Properties

Label 840.2.cp.b.521.12
Level $840$
Weight $2$
Character 840.521
Analytic conductor $6.707$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(521,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.cp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.12
Character \(\chi\) \(=\) 840.521
Dual form 840.2.cp.b.761.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.46285 - 0.927396i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-1.49899 - 2.18014i) q^{7} +(1.27987 - 2.71329i) q^{9} +(-5.52920 - 3.19228i) q^{11} +0.186273i q^{13} +(1.53457 + 0.803169i) q^{15} +(3.85223 - 6.67225i) q^{17} +(-5.08695 + 2.93695i) q^{19} +(-4.21466 - 1.79907i) q^{21} +(0.256657 - 0.148181i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(-0.644024 - 5.15609i) q^{27} -8.18311i q^{29} +(5.76880 + 3.33062i) q^{31} +(-11.0489 + 0.457915i) q^{33} +(1.13856 - 2.38824i) q^{35} +(1.69885 + 2.94249i) q^{37} +(0.172749 + 0.272490i) q^{39} +9.67409 q^{41} -0.268806 q^{43} +(2.98971 - 0.248240i) q^{45} +(2.93140 + 5.07734i) q^{47} +(-2.50604 + 6.53604i) q^{49} +(-0.552580 - 13.3331i) q^{51} +(2.72386 + 1.57262i) q^{53} -6.38457i q^{55} +(-4.71774 + 9.01394i) q^{57} +(-3.55719 + 6.16123i) q^{59} +(5.46516 - 3.15531i) q^{61} +(-7.83387 + 1.27689i) q^{63} +(-0.161317 + 0.0931364i) q^{65} +(0.460841 - 0.798199i) q^{67} +(0.238028 - 0.454789i) q^{69} -7.44163i q^{71} +(-5.90097 - 3.40693i) q^{73} +(0.0717222 + 1.73057i) q^{75} +(1.32860 + 16.8396i) q^{77} +(0.455092 + 0.788242i) q^{79} +(-5.72385 - 6.94533i) q^{81} -1.79069 q^{83} +7.70445 q^{85} +(-7.58898 - 11.9707i) q^{87} +(-3.80761 - 6.59498i) q^{89} +(0.406101 - 0.279222i) q^{91} +(11.5277 - 0.477758i) q^{93} +(-5.08695 - 2.93695i) q^{95} +10.2378i q^{97} +(-15.7383 + 10.9166i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{5} - 2 q^{7} + 8 q^{9} + 6 q^{19} - 14 q^{21} + 24 q^{23} - 16 q^{25} + 24 q^{27} + 42 q^{31} + 18 q^{33} + 2 q^{35} + 6 q^{37} + 12 q^{39} + 44 q^{41} - 20 q^{43} + 10 q^{45} + 4 q^{47} + 16 q^{49}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.46285 0.927396i 0.844578 0.535432i
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −1.49899 2.18014i −0.566566 0.824016i
\(8\) 0 0
\(9\) 1.27987 2.71329i 0.426625 0.904429i
\(10\) 0 0
\(11\) −5.52920 3.19228i −1.66712 0.962510i −0.969182 0.246347i \(-0.920770\pi\)
−0.697934 0.716162i \(-0.745897\pi\)
\(12\) 0 0
