.342351i
\(52\) 0 0
\(53\) −2.64249 + 9.86190i −0.362974 + 1.35464i 0.507174 + 0.861844i \(0.330690\pi\)
−0.870147 + 0.492792i \(0.835976\pi\)
\(54\) 0 0
\(55\) 0.796271 + 1.09097i 0.107369 + 0.147106i
\(56\) 0 0
\(57\) 5.47786 5.47786i 0.725561 0.725561i
\(58\) 0 0
\(59\) 4.72374 + 8.18175i 0.614978 + 1.06517i 0.990388 + 0.138314i \(0.0441684\pi\)
−0.375410 + 0.926859i \(0.622498\pi\)
\(60\) 0 0
\(61\) 5.59172 + 3.22838i 0.715946 + 0.413351i 0.813259 0.581902i \(-0.197691\pi\)
−0.0973129 + 0.995254i \(0.531025\pi\)
\(62\) 0 0
\(63\) −2.20252 1.46591i −0.277492 0.184688i
\(64\) 0 0
\(65\) −4.71197 + 5.84479i −0.584448 + 0.724957i
\(66\) 0 0
\(67\) −3.06814 0.822105i −0.374833 0.100436i 0.0664841 0.997787i \(-0.478822\pi\)
−0.441317 + 0.897351i \(0.645488\pi\)
\(68\) 0 0
\(69\) 3.82604 0.460602
\(70\) 0 0
\(71\) −16.5937 −1.96931 −0.984653 0.174521i \(-0.944162\pi\)
−0.984653 + 0.174521i \(0.944162\pi\)
\(72\) 0 0
\(73\) 11.5337 + 3.09044i 1.34991 + 0.361708i 0.860103 0.510121i \(-0.170399\pi\)
0.489811 + 0.871829i \(0.337066\pi\)
\(74\) 0 0
\(75\) 4.99424 + 0.239919i 0.576685 + 0.0277035i
\(76\) 0 0
\(77\) 0.709422 + 1.43202i 0.0808461 + 0.163194i
\(78\) 0 0
\(79\) −8.14616 4.70319i −0.916514 0.529150i −0.0339928 0.999422i \(-0.510822\pi\)
−0.882521 + 0.470272i \(0.844156\pi\)
\(80\) 0 0
\(81\) 0.500000 + 0.866025i 0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 2.18915 2.18915i 0.240291 0.240291i −0.576679 0.816970i \(-0.695652\pi\)
0.816970 + 0.576679i \(0.195652\pi\)
\(84\) 0 0
\(85\) −0.973929 + 6.23707i −0.105637 + 0.676505i
\(86\) 0 0
\(87\) 0.276553 1.03211i 0.0296496 0.110654i
\(88\) 0 0
\(89\) −4.24238 + 7.34801i −0.449691 + 0.778887i −0.998366 0.0571484i \(-0.981799\pi\)
0.548675 + 0.836036i \(0.315133\pi\)
\(90\) 0 0
\(91\) −6.66806 + 5.86914i −0.699003 + 0.615253i
\(92\) 0 0
\(93\) 1.64576 0.440979i 0.170657 0.0457274i
\(94\) 0 0
\(95\) −7.01121 + 15.8402i −0.719335 + 1.62517i
\(96\) 0 0
\(97\) −4.19889 4.19889i −0.426332 0.426332i 0.461045 0.887377i \(-0.347475\pi\)
−0.887377 + 0.461045i \(0.847475\pi\)
\(98\) 0 0
\(99\) 0.604029i 0.0607072i
\(100\) 0 0
\(101\) 11.0072 6.35500i 1.09526 0.632346i 0.160285 0.987071i \(-0.448759\pi\)
0.934971 + 0.354724i \(0.115425\pi\)
\(102\) 0 0
\(103\) −1.20145 4.48387i −0.118382 0.441809i 0.881135 0.472864i \(-0.156780\pi\)
−0.999518 + 0.0310553i \(0.990113\pi\)
\(104\) 0 0
\(105\) 5.77537 + 1.28263i 0.563618 + 0.125172i
\(106\) 0 0
\(107\) −2.94573 10.9936i −0.284774 1.06279i −0.949004 0.315263i \(-0.897907\pi\)
0.664230 0.747528i \(-0.268760\pi\)
\(108\) 0 0
\(109\) 13.0939 7.55974i 1.25416 0.724092i 0.282230 0.959347i \(-0.408926\pi\)
0.971934 + 0.235255i \(0.0755924\pi\)
\(110\) 0 0
\(111\) 2.76784i 0.262712i
\(112\) 0 0
\(113\) −0.101514 0.101514i −0.00954961 0.00954961i 0.702316 0.711865i \(-0.252149\pi\)
−0.711865 + 0.702316i \(0.752149\pi\)
\(114\) 0 0
\(115\) −7.98036 + 3.08334i −0.744172 + 0.287523i
\(116\) 0 0
\(117\) 3.24310 0.868986i 0.299825 0.0803378i
\(118\) 0 0
\(119\) −2.38809 + 7.07717i −0.218915 + 0.648764i
\(120\) 0 0
\(121\) 5.31757 9.21031i 0.483416 0.837301i
\(122\) 0 0
\(123\) 2.07326 7.73749i 0.186939 0.697666i
\(124\) 0 0
\(125\) −10.6103 + 3.52434i −0.949016 + 0.315227i
\(126\) 0 0
\(127\) −5.42109 + 5.42109i −0.481044 + 0.481044i −0.905465 0.424421i \(-0.860478\pi\)
0.424421 + 0.905465i \(0.360478\pi\)
\(128\) 0 0
\(129\) −5.87695 10.1792i −0.517437 0.896227i
\(130\) 0 0
\(131\) 9.07156 + 5.23747i 0.792586 + 0.457600i 0.840872 0.541234i \(-0.182043\pi\)
−0.0482864 + 0.998834i \(0.515376\pi\)
\(132\) 0 0
\(133\) −11.3562 + 17.0626i −0.984710 + 1.47952i
\(134\) 0 0
\(135\) −1.74081 1.40341i −0.149825 0.120787i
\(136\) 0 0
\(137\) 6.07172 + 1.62691i 0.518742 + 0.138996i 0.508685 0.860953i \(-0.330132\pi\)
0.0100574 + 0.999949i \(0.496799\pi\)
\(138\) 0 0
\(139\) 17.6135 1.49396 0.746978 0.664849i \(-0.231504\pi\)
0.746978 + 0.664849i \(0.231504\pi\)
\(140\) 0 0
\(141\) −9.44602 −0.795499
\(142\) 0 0
\(143\) −1.95893 0.524893i −0.163814 0.0438937i
\(144\) 0 0
\(145\) 0.254925 + 2.37564i 0.0211703 + 0.197286i
\(146\) 0 0
\(147\) 6.47682 + 2.65533i 0.534199 + 0.219008i
\(148\) 0 0
\(149\) 6.00115 + 3.46476i 0.491633 + 0.283844i 0.725252 0.688484i \(-0.241723\pi\)
−0.233619 + 0.972328i \(0.575057\pi\)
\(150\) 0 0
\(151\) −0.386607 0.669623i −0.0314617 0.0544932i 0.849866 0.526999i \(-0.176683\pi\)
−0.881328 + 0.472506i \(0.843350\pi\)
\(152\) 0 0
\(153\) 1.99624 1.99624i 0.161386 0.161386i
\(154\) 0 0
\(155\) −3.07734 + 2.24608i −0.247178 + 0.180409i
\(156\) 0 0
\(157\) 4.15407 15.5032i 0.331531 1.23729i −0.576050 0.817414i \(-0.695407\pi\)
0.907581 0.419876i \(-0.137927\pi\)
\(158\) 0 0
\(159\) −5.10489 + 8.84194i −0.404844 + 0.701211i
\(160\) 0 0
\(161\) −9.92466 + 1.99284i −0.782173 + 0.157058i
\(162\) 0 0
\(163\) −6.42450 + 1.72144i −0.503206 + 0.134834i −0.501487 0.865165i \(-0.667214\pi\)
