gp: [N,k,chi] = [840,2,Mod(11,840)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(840, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 3, 0, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("840.11");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [128,0,0,0,-64]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{23}^{64} + 388 T_{23}^{62} + 968 T_{23}^{61} + 83901 T_{23}^{60} + 351512 T_{23}^{59} + \cdots + 15\!\cdots\!00 \)
T23^64 + 388*T23^62 + 968*T23^61 + 83901*T23^60 + 351512*T23^59 + 12914756*T23^58 + 70632824*T23^57 + 1556975283*T23^56 + 9834749888*T23^55 + 154045709088*T23^54 + 1046591430192*T23^53 + 12818265867522*T23^52 + 89310135821460*T23^51 + 909264796553720*T23^50 + 6292660606223128*T23^49 + 55391842839344545*T23^48 + 372570434565570400*T23^47 + 2909754628962699908*T23^46 + 18745961206506183968*T23^45 + 132066675407064436787*T23^44 + 806880990020543237056*T23^43 + 5182095716965321847372*T23^42 + 29820185415953291527720*T23^41 + 175704873915050778016945*T23^40 + 947527114688895129710496*T23^39 + 5140387427021707533489424*T23^38 + 25877508211183625092607632*T23^37 + 129471874555352708637609434*T23^36 + 606426735111731501781153516*T23^35 + 2798934492500380569578723880*T23^34 + 12160341939167244851051052520*T23^33 + 51735946176170796138495475771*T23^32 + 207844490120734399958448858016*T23^31 + 813688928623973115632488779548*T23^30 + 3012076457803414544185744807120*T23^29 + 10821047178418574190790581299653*T23^28 + 36752874437432745344210520072976*T23^27 + 120681309906045414392914170345924*T23^26 + 374011472924707971083425483148520*T23^25 + 1116172995900082761361710392420589*T23^24 + 3133542479202892608448486283386560*T23^23 + 8432573271390908999490199543198296*T23^22 + 21228447716753825494709631537309536*T23^21 + 50933876663113662474362824975615300*T23^20 + 113329217405329303282931457616797924*T23^19 + 238574094619043285428711255194983952*T23^18 + 459445452394799606320716677144953432*T23^17 + 829032479315835975044289066104010844*T23^16 + 1339366877818850713035118584525343328*T23^15 + 2009693366107297893801206597246785256*T23^14 + 2625707695323298995454826053207212328*T23^13 + 3228552499090004093316192775560517968*T23^12 + 3370212774303984931021163674299881408*T23^11 + 3564353107107527995214667484736803824*T23^10 + 3013595185037236810399410133610098272*T23^9 + 2909769022885321222664930404088978768*T23^8 + 1789355218644910755994523120769560032*T23^7 + 1690978308094262579442487665302411424*T23^6 + 660539110601332641206312571642001088*T23^5 + 777958698543328915971171700646324704*T23^4 + 107982645636779340038667701210141760*T23^3 + 175683674402846392912608807718166016*T23^2 + 36639636055701292723070496169609920*T23 + 15050514976283355343859575604750400
acting on \(S_{2}^{\mathrm{new}}(840, [\chi])\).