\(13\) 0.186273i 0.0516628i 0.999666 + 0.0258314i \(0.00822330\pi\)
−0.999666 + 0.0258314i \(0.991777\pi\)
\(14\) 0 0
\(15\) 1.53457 + 0.803169i 0.396225 + 0.207377i
\(16\) 0 0
\(17\) 3.85223 6.67225i 0.934302 1.61826i 0.158429 0.987370i \(-0.449357\pi\)
0.775874 0.630888i \(-0.217309\pi\)
\(18\) 0 0
\(19\) −5.08695 + 2.93695i −1.16703 + 0.673783i −0.952978 0.303040i \(-0.901998\pi\)
−0.214048 + 0.976823i \(0.568665\pi\)
\(20\) 0 0
\(21\) −4.21466 1.79907i −0.919714 0.392588i
\(22\) 0 0
\(23\) 0.256657 0.148181i 0.0535166 0.0308978i −0.473003 0.881061i \(-0.656830\pi\)
0.526520 + 0.850163i \(0.323497\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) −0.644024 5.15609i −0.123942 0.992289i
\(28\) 0 0
\(29\) 8.18311i 1.51957i −0.650177 0.759783i \(-0.725305\pi\)
0.650177 0.759783i \(-0.274695\pi\)
\(30\) 0 0
\(31\) 5.76880 + 3.33062i 1.03611 + 0.598197i 0.918728 0.394891i \(-0.129217\pi\)
0.117379 + 0.993087i \(0.462551\pi\)
\(32\) 0 0
\(33\) −11.0489 + 0.457915i −1.92337 + 0.0797127i
\(34\) 0 0
\(35\) 1.13856 2.38824i 0.192452 0.403686i
\(36\) 0 0
\(37\) 1.69885 + 2.94249i 0.279289 + 0.483742i 0.971208 0.238233i \(-0.0765681\pi\)
−0.691920 + 0.721975i \(0.743235\pi\)
\(38\) 0 0
\(39\) 0.172749 + 0.272490i 0.0276619 + 0.0436333i
\(40\) 0 0
\(41\) 9.67409 1.51084 0.755419 0.655242i \(-0.227433\pi\)
0.755419 + 0.655242i \(0.227433\pi\)
\(42\) 0 0
\(43\) −0.268806 −0.0409926 −0.0204963 0.999790i \(-0.506525\pi\)
−0.0204963 + 0.999790i \(0.506525\pi\)
\(44\) 0 0
\(45\) 2.98971 0.248240i 0.445680 0.0370054i
\(46\) 0 0
\(47\) 2.93140 + 5.07734i 0.427589 + 0.740606i 0.996658 0.0816835i \(-0.0260297\pi\)
−0.569069 + 0.822290i \(0.692696\pi\)
\(48\) 0 0
\(49\) −2.50604 + 6.53604i −0.358005 + 0.933720i
\(50\) 0 0
\(51\) −0.552580 13.3331i −0.0773767 1.86700i
\(52\) 0 0
\(53\) 2.72386 + 1.57262i 0.374151 + 0.216016i 0.675270 0.737570i \(-0.264027\pi\)
−0.301120 + 0.953586i \(0.597360\pi\)
\(54\) 0 0
\(55\) 6.38457i 0.860895i
\(56\) 0 0
\(57\) −4.71774 + 9.01394i −0.624880 + 1.19393i
\(58\) 0 0
\(59\) −3.55719 + 6.16123i −0.463107 + 0.802124i −0.999114 0.0420891i \(-0.986599\pi\)
0.536007 + 0.844213i \(0.319932\pi\)
\(60\) 0 0
\(61\) 5.46516 3.15531i 0.699742 0.403996i −0.107510 0.994204i \(-0.534288\pi\)
0.807251 + 0.590208i \(0.200954\pi\)
\(62\) 0 0
\(63\) −7.83387 + 1.27689i −0.986975 + 0.160873i
\(64\) 0 0
\(65\) −0.161317 + 0.0931364i −0.0200089 + 0.0115521i