−0.00171822 + 0.999999i \(0.500547\pi\)
\(164\) 0 0
\(165\) 0.486776 + 1.25988i 0.0378954 + 0.0980817i
\(166\) 0 0
\(167\) −12.6127 12.6127i −0.976003 0.976003i 0.0237154 0.999719i \(-0.492450\pi\)
−0.999719 + 0.0237154i \(0.992450\pi\)
\(168\) 0 0
\(169\) 1.72715i 0.132858i
\(170\) 0 0
\(171\) 6.70898 3.87343i 0.513049 0.296209i
\(172\) 0 0
\(173\) 3.09676 + 11.5573i 0.235442 + 0.878683i 0.977949 + 0.208844i \(0.0669701\pi\)
−0.742507 + 0.669839i \(0.766363\pi\)
\(174\) 0 0
\(175\) −13.0799 + 1.97896i −0.988747 + 0.149595i
\(176\) 0 0
\(177\) 2.44519 + 9.12556i 0.183791 + 0.685919i
\(178\) 0 0
\(179\) −3.98768 + 2.30229i −0.298053 + 0.172081i −0.641568 0.767066i \(-0.721716\pi\)
0.343515 + 0.939147i \(0.388382\pi\)
\(180\) 0 0
\(181\) 9.53754i 0.708919i −0.935071 0.354460i \(-0.884665\pi\)
0.935071 0.354460i \(-0.115335\pi\)
\(182\) 0 0
\(183\) 4.56562 + 4.56562i 0.337500 + 0.337500i
\(184\) 0 0
\(185\) 2.23055 + 5.77316i 0.163994 + 0.424452i
\(186\) 0 0
\(187\) −1.64713 + 0.441347i −0.120450 + 0.0322745i
\(188\) 0 0
\(189\) −1.74807 1.98602i −0.127153 0.144461i
\(190\) 0 0
\(191\) 5.03567 8.72203i 0.364368 0.631104i −0.624307 0.781179i \(-0.714618\pi\)
0.988675 + 0.150076i \(0.0479517\pi\)
\(192\) 0 0
\(193\) −6.68382 + 24.9444i −0.481112 + 1.79553i 0.115853 + 0.993266i \(0.463040\pi\)
−0.596964 + 0.802268i \(0.703627\pi\)
\(194\) 0 0
\(195\) −6.06416 + 4.42609i −0.434263 + 0.316959i
\(196\) 0 0
\(197\) −1.44525 + 1.44525i −0.102970 + 0.102970i −0.756715 0.653745i \(-0.773197\pi\)
0.653745 + 0.756715i \(0.273197\pi\)
\(198\) 0 0
\(199\) 3.51710 + 6.09180i 0.249321 + 0.431836i 0.963338 0.268292i \(-0.0864594\pi\)
−0.714017 + 0.700129i \(0.753126\pi\)
\(200\) 0 0
\(201\) −2.75082 1.58818i −0.194028 0.112022i
\(202\) 0 0
\(203\) −0.179786 + 2.82131i −0.0126185 + 0.198017i
\(204\) 0 0
\(205\) 1.91111 + 17.8097i 0.133478 + 1.24388i
\(206\) 0 0
\(207\) 3.69567 + 0.990253i 0.256867 + 0.0688273i
\(208\) 0 0
\(209\) −4.67933 −0.323676
\(210\) 0 0
\(211\) 12.1267 0.834835 0.417418 0.908715i \(-0.362935\pi\)
0.417418 + 0.908715i \(0.362935\pi\)
\(212\) 0 0
\(213\) −16.0283 4.29476i −1.09824 0.294272i
\(214\) 0 0
\(215\) 20.4613 + 16.4956i 1.39545 + 1.12499i
\(216\) 0 0
\(217\) −4.03936 + 2.00110i −0.274210 + 0.135843i
\(218\) 0 0
\(219\) 10.3408 + 5.97026i 0.698767 + 0.403433i
\(220\) 0 0
\(221\) −4.73929 8.20869i −0.318799 0.552177i
\(222\) 0 0
\(223\) −4.88122 + 4.88122i −0.326871 + 0.326871i −0.851395 0.524525i \(-0.824243\pi\)
0.524525 + 0.851395i \(0.324243\pi\)
\(224\) 0 0
\(225\) 4.76197 + 1.52435i 0.317465 + 0.101623i
\(226\) 0 0
\(227\) −2.56367 + 9.56773i −0.170156 + 0.635033i 0.827170 + 0.561952i \(0.189950\pi\)
−0.997326 + 0.0730802i \(0.976717\pi\)
\(228\) 0 0
\(229\) 1.32546 2.29577i 0.0875889 0.151708i −0.818903 0.573933i \(-0.805417\pi\)
0.906491 + 0.422224i \(0.138750\pi\)
\(230\) 0 0
\(231\) 0.314615 + 1.56684i 0.0207002 + 0.103090i
\(232\) 0 0
\(233\) −11.9524 + 3.20263i −0.783026 + 0.209811i −0.628118 0.778118i \(-0.716175\pi\)
−0.154908 + 0.987929i \(0.549508\pi\)
\(234\) 0 0
\(235\) 19.7025 7.61238i 1.28525 0.496577i
\(236\) 0 0
\(237\) −6.65131 6.65131i −0.432049 0.432049i
\(238\) 0 0
\(239\) 2.05152i 0.132702i 0.997796 + 0.0663508i \(0.0211356\pi\)
−0.997796 + 0.0663508i \(0.978864\pi\)
\(240\) 0 0
\(241\) −12.7846 + 7.38119i −0.823528 + 0.475464i −0.851632 0.524141i \(-0.824386\pi\)
0.0281037 + 0.999605i \(0.491053\pi\)
\(242\) 0 0
\(243\) 0.258819 + 0.965926i 0.0166032 + 0.0619642i
\(244\) 0 0
\(245\) −15.6492 0.318936i −0.999792 0.0203761i
\(246\) 0 0
\(247\) −6.73192 25.1239i −0.428342 1.59859i
\(248\) 0 0
\(249\) 2.68116 1.54797i 0.169911 0.0980984i
\(250\) 0 0
\(251\) 6.95633i 0.439079i 0.975604 + 0.219540i \(0.0704555\pi\)
−0.975604 + 0.219540i \(0.929544\pi\)
\(252\) 0 0
\(253\) −1.63415 1.63415i −0.102738 0.102738i
\(254\) 0 0
\(255\) −2.55501 + 5.77247i −0.160001 + 0.361486i
\(256\) 0 0
\(257\) 0.778496 0.208597i 0.0485613 0.0130120i −0.234457 0.972127i \(-0.575331\pi\)
0.283018 + 0.959115i \(0.408664\pi\)
\(258\) 0 0
\(259\) 1.44166 + 7.17972i 0.0895805 + 0.446126i
\(260\) 0 0
\(261\) 0.534260 0.925365i 0.0330698 0.0572786i
\(262\) 0 0
\(263\) −5.02671 + 18.7599i −0.309960 + 1.15679i 0.618630 + 0.785682i \(0.287688\pi\)
−0.928591 + 0.371106i \(0.878979\pi\)
\(264\) 0 0
\(265\) 3.52223 22.5564i 0.216369 1.38563i
\(266\) 0 0
\(267\) −5.99962 + 5.99962i −0.367171 + 0.367171i
\(268\) 0 0
\(269\) 0.953541 + 1.65158i 0.0581384 + 0.100699i 0.893630 0.448805i \(-0.148150\pi\)
−0.835491 + 0.549504i \(0.814817\pi\)
\(270\) 0 0
\(271\) 24.6547 + 14.2344i 1.49767 + 0.864680i 0.999996 0.00268518i \(-0.000854721\pi\)
0.497673 + 0.867365i \(0.334188\pi\)
\(272\) 0 0
\(273\) −7.95990 + 3.94333i −0.481755 + 0.238661i
\(274\) 0 0
\(275\) −2.03063 2.23558i −0.122452 0.134810i
\(276\) 0 0
\(277\) −3.62872 0.972312i −0.218029 0.0584206i 0.148151 0.988965i \(-0.452668\pi\)