\(66\) 0 0
\(67\) 0.460841 0.798199i 0.0563006 0.0975156i −0.836501 0.547965i \(-0.815403\pi\)
0.892802 + 0.450449i \(0.148736\pi\)
\(68\) 0 0
\(69\) 0.238028 0.454789i 0.0286553 0.0547501i
\(70\) 0 0
\(71\) 7.44163i 0.883159i −0.897222 0.441579i \(-0.854418\pi\)
0.897222 0.441579i \(-0.145582\pi\)
\(72\) 0 0
\(73\) −5.90097 3.40693i −0.690656 0.398751i 0.113202 0.993572i \(-0.463889\pi\)
−0.803858 + 0.594821i \(0.797223\pi\)
\(74\) 0 0
\(75\) 0.0717222 + 1.73057i 0.00828176 + 0.199828i
\(76\) 0 0
\(77\) 1.32860 + 16.8396i 0.151408 + 1.91906i
\(78\) 0 0
\(79\) 0.455092 + 0.788242i 0.0512018 + 0.0886842i 0.890490 0.455002i \(-0.150361\pi\)
−0.839289 + 0.543686i \(0.817028\pi\)
\(80\) 0 0
\(81\) −5.72385 6.94533i −0.635983 0.771703i
\(82\) 0 0
\(83\) −1.79069 −0.196554 −0.0982770 0.995159i \(-0.531333\pi\)
−0.0982770 + 0.995159i \(0.531333\pi\)
\(84\) 0 0
\(85\) 7.70445 0.835665
\(86\) 0 0
\(87\) −7.58898 11.9707i −0.813624 1.28339i
\(88\) 0 0
\(89\) −3.80761 6.59498i −0.403606 0.699067i 0.590552 0.807000i \(-0.298910\pi\)
−0.994158 + 0.107933i \(0.965577\pi\)
\(90\) 0 0
\(91\) 0.406101 0.279222i 0.0425710 0.0292704i
\(92\) 0 0
\(93\) 11.5277 0.477758i 1.19537 0.0495412i
\(94\) 0 0
\(95\) −5.08695 2.93695i −0.521910 0.301325i
\(96\) 0 0
\(97\) 10.2378i 1.03949i 0.854320 + 0.519747i \(0.173974\pi\)
−0.854320 + 0.519747i \(0.826026\pi\)
\(98\) 0 0
\(99\) −15.7383 + 10.9166i −1.58175 + 1.09716i
\(100\) 0 0
\(101\) 2.89920 5.02156i 0.288481 0.499664i −0.684966 0.728575i \(-0.740183\pi\)
0.973447 + 0.228911i \(0.0735164\pi\)
\(102\) 0 0
\(103\) 1.75128 1.01110i 0.172559 0.0996267i −0.411233 0.911530i \(-0.634902\pi\)
0.583792 + 0.811903i \(0.301568\pi\)
\(104\) 0 0
\(105\) −0.549294 4.54954i −0.0536056 0.443989i
\(106\) 0 0
\(107\) 0.633070 0.365503i 0.0612012 0.0353345i −0.469087 0.883152i \(-0.655417\pi\)
0.530288 + 0.847817i \(0.322084\pi\)
\(108\) 0 0
\(109\) −4.20454 + 7.28248i −0.402722 + 0.697535i −0.994053 0.108894i \(-0.965269\pi\)
0.591332 + 0.806429i \(0.298602\pi\)
\(110\) 0 0
\(111\) 5.21401 + 2.72892i 0.494892 + 0.259018i
\(112\) 0 0
\(113\) 13.7653i 1.29493i 0.762094 + 0.647467i \(0.224172\pi\)
−0.762094 + 0.647467i \(0.775828\pi\)
\(114\) 0 0
\(115\) 0.256657 + 0.148181i 0.0239334 + 0.0138179i
\(116\) 0 0
\(117\) 0.505411 + 0.238406i 0.0467253 + 0.0220406i
\(118\) 0 0
\(119\) −20.3209 + 1.60326i −1.86282 + 0.146971i
\(120\) 0 0