−0.366180 + 0.930544i \(0.619334\pi\)
\(278\) 0 0
\(279\) 1.70381 0.102005
\(280\) 0 0
\(281\) −12.1025 −0.721976 −0.360988 0.932571i \(-0.617560\pi\)
−0.360988 + 0.932571i \(0.617560\pi\)
\(282\) 0 0
\(283\) −11.5059 3.08300i −0.683956 0.183266i −0.0999229 0.994995i \(-0.531860\pi\)
−0.584033 + 0.811730i \(0.698526\pi\)
\(284\) 0 0
\(285\) −10.8721 + 13.4858i −0.644005 + 0.798833i
\(286\) 0 0
\(287\) −1.34781 + 21.1507i −0.0795588 + 1.24849i
\(288\) 0 0
\(289\) 7.82029 + 4.51505i 0.460017 + 0.265591i
\(290\) 0 0
\(291\) −2.96906 5.14257i −0.174049 0.301463i
\(292\) 0 0
\(293\) 7.09479 7.09479i 0.414482 0.414482i −0.468815 0.883297i \(-0.655319\pi\)
0.883297 + 0.468815i \(0.155319\pi\)
\(294\) 0 0
\(295\) −12.4543 17.0635i −0.725116 0.993478i
\(296\) 0 0
\(297\) 0.156334 0.583447i 0.00907143 0.0338550i
\(298\) 0 0
\(299\) 6.42298 11.1249i 0.371451 0.643371i
\(300\) 0 0
\(301\) 20.5466 + 23.3435i 1.18429 + 1.34549i
\(302\) 0 0
\(303\) 12.2769 3.28959i 0.705291 0.188982i
\(304\) 0 0
\(305\) −13.2023 5.84361i −0.755962 0.334604i
\(306\) 0 0
\(307\) −17.6262 17.6262i −1.00598 1.00598i −0.999982 0.00599819i \(-0.998091\pi\)
−0.00599819 0.999982i \(-0.501909\pi\)
\(308\) 0 0
\(309\) 4.64204i 0.264077i
\(310\) 0 0
\(311\) 22.3736 12.9174i 1.26869 0.732480i 0.293952 0.955820i \(-0.405029\pi\)
0.974741 + 0.223340i \(0.0716960\pi\)
\(312\) 0 0
\(313\) 1.20489 + 4.49672i 0.0681045 + 0.254170i 0.991581 0.129484i \(-0.0413322\pi\)
−0.923477 + 0.383654i \(0.874666\pi\)
\(314\) 0 0
\(315\) 5.24661 + 2.73370i 0.295613 + 0.154026i
\(316\) 0 0
\(317\) 1.82503 + 6.81112i 0.102504 + 0.382551i 0.998050 0.0624184i \(-0.0198813\pi\)
−0.895546 + 0.444969i \(0.853215\pi\)
\(318\) 0 0
\(319\) −0.558947 + 0.322708i −0.0312950 + 0.0180682i
\(320\) 0 0
\(321\) 11.3814i 0.635249i
\(322\) 0 0
\(323\) −15.4646 15.4646i −0.860472 0.860472i
\(324\) 0 0
\(325\) 9.08171 14.1189i 0.503762 0.783177i
\(326\) 0 0
\(327\) 14.6043 3.91321i 0.807620 0.216401i
\(328\) 0 0
\(329\) 24.5027 4.92007i 1.35088 0.271252i
\(330\) 0 0
\(331\) −6.23729 + 10.8033i −0.342833 + 0.593803i −0.984958 0.172797i \(-0.944720\pi\)
0.642125 + 0.766600i \(0.278053\pi\)
\(332\) 0 0
\(333\) 0.716371 2.67353i 0.0392569 0.146509i
\(334\) 0 0
\(335\) 7.01754 + 1.09580i 0.383409 + 0.0598700i
\(336\) 0 0
\(337\) −13.6654 + 13.6654i −0.744401 + 0.744401i −0.973422 0.229021i \(-0.926448\pi\)
0.229021 + 0.973422i \(0.426448\pi\)
\(338\) 0 0
\(339\) −0.0717811 0.124328i −0.00389861 0.00675259i
\(340\) 0 0
\(341\) −0.891271 0.514575i −0.0482650 0.0278658i
\(342\) 0 0
\(343\) −18.1838 3.51434i −0.981831 0.189756i
\(344\) 0 0
\(345\) −8.50646 + 0.912808i −0.457972 + 0.0491439i
\(346\) 0 0
\(347\) 11.1600 + 2.99032i 0.599101 + 0.160529i 0.545609 0.838040i \(-0.316298\pi\)
0.0534916 + 0.998568i \(0.482965\pi\)
\(348\) 0 0
\(349\) 34.3364 1.83799 0.918993 0.394274i \(-0.129004\pi\)
0.918993 + 0.394274i \(0.129004\pi\)
\(350\) 0 0
\(351\) 3.35751 0.179210
\(352\) 0 0
\(353\) 11.0254 + 2.95425i 0.586824 + 0.157239i 0.540001 0.841664i \(-0.318424\pi\)
0.0468225 + 0.998903i \(0.485090\pi\)
\(354\) 0 0
\(355\) 36.8928 3.95888i 1.95807 0.210115i
\(356\) 0 0
\(357\) −4.13842 + 6.21794i −0.219028 + 0.329088i
\(358\) 0 0
\(359\) −5.61795 3.24352i −0.296504 0.171187i 0.344367 0.938835i \(-0.388093\pi\)
−0.640871 + 0.767648i \(0.721427\pi\)
\(360\) 0 0
\(361\) −20.5070 35.5191i −1.07931 1.86943i
\(362\) 0 0
\(363\) 7.52019 7.52019i 0.394707 0.394707i
\(364\) 0 0
\(365\) −26.3802 4.11931i −1.38080 0.215614i
\(366\) 0 0
\(367\) −3.49749 + 13.0528i −0.182568 + 0.681352i 0.812570 + 0.582863i \(0.198068\pi\)
−0.995138 + 0.0984890i \(0.968599\pi\)
\(368\) 0 0
\(369\) 4.00522 6.93725i 0.208504 0.361139i
\(370\) 0 0
\(371\) 8.63654 25.5947i 0.448387 1.32881i
\(372\) 0 0
\(373\) 34.8881 9.34824i 1.80644 0.484034i 0.811485 0.584373i \(-0.198660\pi\)
0.994953 + 0.100340i \(0.0319929\pi\)
\(374\) 0 0
\(375\) −11.1610 + 0.658100i −0.576349 + 0.0339842i
\(376\) 0 0
\(377\) −2.53679 2.53679i −0.130651 0.130651i
\(378\) 0 0
\(379\) 11.0284i 0.566490i 0.959048 + 0.283245i \(0.0914110\pi\)
−0.959048 + 0.283245i \(0.908589\pi\)
\(380\) 0 0
\(381\) −6.63945 + 3.83329i −0.340149 + 0.196385i
\(382\) 0 0
\(383\) −7.91637 29.5443i −0.404508 1.50964i −0.804962 0.593326i \(-0.797814\pi\)
0.400454 0.916317i \(-0.368852\pi\)
\(384\) 0 0
\(385\) −1.91891 3.01456i −0.0977966 0.153636i
\(386\) 0 0
\(387\) −3.04213 11.3534i −0.154640 0.577126i
\(388\) 0 0
\(389\) 4.14118 2.39091i 0.209966 0.121224i −0.391329 0.920251i \(-0.627985\pi\)
0.601296 + 0.799027i \(0.294651\pi\)
\(390\) 0 0
\(391\) 10.8013i 0.546246i
\(392\) 0 0
\(393\) 7.40690 + 7.40690i 0.373628 + 0.373628i
\(394\) 0 0
\(395\) 19.2335 + 8.51312i 0.967740 + 0.428342i
\(396\) 0 0
\(397\) −24.3101 + 6.51387i −1.22009 + 0.326922i −0.810713 0.585444i \(-0.800920\pi\)
−0.409376 + 0.912366i \(0.634253\pi\)
\(398\) 0 0
\(399\) −15.3854 + 13.5420i −0.770234 + 0.677950i
\(400\) 0 0
\(401\) −12.6186 + 21.8561i −0.630145 + 1.09144i 0.357377 + 0.933960i \(0.383671\pi\)
−0.987522 + 0.157483i \(0.949662\pi\)
\(402\) 0 0
\(403\) 1.48059 5.52563i 0.0737534 0.275251i
\(404\) 0 0
\(405\) −1.31827 1.80615i −0.0655052 0.0897483i
\(406\) 0 0
\(407\) −1.18218 + 1.18218i −0.0585986 + 0.0585986i
\(408\) 0 0
\(409\) −8.17125 14.1530i −0.404042 0.699822i 0.590167 0.807281i \(-0.299062\pi\)
−0.994209 + 0.107459i \(0.965729\pi\)
\(410\) 0 0
\(411\) 5.44375 + 3.14295i 0.268521 + 0.155030i
\(412\) 0 0
\(413\) −11.0959 22.3979i −0.545993 1.10213i
\(414\) 0 0
\(415\) −4.34487 + 5.38944i −0.213281 + 0.264557i
\(416\) 0 0
\(417\) 17.0133 + 4.55870i 0.833145 + 0.223241i
\(418\) 0 0
\(419\) 36.1342 1.76527 0.882635 0.470058i \(-0.155767\pi\)
0.882635 + 0.470058i \(0.155767\pi\)
\(420\) 0 0
\(421\) −12.3536 −0.602076 −0.301038 0.953612i \(-0.597333\pi\)
−0.301038 + 0.953612i \(0.597333\pi\)
\(422\) 0 0
\(423\) −9.12416 2.44481i −0.443632 0.118871i
\(424\) 0 0
\(425\) 0.677316 14.0993i 0.0328547 0.683914i
\(426\) 0 0
\(427\) −14.2211 9.46504i −0.688209 0.458045i
\(428\) 0 0
\(429\) −1.75633 1.01402i −0.0847962 0.0489571i
\(430\) 0 0
\(431\) 0.758639 + 1.31400i 0.0365423 + 0.0632932i 0.883718 0.468019i \(-0.155032\pi\)
−0.847176 + 0.531313i \(0.821699\pi\)
\(432\) 0 0
\(433\) −19.0028 + 19.0028i −0.913217 + 0.913217i −0.996524 0.0833072i \(-0.973452\pi\)
0.0833072 + 0.996524i \(0.473452\pi\)
\(434\) 0 0
\(435\) −0.368623 + 2.36067i −0.0176741 + 0.113186i
\(436\) 0 0
\(437\) 7.67136 28.6299i 0.366971 1.36955i
\(438\) 0 0
\(439\) −5.53612 + 9.58883i −0.264224 + 0.457650i −0.967360 0.253406i \(-0.918449\pi\)
0.703136 + 0.711056i \(0.251783\pi\)
\(440\) 0 0
\(441\) 5.56888 + 4.24118i 0.265185 + 0.201961i
\(442\) 0 0
\(443\) 25.3574 6.79450i 1.20477 0.322816i 0.400060 0.916489i \(-0.368989\pi\)
0.804707 + 0.593673i \(0.202323\pi\)
\(444\) 0 0
\(445\) 7.67902 17.3490i 0.364020 0.822421i
\(446\) 0 0
\(447\) 4.89991 + 4.89991i 0.231758 + 0.231758i
\(448\) 0 0
\(449\) 33.7848i 1.59440i −0.603714 0.797201i \(-0.706313\pi\)
0.603714 0.797201i \(-0.293687\pi\)
\(450\) 0 0
\(451\) −4.19030 + 2.41927i −0.197313 + 0.113919i
\(452\) 0 0
\(453\) −0.200123 0.746868i −0.00940258 0.0350909i
\(454\) 0 0
\(455\) 13.4249 14.6397i 0.629369 0.686322i
\(456\) 0 0
\(457\) −1.58873 5.92921i −0.0743175 0.277357i 0.918760 0.394816i \(-0.129192\pi\)
−0.993078 + 0.117459i \(0.962525\pi\)
\(458\) 0 0
\(459\) 2.44488 1.41155i 0.114117 0.0658856i
\(460\) 0 0
\(461\) 33.4895i 1.55976i −0.625928 0.779881i \(-0.715280\pi\)
0.625928 0.779881i \(-0.284720\pi\)
\(462\) 0 0
\(463\) 23.3606 + 23.3606i 1.08566 + 1.08566i 0.995970 + 0.0896875i \(0.0285868\pi\)
0.0896875 + 0.995970i \(0.471413\pi\)
\(464\) 0 0
\(465\) −3.55381 + 1.37307i −0.164804 + 0.0636746i
\(466\) 0 0
\(467\) 37.2684 9.98604i 1.72458 0.462099i 0.745655 0.666333i \(-0.232137\pi\)
0.978922 + 0.204234i \(0.0654702\pi\)
\(468\) 0 0
\(469\) 7.96277 + 2.68692i 0.367687 + 0.124070i
\(470\) 0 0
\(471\) 8.02505 13.8998i 0.369775 0.640469i
\(472\) 0 0
\(473\) −1.83754 + 6.85778i −0.0844900 + 0.315321i
\(474\) 0 0
\(475\) 11.8089 36.8904i 0.541831 1.69265i
\(476\) 0 0
\(477\) −7.21941 + 7.21941i −0.330554 + 0.330554i
\(478\) 0 0
\(479\) −5.62243 9.73833i −0.256895 0.444956i 0.708513 0.705697i \(-0.249366\pi\)
−0.965409 + 0.260742i \(0.916033\pi\)
\(480\) 0 0
\(481\) −8.04802 4.64653i −0.366958 0.211863i
\(482\) 0 0
\(483\) −10.1023 0.643758i −0.459669 0.0292920i
\(484\) 0 0
\(485\) 10.3372 + 8.33364i 0.469386 + 0.378411i
\(486\) 0 0
\(487\) −0.900588 0.241312i −0.0408096 0.0109349i 0.238357 0.971178i \(-0.423391\pi\)
−0.279166 + 0.960243i \(0.590058\pi\)
\(488\) 0 0
\(489\) −6.65113 −0.300774
\(490\) 0 0
\(491\) −23.2545 −1.04946 −0.524730 0.851269i \(-0.675834\pi\)
−0.524730 + 0.851269i \(0.675834\pi\)
\(492\) 0 0
\(493\) −2.91375 0.780738i −0.131229 0.0351627i
\(494\) 0 0
\(495\) 0.144108 + 1.34294i 0.00647716 + 0.0603606i
\(496\) 0 0
\(497\) 43.8139 + 2.79200i 1.96532 + 0.125238i
\(498\) 0 0
\(499\) 6.19486 + 3.57661i 0.277320 + 0.160111i 0.632210 0.774797i \(-0.282148\pi\)
−0.354889 + 0.934908i \(0.615481\pi\)
\(500\) 0 0
\(501\) −8.91856 15.4474i −0.398452 0.690139i
\(502\) 0 0
\(503\) 5.58976 5.58976i 0.249235 0.249235i −0.571422 0.820657i \(-0.693608\pi\)
0.820657 + 0.571422i \(0.193608\pi\)
\(504\) 0 0
\(505\) −22.9562 + 16.7552i −1.02154 + 0.745595i
\(506\) 0 0
\(507\) −0.447020 + 1.66830i −0.0198529 + 0.0740919i
\(508\) 0 0
\(509\) −9.05283 + 15.6800i −0.401260 + 0.695002i −0.993878 0.110481i \(-0.964761\pi\)
0.592619 + 0.805483i \(0.298094\pi\)
\(510\) 0 0
\(511\) −29.9335 10.1006i −1.32418 0.446824i
\(512\) 0 0
\(513\) 7.48290 2.00504i 0.330378 0.0885245i
\(514\) 0 0
\(515\) 3.74094 + 9.68237i 0.164845 + 0.426656i
\(516\) 0 0
\(517\) 4.03452 + 4.03452i 0.177438 + 0.177438i