\(121\) 14.8813 + 25.7752i 1.35285 + 2.34320i
\(122\) 0 0
\(123\) 14.1518 8.97171i 1.27602 0.808952i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 15.6325 1.38716 0.693581 0.720378i \(-0.256032\pi\)
0.693581 + 0.720378i \(0.256032\pi\)
\(128\) 0 0
\(129\) −0.393224 + 0.249290i −0.0346214 + 0.0219488i
\(130\) 0 0
\(131\) −6.01615 10.4203i −0.525633 0.910423i −0.999554 0.0298561i \(-0.990495\pi\)
0.473921 0.880567i \(-0.342838\pi\)
\(132\) 0 0
\(133\) 14.0283 + 6.68780i 1.21641 + 0.579906i
\(134\) 0 0
\(135\) 4.14329 3.13578i 0.356598 0.269885i
\(136\) 0 0
\(137\) −13.9423 8.04958i −1.19117 0.687722i −0.232597 0.972573i \(-0.574722\pi\)
−0.958572 + 0.284851i \(0.908056\pi\)
\(138\) 0 0
\(139\) 5.98676i 0.507790i −0.967232 0.253895i \(-0.918288\pi\)
0.967232 0.253895i \(-0.0817118\pi\)
\(140\) 0 0
\(141\) 8.99691 + 4.70883i 0.757677 + 0.396555i
\(142\) 0 0
\(143\) 0.594636 1.02994i 0.0497259 0.0861278i
\(144\) 0 0
\(145\) 7.08678 4.09155i 0.588525 0.339785i
\(146\) 0 0
\(147\) 2.39553 + 11.8853i 0.197580 + 0.980287i
\(148\) 0 0
\(149\) 7.96751 4.60004i 0.652724 0.376850i −0.136775 0.990602i \(-0.543674\pi\)
0.789499 + 0.613752i \(0.210341\pi\)
\(150\) 0 0
\(151\) 8.48055 14.6887i 0.690138 1.19535i −0.281655 0.959516i \(-0.590883\pi\)
0.971792 0.235838i \(-0.0757834\pi\)
\(152\) 0 0
\(153\) −13.1734 18.9918i −1.06500 1.53540i
\(154\) 0 0
\(155\) 6.66124i 0.535043i
\(156\) 0 0
\(157\) −9.96405 5.75274i −0.795217 0.459119i 0.0465787 0.998915i \(-0.485168\pi\)
−0.841796 + 0.539796i \(0.818502\pi\)
\(158\) 0 0
\(159\) 5.44304 0.225583i 0.431662 0.0178899i
\(160\) 0 0
\(161\) −0.707782 0.337426i −0.0557810 0.0265929i
\(162\) 0 0
\(163\) −3.55503 6.15749i −0.278451 0.482292i 0.692549 0.721371i \(-0.256488\pi\)
−0.971000 + 0.239079i \(0.923154\pi\)
\(164\) 0 0
\(165\) −5.92102 9.33968i −0.460951 0.727093i
\(166\) 0 0
\(167\) 13.7041 1.06045 0.530227 0.847856i \(-0.322107\pi\)
0.530227 + 0.847856i \(0.322107\pi\)
\(168\) 0 0
\(169\) 12.9653 0.997331
\(170\) 0 0
\(171\) 1.45814 + 17.5613i 0.111506 + 1.34294i
\(172\) 0 0
\(173\) 6.51565 + 11.2854i 0.495375 + 0.858015i 0.999986 0.00533192i \(-0.00169721\pi\)
−0.504610 + 0.863347i \(0.668364\pi\)
\(174\) 0 0
\(175\) 2.63755 0.208095i 0.199380 0.0157305i
\(176\) 0 0
\(177\) 0.510259 + 12.3119i 0.0383534 + 0.925419i
\(178\) 0 0
\(179\) 7.68352 + 4.43608i 0.574293 + 0.331568i 0.758862 0.651251i \(-0.225756\pi\)