\(518\) 0 0
\(519\) 11.9650i 0.525204i
\(520\) 0 0
\(521\) 31.1728 17.9976i 1.36570 0.788490i 0.375328 0.926892i \(-0.377530\pi\)
0.990376 + 0.138402i \(0.0441966\pi\)
\(522\) 0 0
\(523\) 1.90751 + 7.11893i 0.0834096 + 0.311289i 0.995008 0.0997924i \(-0.0318179\pi\)
−0.911599 + 0.411081i \(0.865151\pi\)
\(524\) 0 0
\(525\) −13.1464 1.47380i −0.573756 0.0643217i
\(526\) 0 0
\(527\) −1.24493 4.64614i −0.0542299 0.202389i
\(528\) 0 0
\(529\) −7.24117 + 4.18069i −0.314834 + 0.181769i
\(530\) 0 0
\(531\) 9.44747i 0.409985i
\(532\) 0 0
\(533\) −19.0177 19.0177i −0.823749 0.823749i
\(534\) 0 0
\(535\) 9.17207 + 23.7393i 0.396543 + 1.02634i
\(536\) 0 0
\(537\) −4.44768 + 1.19175i −0.191932 + 0.0514279i
\(538\) 0 0
\(539\) −1.63221 3.90046i −0.0703041 0.168005i
\(540\) 0 0
\(541\) −16.0310 + 27.7665i −0.689227 + 1.19378i 0.282861 + 0.959161i \(0.408717\pi\)
−0.972088 + 0.234616i \(0.924617\pi\)
\(542\) 0 0
\(543\) 2.46850 9.21255i 0.105933 0.395348i
\(544\) 0 0
\(545\) −27.3080 + 19.9315i −1.16975 + 0.853772i
\(546\) 0 0
\(547\) −12.2782 + 12.2782i −0.524977 + 0.524977i −0.919071 0.394093i \(-0.871059\pi\)
0.394093 + 0.919071i \(0.371059\pi\)
\(548\) 0 0
\(549\) 3.22838 + 5.59172i 0.137784 + 0.238649i
\(550\) 0 0
\(551\) −7.16868 4.13884i −0.305396 0.176320i
\(552\) 0 0
\(553\) 20.7177 + 13.7889i 0.881008 + 0.586364i
\(554\) 0 0
\(555\) 0.660345 + 6.15376i 0.0280301 + 0.261213i
\(556\) 0 0
\(557\) 16.1612 + 4.33039i 0.684773 + 0.183484i 0.584400 0.811465i \(-0.301330\pi\)
0.100373 + 0.994950i \(0.467996\pi\)
\(558\) 0 0
\(559\) −39.4638 −1.66914
\(560\) 0 0
\(561\) −1.70524 −0.0719951
\(562\) 0 0
\(563\) 21.3252 + 5.71407i 0.898750 + 0.240819i 0.678479 0.734619i \(-0.262639\pi\)
0.220271 + 0.975439i \(0.429306\pi\)
\(564\) 0 0
\(565\) 0.249915 + 0.201477i 0.0105140 + 0.00847620i
\(566\) 0 0
\(567\) −1.17448 2.37078i −0.0493237 0.0995633i
\(568\) 0 0
\(569\) −10.0101 5.77933i −0.419645 0.242282i 0.275281 0.961364i \(-0.411229\pi\)
−0.694925 + 0.719082i \(0.744563\pi\)
\(570\) 0 0
\(571\) 17.0517 + 29.5344i 0.713592 + 1.23598i 0.963500 + 0.267708i \(0.0862664\pi\)
−0.249908 + 0.968270i \(0.580400\pi\)
\(572\) 0 0
\(573\) 7.12151 7.12151i 0.297505 0.297505i
\(574\) 0 0
\(575\) 17.0071 8.75913i 0.709247 0.365281i
\(576\) 0 0
\(577\) −3.66029 + 13.6604i −0.152380 + 0.568689i 0.846936 + 0.531695i \(0.178445\pi\)
−0.999316 + 0.0369936i \(0.988222\pi\)
\(578\) 0 0
\(579\) −12.9121 + 22.3645i −0.536611 + 0.929437i
\(580\) 0 0
\(581\) −6.14858 + 5.41190i −0.255086 + 0.224523i
\(582\) 0 0
\(583\) 5.95687 1.59614i 0.246708 0.0661053i
\(584\) 0 0
\(585\) −7.00308 + 2.70575i −0.289542 + 0.111869i
\(586\) 0 0
\(587\) 2.03863 + 2.03863i 0.0841434 + 0.0841434i 0.747926 0.663782i \(-0.231050\pi\)
−0.663782 + 0.747926i \(0.731050\pi\)
\(588\) 0 0
\(589\) 13.1992i 0.543864i
\(590\) 0 0
\(591\) −1.77007 + 1.02195i −0.0728109 + 0.0420374i
\(592\) 0 0
\(593\) −12.4687 46.5338i −0.512028 1.91091i −0.397837 0.917456i \(-0.630239\pi\)
−0.114191 0.993459i \(-0.536428\pi\)
\(594\) 0 0
\(595\) 3.62099 16.3045i 0.148446 0.668417i
\(596\) 0 0
\(597\) 1.82059 + 6.79452i 0.0745116 + 0.278081i
\(598\) 0 0
\(599\) −17.5251 + 10.1181i −0.716057 + 0.413416i −0.813300 0.581845i \(-0.802331\pi\)
0.0972425 + 0.995261i \(0.468998\pi\)
\(600\) 0 0
\(601\) 37.9071i 1.54626i 0.634245 + 0.773132i \(0.281311\pi\)
−0.634245 + 0.773132i \(0.718689\pi\)
\(602\) 0 0
\(603\) −2.24603 2.24603i −0.0914655 0.0914655i
\(604\) 0 0
\(605\) −9.62521 + 21.7460i −0.391321 + 0.884099i
\(606\) 0 0
\(607\) −7.03741 + 1.88567i −0.285640 + 0.0765369i −0.398794 0.917041i \(-0.630571\pi\)
0.113154 + 0.993577i \(0.463904\pi\)
\(608\) 0 0
\(609\) −0.903869 + 2.67865i −0.0366266 + 0.108544i
\(610\) 0 0
\(611\) −15.8575 + 27.4661i −0.641527 + 1.11116i
\(612\) 0 0
\(613\) −7.40759 + 27.6455i −0.299190 + 1.11659i 0.638643 + 0.769503i \(0.279496\pi\)
−0.937833 + 0.347088i \(0.887170\pi\)
\(614\) 0 0
\(615\) −2.76349 + 17.6974i −0.111434 + 0.713629i
\(616\) 0 0
\(617\) 27.7306 27.7306i 1.11639 1.11639i 0.124125 0.992267i \(-0.460388\pi\)
0.992267 0.124125i \(-0.0396123\pi\)
\(618\) 0 0
\(619\) −10.8629 18.8152i −0.436619 0.756246i 0.560808 0.827946i \(-0.310491\pi\)
−0.997426 + 0.0717005i \(0.977157\pi\)
\(620\) 0 0
\(621\) 3.31345 + 1.91302i 0.132964 + 0.0767669i
\(622\) 0 0
\(623\) 12.4379 18.6878i 0.498314 0.748713i
\(624\) 0 0
\(625\) 22.7491 10.3671i 0.909966 0.414683i
\(626\) 0 0
\(627\) −4.51989 1.21110i −0.180507 0.0483667i
\(628\) 0 0
\(629\) −7.81391 −0.311561
\(630\) 0 0
\(631\) 15.9568 0.635232 0.317616 0.948219i \(-0.397118\pi\)
0.317616 + 0.948219i \(0.397118\pi\)
\(632\) 0 0
\(633\) 11.7135 + 3.13862i 0.465569 + 0.124749i
\(634\) 0 0
\(635\) 10.7594 13.3461i 0.426973 0.529623i
\(636\) 0 0
\(637\) 18.5939 14.3749i 0.736715 0.569555i
\(638\) 0 0
\(639\) −14.3705 8.29684i −0.568490 0.328218i
\(640\) 0 0