−0.184569 + 0.982820i \(0.559089\pi\)
\(180\) 0 0
\(181\) 16.2986i 1.21147i −0.795668 0.605733i \(-0.792880\pi\)
0.795668 0.605733i \(-0.207120\pi\)
\(182\) 0 0
\(183\) 5.06850 9.68412i 0.374674 0.715870i
\(184\) 0 0
\(185\) −1.69885 + 2.94249i −0.124902 + 0.216336i
\(186\) 0 0
\(187\) −42.5994 + 24.5948i −3.11518 + 1.79855i
\(188\) 0 0
\(189\) −10.2756 + 9.13300i −0.747441 + 0.664328i
\(190\) 0 0
\(191\) −8.26384 + 4.77113i −0.597950 + 0.345227i −0.768235 0.640168i \(-0.778865\pi\)
0.170285 + 0.985395i \(0.445531\pi\)
\(192\) 0 0
\(193\) −6.93115 + 12.0051i −0.498915 + 0.864147i −0.999999 0.00125197i \(-0.999601\pi\)
0.501084 + 0.865399i \(0.332935\pi\)
\(194\) 0 0
\(195\) −0.149609 + 0.285850i −0.0107137 + 0.0204701i
\(196\) 0 0
\(197\) 26.2096i 1.86736i 0.358110 + 0.933679i \(0.383421\pi\)
−0.358110 + 0.933679i \(0.616579\pi\)
\(198\) 0 0
\(199\) 14.2763 + 8.24244i 1.01202 + 0.584291i 0.911783 0.410673i \(-0.134706\pi\)
0.100238 + 0.994963i \(0.468039\pi\)
\(200\) 0 0
\(201\) −0.0661050 1.59503i −0.00466268 0.112505i
\(202\) 0 0
\(203\) −17.8403 + 12.2664i −1.25215 + 0.860934i
\(204\) 0 0
\(205\) 4.83704 + 8.37801i 0.337834 + 0.585145i
\(206\) 0 0
\(207\) −0.0735687 0.886035i −0.00511338 0.0615837i
\(208\) 0 0
\(209\) 37.5023 2.59409
\(210\) 0 0
\(211\) 25.5398 1.75823 0.879116 0.476607i \(-0.158134\pi\)
0.879116 + 0.476607i \(0.158134\pi\)
\(212\) 0 0
\(213\) −6.90134 10.8860i −0.472872 0.745897i
\(214\) 0 0
\(215\) −0.134403 0.232793i −0.00916622 0.0158764i
\(216\) 0 0
\(217\) −1.38617 17.5694i −0.0940995 1.19269i
\(218\) 0 0
\(219\) −11.7918 + 0.488704i −0.796817 + 0.0330236i
\(220\) 0 0
\(221\) 1.24286 + 0.717565i 0.0836038 + 0.0482687i
\(222\) 0 0
\(223\) 25.7724i 1.72585i 0.505332 + 0.862925i \(0.331370\pi\)
−0.505332 + 0.862925i \(0.668630\pi\)
\(224\) 0 0
\(225\) 1.70984 + 2.46505i 0.113989 + 0.164336i
\(226\) 0 0
\(227\) 6.73748 11.6697i 0.447182 0.774542i −0.551019 0.834493i \(-0.685761\pi\)
0.998201 + 0.0599504i \(0.0190942\pi\)
\(228\) 0 0
\(229\) 4.38539 2.53190i 0.289794 0.167313i −0.348055 0.937474i \(-0.613158\pi\)
0.637849 + 0.770161i \(0.279824\pi\)
\(230\) 0 0
\(231\) 17.5606 + 23.4018i 1.15540 + 1.53972i
\(232\) 0 0
\(233\) −2.66056 + 1.53607i −0.174299 + 0.100632i −0.584611 0.811313i \(-0.698753\pi\)
0.410312 + 0.911945i \(0.365420\pi\)
\(234\) 0 0
\(235\) −2.93140 + 5.07734i −0.191224 + 0.331209i
\(236\) 0 0
\(237\) 1.39674 + 0.731032i 0.0907283 + 0.0474856i
\(238\) 0 0
\(239\) 22.8326i 1.47692i 0.674299 + 0.738459i \(0.264446\pi\)
−0.674299 + 0.738459i \(0.735554\pi\)
\(240\) 0 0
\(241\) −16.3478 9.43842i −1.05306 0.607982i −0.129552 0.991573i \(-0.541354\pi\)
−0.923503 + 0.383591i \(0.874687\pi\)
\(242\) 0 0
\(243\) −14.8142 4.85172i −0.950332 0.311238i
\(244\) 0 0
\(245\) −6.91339 + 1.09773i −0.441680 + 0.0701311i
\(246\) 0 0
\(247\) −0.547074 0.947560i −0.0348095 0.0602918i
\(248\) 0 0
\(249\) −2.61952 + 1.66068i −0.166005 + 0.105241i
\(250\) 0 0
\(251\) −3.16383 −0.199699 −0.0998495 0.995003i \(-0.531836\pi\)
−0.0998495 + 0.995003i \(0.531836\pi\)
\(252\) 0 0
\(253\) −1.89214 −0.118958
\(254\) 0 0
\(255\) 11.2705 7.14508i 0.705785 0.447442i
\(256\) 0 0
\(257\) −1.44622 2.50492i −0.0902125 0.156253i 0.817388 0.576088i \(-0.195421\pi\)
−0.907600 + 0.419835i \(0.862088\pi\)
\(258\) 0 0
\(259\) 3.86848 8.11449i 0.240376 0.504210i
\(260\) 0 0
\(261\) −22.2031 10.4733i −1.37434 0.648284i
\(262\) 0 0
\(263\) 6.36015 + 3.67203i 0.392184 + 0.226427i 0.683106 0.730319i \(-0.260629\pi\)
−0.290922 + 0.956747i \(0.593962\pi\)
\(264\) 0 0
\(265\) 3.14524i 0.193211i
\(266\) 0 0
\(267\) −11.6861 6.11632i −0.715180 0.374313i
\(268\) 0 0
\(269\) −9.55236 + 16.5452i −0.582418 + 1.00878i 0.412774 + 0.910833i \(0.364560\pi\)
−0.995192 + 0.0979438i \(0.968773\pi\)
\(270\) 0 0
\(271\) 15.3258 8.84835i 0.930976 0.537499i 0.0438557 0.999038i \(-0.486036\pi\)
0.887120 + 0.461539i \(0.152702\pi\)
\(272\) 0 0
\(273\) 0.335117 0.785077i 0.0202822 0.0475150i
\(274\) 0 0
\(275\) 5.52920 3.19228i 0.333423 0.192502i
\(276\) 0 0
\(277\) −9.88120 + 17.1147i −0.593704 + 1.02832i 0.400025 + 0.916504i \(0.369001\pi\)
−0.993728 + 0.111820i \(0.964332\pi\)
\(278\) 0 0
\(279\) 16.4203 11.3896i 0.983055 0.681880i
\(280\) 0 0
\(281\) 4.51698i 0.269460i −0.990882 0.134730i \(-0.956983\pi\)
0.990882 0.134730i \(-0.0430168\pi\)
\(282\) 0 0
\(283\) 0.652832 + 0.376913i 0.0388068 + 0.0224051i 0.519278 0.854605i \(-0.326201\pi\)
−0.480471 + 0.877011i \(0.659534\pi\)
\(284\) 0 0
\(285\) −10.1652 + 0.421289i −0.602133 + 0.0249550i
\(286\) 0 0
\(287\) −14.5014 21.0909i −0.855990 1.24496i
\(288\) 0 0
\(289\) −21.1793 36.6836i −1.24584 2.15786i
\(290\) 0 0
\(291\) 9.49453 + 14.9764i 0.556579 + 0.877935i
\(292\) 0 0
\(293\) −3.44976 −0.201537 −0.100769 0.994910i \(-0.532130\pi\)