\(641\) 17.4091 + 30.1535i 0.687619 + 1.19099i 0.972606 + 0.232459i \(0.0746772\pi\)
−0.284988 + 0.958531i \(0.591989\pi\)
\(642\) 0 0
\(643\) 11.9683 11.9683i 0.471982 0.471982i −0.430573 0.902556i \(-0.641689\pi\)
0.902556 + 0.430573i \(0.141689\pi\)
\(644\) 0 0
\(645\) 15.4948 + 21.2293i 0.610106 + 0.835903i
\(646\) 0 0
\(647\) −10.8040 + 40.3209i −0.424747 + 1.58518i 0.339727 + 0.940524i \(0.389665\pi\)
−0.764474 + 0.644654i \(0.777001\pi\)
\(648\) 0 0
\(649\) 2.85327 4.94201i 0.112001 0.193991i
\(650\) 0 0
\(651\) −4.41964 + 0.887449i −0.173219 + 0.0347819i
\(652\) 0 0
\(653\) −11.1520 + 2.98817i −0.436411 + 0.116936i −0.470334 0.882488i \(-0.655867\pi\)
0.0339230 + 0.999424i \(0.489200\pi\)
\(654\) 0 0
\(655\) −21.4184 9.48021i −0.836885 0.370422i
\(656\) 0 0
\(657\) 8.44323 + 8.44323i 0.329402 + 0.329402i
\(658\) 0 0
\(659\) 44.8565i 1.74736i −0.486501 0.873680i \(-0.661727\pi\)
0.486501 0.873680i \(-0.338273\pi\)
\(660\) 0 0
\(661\) 28.9348 16.7055i 1.12543 0.649769i 0.182650 0.983178i \(-0.441532\pi\)
0.942782 + 0.333409i \(0.108199\pi\)
\(662\) 0 0
\(663\) −2.45324 9.15561i −0.0952759 0.355574i
\(664\) 0 0
\(665\) 21.1776 40.6448i 0.821232 1.57614i
\(666\) 0 0
\(667\) −1.05810 3.94890i −0.0409700 0.152902i
\(668\) 0 0
\(669\) −5.97825 + 3.45154i −0.231133 + 0.133444i
\(670\) 0 0
\(671\) 3.90007i 0.150560i
\(672\) 0 0
\(673\) −10.0958 10.0958i −0.389166 0.389166i 0.485224 0.874390i \(-0.338738\pi\)
−0.874390 + 0.485224i \(0.838738\pi\)
\(674\) 0 0
\(675\) 4.20518 + 2.70490i 0.161857 + 0.104112i
\(676\) 0 0
\(677\) −5.48757 + 1.47039i −0.210905 + 0.0565117i −0.362724 0.931896i \(-0.618153\pi\)
0.151820 + 0.988408i \(0.451487\pi\)
\(678\) 0 0
\(679\) 10.3802 + 11.7932i 0.398357 + 0.452582i
\(680\) 0 0
\(681\) −4.95262 + 8.57819i −0.189785 + 0.328717i
\(682\) 0 0
\(683\) −4.45782 + 16.6368i −0.170574 + 0.636590i 0.826689 + 0.562658i \(0.190221\pi\)
−0.997263 + 0.0739318i \(0.976445\pi\)
\(684\) 0 0
\(685\) −13.8874 2.16855i −0.530611 0.0828559i
\(686\) 0 0
\(687\) 1.87448 1.87448i 0.0715161 0.0715161i
\(688\) 0 0
\(689\) 17.1397 + 29.6869i 0.652971 + 1.13098i
\(690\) 0 0
\(691\) 14.4106 + 8.31995i 0.548204 + 0.316506i 0.748397 0.663251i \(-0.230824\pi\)
−0.200193 + 0.979756i \(0.564157\pi\)
\(692\) 0 0
\(693\) −0.101632 + 1.59487i −0.00386068 + 0.0605843i
\(694\) 0 0
\(695\) −39.1601 + 4.20218i −1.48543 + 0.159398i
\(696\) 0 0
\(697\) −21.8437 5.85301i −0.827391 0.221699i
\(698\) 0 0
\(699\) −12.3740 −0.468028
\(700\) 0 0
\(701\) 7.31937 0.276449 0.138224 0.990401i \(-0.455860\pi\)
0.138224 + 0.990401i \(0.455860\pi\)
\(702\) 0 0
\(703\) −20.7115 5.54963i −0.781149 0.209308i
\(704\) 0 0
\(705\) 21.0014 2.25361i 0.790958 0.0848758i
\(706\) 0 0
\(707\) −30.1326 + 14.9277i −1.13325 + 0.561413i
\(708\) 0 0
\(709\) −12.6343 7.29441i −0.474491 0.273947i 0.243627 0.969869i \(-0.421663\pi\)
−0.718118 + 0.695922i \(0.754996\pi\)
\(710\) 0 0
\(711\) −4.70319 8.14616i −0.176383 0.305505i
\(712\) 0 0
\(713\) 4.60953 4.60953i 0.172628 0.172628i
\(714\) 0 0
\(715\) 4.48052 + 0.699641i 0.167562 + 0.0261651i
\(716\) 0 0
\(717\) −0.530971 + 1.98161i −0.0198295 + 0.0740047i
\(718\) 0 0
\(719\) −0.356285 + 0.617104i −0.0132872 + 0.0230141i −0.872593 0.488449i \(-0.837563\pi\)
0.859305 + 0.511463i \(0.170896\pi\)
\(720\) 0 0
\(721\) 2.41786 + 12.0413i 0.0900458 + 0.448443i
\(722\) 0 0
\(723\) −14.2594 + 3.82078i −0.530311 + 0.142096i
\(724\) 0 0
\(725\) −1.13355 5.22096i −0.0420990 0.193901i
\(726\) 0 0
\(727\) 17.3663 + 17.3663i 0.644081 + 0.644081i 0.951556 0.307475i \(-0.0994841\pi\)
−0.307475 + 0.951556i \(0.599484\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −28.7369 + 16.5912i −1.06287 + 0.613649i
\(732\) 0 0
\(733\) 7.08303 + 26.4342i 0.261618 + 0.976370i 0.964288 + 0.264855i \(0.0853240\pi\)
−0.702671 + 0.711515i \(0.748009\pi\)
\(734\) 0 0
\(735\) −15.0334 4.35839i −0.554517 0.160761i
\(736\) 0 0
\(737\) 0.496575 + 1.85324i 0.0182916 + 0.0682651i
\(738\) 0 0
\(739\) 25.0384 14.4559i 0.921053 0.531770i 0.0370818 0.999312i \(-0.488194\pi\)
0.883971 + 0.467542i \(0.154860\pi\)
\(740\) 0 0
\(741\) 26.0102i 0.955507i
\(742\) 0 0
\(743\) −7.60634 7.60634i −0.279050 0.279050i 0.553680 0.832730i \(-0.313223\pi\)
−0.832730 + 0.553680i \(0.813223\pi\)
\(744\) 0 0
\(745\) −14.1690 6.27148i −0.519111 0.229769i
\(746\) 0 0
\(747\) 2.99044 0.801286i 0.109415 0.0293175i
\(748\) 0 0
\(749\) 5.92814 + 29.5231i 0.216609 + 1.07875i
\(750\) 0 0
\(751\) 0.742022 1.28522i 0.0270768 0.0468983i −0.852169 0.523266i \(-0.824713\pi\)
0.879246 + 0.476368i \(0.158047\pi\)
\(752\) 0 0
\(753\) −1.80043 + 6.71929i −0.0656113 + 0.244865i
\(754\) 0 0
\(755\) 1.01930 + 1.39654i 0.0370962 + 0.0508253i
\(756\) 0 0
\(757\) 35.7985 35.7985i 1.30112 1.30112i 0.373483 0.927637i \(-0.378163\pi\)
0.927637 0.373483i \(-0.121837\pi\)
\(758\) 0 0
\(759\) −1.15552 2.00142i −0.0419427 0.0726469i
\(760\) 0 0