−0.100769 + 0.994910i \(0.532130\pi\)
\(294\) 0 0
\(295\) −7.11438 −0.414215
\(296\) 0 0
\(297\) −12.8988 + 30.5649i −0.748462 + 1.77356i
\(298\) 0 0
\(299\) 0.0276020 + 0.0478081i 0.00159627 + 0.00276482i
\(300\) 0 0
\(301\) 0.402939 + 0.586036i 0.0232250 + 0.0337786i
\(302\) 0 0
\(303\) −0.415874 10.0345i −0.0238913 0.576468i
\(304\) 0 0
\(305\) 5.46516 + 3.15531i 0.312934 + 0.180673i
\(306\) 0 0
\(307\) 7.65577i 0.436938i −0.975844 0.218469i \(-0.929894\pi\)
0.975844 0.218469i \(-0.0701062\pi\)
\(308\) 0 0
\(309\) 1.62417 3.10322i 0.0923959 0.176536i
\(310\) 0 0
\(311\) 16.5003 28.5794i 0.935649 1.62059i 0.162176 0.986762i \(-0.448149\pi\)
0.773473 0.633830i \(-0.218518\pi\)
\(312\) 0 0
\(313\) 15.8777 9.16700i 0.897461 0.518149i 0.0210856 0.999778i \(-0.493288\pi\)
0.876376 + 0.481628i \(0.159954\pi\)
\(314\) 0 0
\(315\) −5.02276 6.14589i −0.283000 0.346281i
\(316\) 0 0
\(317\) 2.30074 1.32833i 0.129222 0.0746066i −0.433995 0.900915i \(-0.642897\pi\)
0.563218 + 0.826309i \(0.309563\pi\)
\(318\) 0 0
\(319\) −26.1228 + 45.2460i −1.46260 + 2.53329i
\(320\) 0 0
\(321\) 0.587122 1.12178i 0.0327699 0.0626118i
\(322\) 0 0
\(323\) 45.2552i 2.51807i
\(324\) 0 0
\(325\) −0.161317 0.0931364i −0.00894826 0.00516628i
\(326\) 0 0
\(327\) 0.603117 + 14.5525i 0.0333525 + 0.804753i
\(328\) 0 0
\(329\) 6.67517 14.0018i 0.368014 0.771943i
\(330\) 0 0
\(331\) −1.81649 3.14626i −0.0998435 0.172934i 0.811776 0.583969i \(-0.198501\pi\)
−0.911620 + 0.411035i \(0.865168\pi\)
\(332\) 0 0
\(333\) 10.1581 0.843442i 0.556661 0.0462203i
\(334\) 0 0
\(335\) 0.921681 0.0503568
\(336\) 0 0
\(337\) −0.531227 −0.0289378 −0.0144689 0.999895i \(-0.504606\pi\)
−0.0144689 + 0.999895i \(0.504606\pi\)
\(338\) 0 0
\(339\) 12.7659 + 20.1366i 0.693349 + 1.09367i
\(340\) 0 0
\(341\) −21.2646 36.8313i −1.15154 1.99453i
\(342\) 0 0
\(343\) 18.0060 4.33396i 0.972234 0.234012i
\(344\) 0 0
\(345\) 0.512873 0.0212557i 0.0276121 0.00114437i
\(346\) 0 0
\(347\) −3.54279 2.04543i −0.190187 0.109804i 0.401883 0.915691i \(-0.368356\pi\)
−0.592070 + 0.805886i \(0.701689\pi\)
\(348\) 0 0
\(349\) 16.0422i 0.858719i −0.903134 0.429359i \(-0.858739\pi\)
0.903134 0.429359i \(-0.141261\pi\)
\(350\) 0 0
\(351\) 0.960439 0.119964i 0.0512644 0.00640321i
\(352\) 0 0
\(353\) 8.44835 14.6330i 0.449660 0.778835i −0.548703 0.836017i \(-0.684878\pi\)
0.998364 + 0.0571826i \(0.0182117\pi\)
\(354\) 0 0