\(761\) 25.8513 + 14.9252i 0.937108 + 0.541039i 0.889052 0.457805i \(-0.151364\pi\)
0.0480552 + 0.998845i \(0.484698\pi\)
\(762\) 0 0
\(763\) −35.8449 + 17.7576i −1.29767 + 0.642868i
\(764\) 0 0
\(765\) −3.96198 + 4.91449i −0.143246 + 0.177684i
\(766\) 0 0
\(767\) 30.6391 + 8.20972i 1.10631 + 0.296436i
\(768\) 0 0
\(769\) −53.8150 −1.94062 −0.970309 0.241870i \(-0.922239\pi\)
−0.970309 + 0.241870i \(0.922239\pi\)
\(770\) 0 0
\(771\) 0.805959 0.0290259
\(772\) 0 0
\(773\) 49.2130 + 13.1866i 1.77007 + 0.474288i 0.988716 0.149802i \(-0.0478637\pi\)
0.781352 + 0.624090i \(0.214530\pi\)
\(774\) 0 0
\(775\) 6.30599 5.72789i 0.226518 0.205752i
\(776\) 0 0
\(777\) −0.465709 + 7.30820i −0.0167072 + 0.262180i
\(778\) 0 0
\(779\) −53.7419 31.0279i −1.92550 1.11169i
\(780\) 0 0
\(781\) 5.01153 + 8.68022i 0.179327 + 0.310603i
\(782\) 0 0
\(783\) 0.755557 0.755557i 0.0270014 0.0270014i
\(784\) 0 0
\(785\) −5.53705 + 35.4594i −0.197626 + 1.26560i
\(786\) 0 0
\(787\) 8.57757 32.0119i 0.305757 1.14110i −0.626534 0.779394i \(-0.715527\pi\)
0.932292 0.361708i \(-0.117806\pi\)
\(788\) 0 0
\(789\) −9.71086 + 16.8197i −0.345716 + 0.598797i
\(790\) 0 0
\(791\) 0.250956 + 0.285117i 0.00892297 + 0.0101376i
\(792\) 0 0
\(793\) 20.9399 5.61083i 0.743598 0.199247i
\(794\) 0 0
\(795\) 9.24024 20.8762i 0.327718 0.740403i
\(796\) 0 0
\(797\) 27.6409 + 27.6409i 0.979091 + 0.979091i 0.999786 0.0206950i \(-0.00658790\pi\)
−0.0206950 + 0.999786i \(0.506588\pi\)
\(798\) 0 0
\(799\) 26.6671i 0.943414i
\(800\) 0 0
\(801\) −7.34801 + 4.24238i −0.259629 + 0.149897i
\(802\) 0 0
\(803\) −1.86671 6.96667i −0.0658748 0.245848i
\(804\) 0 0
\(805\) 21.5901 6.79848i 0.760951 0.239615i
\(806\) 0 0
\(807\) 0.493589 + 1.84210i 0.0173752 + 0.0648450i
\(808\) 0 0
\(809\) −38.8681 + 22.4405i −1.36653 + 0.788966i −0.990483 0.137635i \(-0.956050\pi\)
−0.376046 + 0.926601i \(0.622717\pi\)
\(810\) 0 0
\(811\) 34.9982i 1.22895i 0.788935 + 0.614476i \(0.210633\pi\)
−0.788935 + 0.614476i \(0.789367\pi\)
\(812\) 0 0
\(813\) 20.1305 + 20.1305i 0.706008 + 0.706008i
\(814\) 0 0
\(815\) 13.8729 5.36002i 0.485947 0.187753i
\(816\) 0 0
\(817\) −87.9533 + 23.5670i −3.07710 + 0.824505i
\(818\) 0 0
\(819\) −8.70928 + 1.74879i −0.304327 + 0.0611078i
\(820\) 0 0
\(821\) 2.14361 3.71284i 0.0748124 0.129579i −0.826192 0.563388i \(-0.809498\pi\)
0.901005 + 0.433809i \(0.142831\pi\)
\(822\) 0 0
\(823\) −1.08857 + 4.06259i −0.0379450 + 0.141613i −0.982300 0.187316i \(-0.940021\pi\)
0.944355 + 0.328929i \(0.106688\pi\)
\(824\) 0 0
\(825\) −1.38283 2.68497i −0.0481440 0.0934786i
\(826\) 0 0
\(827\) −23.7840 + 23.7840i −0.827050 + 0.827050i −0.987108 0.160058i \(-0.948832\pi\)
0.160058 + 0.987108i \(0.448832\pi\)
\(828\) 0 0
\(829\) −24.1909 41.8998i −0.840184 1.45524i −0.889739 0.456469i \(-0.849114\pi\)
0.0495557 0.998771i \(-0.484219\pi\)
\(830\) 0 0
\(831\) −3.25342 1.87836i −0.112860 0.0651597i
\(832\) 0 0
\(833\) 7.49627 18.2847i 0.259731 0.633528i
\(834\) 0 0
\(835\) 31.0511 + 25.0328i 1.07457 + 0.866297i
\(836\) 0 0
\(837\) 1.64576 + 0.440979i 0.0568856 + 0.0152425i
\(838\) 0 0
\(839\) −36.1266 −1.24723 −0.623614 0.781733i \(-0.714336\pi\)
−0.623614 + 0.781733i \(0.714336\pi\)
\(840\) 0 0
\(841\) 27.8583 0.960630
\(842\) 0 0
\(843\) −11.6901 3.13236i −0.402630 0.107884i
\(844\) 0 0
\(845\) −0.412060 3.83999i −0.0141753 0.132100i
\(846\) 0 0
\(847\) −15.5902 + 23.4241i −0.535686 + 0.804863i
\(848\) 0 0
\(849\) −10.3159 5.95591i −0.354042 0.204406i
\(850\) 0 0
\(851\) −5.29495 9.17112i −0.181508 0.314382i
\(852\) 0 0
\(853\) −2.72229 + 2.72229i −0.0932093 + 0.0932093i −0.752174 0.658965i \(-0.770995\pi\)
0.658965 + 0.752174i \(0.270995\pi\)
\(854\) 0 0
\(855\) −13.9920 + 10.2124i −0.478516 + 0.349258i
\(856\) 0 0
\(857\) 5.78929 21.6059i 0.197758 0.738045i −0.793777 0.608209i \(-0.791888\pi\)
0.991536 0.129836i \(-0.0414450\pi\)
\(858\) 0 0
\(859\) −25.0354 + 43.3625i −0.854196 + 1.47951i 0.0231938 + 0.999731i \(0.492617\pi\)
−0.877389 + 0.479779i \(0.840717\pi\)
\(860\) 0 0
\(861\) −6.77610 + 20.0812i −0.230929 + 0.684366i
\(862\) 0 0
\(863\) 49.6316 13.2988i 1.68948 0.452695i 0.719224 0.694778i \(-0.244497\pi\)
0.970256 + 0.242083i \(0.0778307\pi\)
\(864\) 0 0
\(865\) −9.64234 24.9565i −0.327850 0.848547i
\(866\) 0 0
\(867\) 6.38524 + 6.38524i 0.216854 + 0.216854i
\(868\) 0 0
\(869\) 5.68172i 0.192739i
\(870\) 0 0
\(871\) −9.23588 + 5.33234i −0.312946 + 0.180679i
\(872\) 0 0
\(873\) −1.53690 5.73579i −0.0520162 0.194127i
\(874\) 0 0
\(875\) 28.6085 7.52040i 0.967142 0.254236i
\(876\) 0 0
\(877\) −1.34505 5.01978i −0.0454190 0.169506i 0.939491 0.342574i \(-0.111299\pi\)
−0.984910 + 0.173068i \(0.944632\pi\)
\(878\) 0 0
\(879\) 8.68930 5.01677i 0.293083 0.169211i
\(880\) 0 0
\(881\) 26.3865i 0.888984i 0.895783 + 0.444492i \(0.146616\pi\)
−0.895783 + 0.444492i \(0.853384\pi\)
\(882\) 0 0
\(883\) 29.7015 + 29.7015i 0.999536 + 0.999536i 1.00000 0.000464000i \(-0.000147696\pi\)
−0.000464000 1.00000i \(0.500148\pi\)
\(884\) 0 0
\(885\) −7.61354 19.7055i −0.255926 0.662394i
\(886\) 0 0
\(887\) −14.1320 + 3.78666i −0.474506 + 0.127143i −0.488143 0.872764i \(-0.662326\pi\)
0.0136373 + 0.999907i \(0.495659\pi\)
\(888\) 0 0
\(889\) 15.2260 13.4017i 0.510662 0.449478i
\(890\) 0 0
\(891\) 0.302014 0.523104i 0.0101179 0.0175247i
\(892\) 0 0
\(893\) −18.9396 + 70.6836i −0.633790 + 2.36534i
\(894\) 0 0
\(895\) 8.31656 6.07006i 0.277992 0.202900i
\(896\) 0 0
\(897\) 9.08347 9.08347i 0.303288 0.303288i
\(898\) 0 0
\(899\) −0.910277 1.57665i −0.0303595 0.0525841i
\(900\) 0 0
\(901\) 24.9617 + 14.4116i 0.831595 + 0.480121i
\(902\) 0 0
\(903\) 13.8048 + 27.8659i 0.459394 + 0.927319i
\(904\) 0 0
\(905\) 2.27544 + 21.2048i 0.0756382 + 0.704873i
\(906\) 0 0
\(907\) −13.4776 3.61132i −0.447517 0.119912i 0.0280201 0.999607i \(-0.491080\pi\)
−0.475538 + 0.879695i \(0.657746\pi\)
\(908\) 0 0
\(909\) 12.7100 0.421564
\(910\) 0 0
\(911\) −41.6320 −1.37933 −0.689665 0.724128i \(-0.742242\pi\)
−0.689665 + 0.724128i \(0.742242\pi\)
\(912\) 0 0
\(913\) −1.80631 0.484000i −0.0597802 0.0160181i
\(914\) 0 0
\(915\) −11.2400 9.06150i −0.371583 0.299564i
\(916\) 0 0
\(917\) −23.0713 15.3553i −0.761880 0.507078i
\(918\) 0 0
\(919\) 1.45630 + 0.840796i 0.0480390 + 0.0277353i 0.523827 0.851825i \(-0.324504\pi\)
−0.475788 + 0.879560i \(0.657837\pi\)
\(920\) 0 0
\(921\) −12.4636 21.5876i −0.410690 0.711335i
\(922\) 0 0
\(923\) −39.3953 + 39.3953i −1.29671 + 1.29671i
\(924\) 0 0
\(925\) −6.33655 12.3033i −0.208344 0.404531i
\(926\) 0 0
\(927\) 1.20145 4.48387i 0.0394608 0.147270i
\(928\) 0 0
\(929\) 3.75511 6.50405i 0.123201 0.213391i −0.797827 0.602886i \(-0.794017\pi\)
0.921028 + 0.389495i \(0.127351\pi\)
\(930\) 0 0
\(931\) 32.8558 43.1414i 1.07681 1.41390i
\(932\) 0 0
\(933\) 24.9546 6.68655i 0.816975 0.218908i
\(934\) 0 0
\(935\) 3.55678 1.37422i 0.116319 0.0449417i
\(936\) 0 0
\(937\) 10.6515 + 10.6515i 0.347970 + 0.347970i 0.859353 0.511383i \(-0.170867\pi\)
−0.511383 + 0.859353i \(0.670867\pi\)
\(938\) 0 0
\(939\) 4.65535i 0.151921i
\(940\) 0 0
\(941\) −33.1391 + 19.1328i −1.08030 + 0.623713i −0.930978 0.365075i \(-0.881043\pi\)
−0.149325 + 0.988788i \(0.547710\pi\)
\(942\) 0 0
\(943\) −7.93237 29.6040i −0.258313 0.964039i
\(944\) 0 0
\(945\) 4.36030 + 3.99847i 0.141841 + 0.130070i
\(946\) 0 0
\(947\) −12.2266 45.6304i −0.397312 1.48279i −0.817807 0.575493i \(-0.804810\pi\)
0.420495 0.907295i \(-0.361856\pi\)
\(948\) 0 0
\(949\) 34.7193 20.0452i 1.12704 0.650695i
\(950\) 0 0
\(951\) 7.05139i 0.228657i
\(952\) 0 0
\(953\) 35.7556 + 35.7556i 1.15824 + 1.15824i 0.984855 + 0.173382i \(0.0554696\pi\)
0.173382 + 0.984855i \(0.444530\pi\)
\(954\) 0 0
\(955\) −9.11494 + 20.5931i −0.294952 + 0.666378i
\(956\) 0 0
\(957\) −0.623424 + 0.167046i −0.0201524 + 0.00539983i
\(958\) 0 0
\(959\) −15.7580 5.31730i −0.508852 0.171705i
\(960\) 0 0
\(961\) −14.0485 + 24.3327i −0.453178 + 0.784927i
\(962\) 0 0
\(963\) 2.94573 10.9936i 0.0949247 0.354264i
\(964\) 0 0
\(965\) 8.90900 57.0535i 0.286791 1.83662i
\(966\) 0 0
\(967\) 34.1802 34.1802i 1.09916 1.09916i 0.104653 0.994509i \(-0.466627\pi\)
0.994509 0.104653i \(-0.0333732\pi\)
\(968\) 0 0
\(969\) −10.9351 18.9402i −0.351286 0.608445i
\(970\) 0 0
\(971\) −8.38453 4.84081i −0.269072 0.155349i 0.359394 0.933186i \(-0.382984\pi\)
−0.628466 + 0.777837i \(0.716317\pi\)
\(972\) 0 0
\(973\) −46.5065 2.96359i −1.49093 0.0950082i
\(974\) 0 0
\(975\) 12.4265 11.2873i 0.397966 0.361483i
\(976\) 0 0
\(977\) 29.1940 + 7.82252i 0.934000 + 0.250264i 0.693559 0.720399i \(-0.256042\pi\)
0.240440 + 0.970664i \(0.422708\pi\)
\(978\) 0 0
\(979\) 5.12503 0.163797
\(980\) 0 0
\(981\) 15.1195 0.482728
\(982\) 0 0
\(983\) −10.3935 2.78494i −0.331503 0.0888259i 0.0892286 0.996011i \(-0.471560\pi\)
−0.420731 + 0.907185i \(0.638226\pi\)
\(984\) 0 0
\(985\) 2.86844 3.55805i 0.0913960 0.113369i
\(986\) 0 0
\(987\) 24.9412 + 1.58936i 0.793888 + 0.0505898i
\(988\) 0 0
\(989\) −38.9460 22.4855i −1.23841 0.714997i
\(990\) 0 0
\(991\) 13.9909 + 24.2329i 0.444434 + 0.769783i 0.998013 0.0630142i \(-0.0200713\pi\)
−0.553578 + 0.832797i \(0.686738\pi\)
\(992\) 0 0
\(993\) −8.82086 + 8.82086i −0.279922 + 0.279922i
\(994\) 0 0
\(995\) −9.27295 12.7048i −0.293972 0.402770i
\(996\) 0 0
\(997\) −9.87854 + 36.8672i −0.312856 + 1.16760i 0.613112 + 0.789996i \(0.289917\pi\)
−0.925969 + 0.377600i \(0.876749\pi\)
\(998\) 0 0
\(999\) 1.38392 2.39702i 0.0437854 0.0758385i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.dd.b.313.7 yes 48
5.2 odd 4 840.2.dd.a.817.8 yes 48
7.3 odd 6 840.2.dd.a.73.8 48
35.17 even 12 inner 840.2.dd.b.577.7 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.dd.a.73.8 48 7.3 odd 6
840.2.dd.a.817.8 yes 48 5.2 odd 4
840.2.dd.b.313.7 yes 48 1.1 even 1 trivial
840.2.dd.b.577.7 yes 48 35.17 even 12 inner