\(355\) 6.44464 3.72081i 0.342046 0.197480i
\(356\) 0 0
\(357\) −28.2396 + 21.1909i −1.49460 + 1.12154i
\(358\) 0 0
\(359\) −7.48646 + 4.32231i −0.395120 + 0.228123i −0.684376 0.729129i \(-0.739925\pi\)
0.289256 + 0.957252i \(0.406592\pi\)
\(360\) 0 0
\(361\) 7.75136 13.4257i 0.407966 0.706618i
\(362\) 0 0
\(363\) 45.6731 + 23.9045i 2.39721 + 1.25466i
\(364\) 0 0
\(365\) 6.81385i 0.356653i
\(366\) 0 0
\(367\) 8.61874 + 4.97603i 0.449895 + 0.259747i 0.707786 0.706427i \(-0.249694\pi\)
−0.257891 + 0.966174i \(0.583028\pi\)
\(368\) 0 0
\(369\) 12.3816 26.2486i 0.644561 1.36645i
\(370\) 0 0
\(371\) −0.654510 8.29575i −0.0339805 0.430694i
\(372\) 0 0
\(373\) −3.22411 5.58432i −0.166938 0.289145i 0.770404 0.637556i \(-0.220055\pi\)
−0.937342 + 0.348411i \(0.886721\pi\)
\(374\) 0 0
\(375\) −1.46285 + 0.927396i −0.0755414 + 0.0478905i
\(376\) 0 0
\(377\) 1.52429 0.0785050
\(378\) 0 0
\(379\) 8.30224 0.426458 0.213229 0.977002i \(-0.431602\pi\)
0.213229 + 0.977002i \(0.431602\pi\)
\(380\) 0 0
\(381\) 22.8681 14.4975i 1.17157 0.742731i
\(382\) 0 0
\(383\) −15.3085 26.5152i −0.782230 1.35486i −0.930640 0.365936i \(-0.880749\pi\)
0.148410 0.988926i \(-0.452584\pi\)
\(384\) 0 0
\(385\) −13.9193 + 9.57042i −0.709391 + 0.487754i
\(386\) 0 0
\(387\) −0.344038 + 0.729349i −0.0174884 + 0.0370749i
\(388\) 0 0
\(389\) −5.50194 3.17655i −0.278959 0.161057i 0.353993 0.935248i \(-0.384824\pi\)
−0.632952 + 0.774191i \(0.718157\pi\)
\(390\) 0 0
\(391\) 2.28330i 0.115472i
\(392\) 0 0
\(393\) −18.4645 9.66397i −0.931408 0.487483i
\(394\) 0 0
\(395\) −0.455092 + 0.788242i −0.0228982 + 0.0396608i
\(396\) 0 0
\(397\) −10.3123 + 5.95380i −0.517559 + 0.298813i −0.735935 0.677052i \(-0.763257\pi\)
0.218376 + 0.975865i \(0.429924\pi\)
\(398\) 0 0
\(399\) 26.7235 3.22650i 1.33785 0.161527i
\(400\) 0 0
\(401\) 22.0659 12.7397i 1.10192 0.636192i 0.165193 0.986261i \(-0.447175\pi\)
0.936724 + 0.350069i \(0.113842\pi\)
\(402\) 0 0
\(403\) −0.620404 + 1.07457i −0.0309045 + 0.0535282i
\(404\) 0 0
\(405\) 3.15291 8.42966i 0.156669 0.418873i
\(406\) 0 0
\(407\) 21.6928i 1.07527i
\(408\) 0 0
\(409\) −20.9193 12.0778i −1.03439 0.597208i −0.116154 0.993231i \(-0.537057\pi\)
−0.918240 + 0.396023i \(0.870390\pi\)
\(410\) 0 0
\(411\) −27.8606 + 1.15467i −1.37426 + 0.0569555i
\(412\) 0 0
\(413\) 18.7646 1.48047i 0.923344 0.0728491i
\(414\) 0 0
\(415\) −0.895346 1.55078i −0.0439508 0.0761250i
\(416\) 0 0
\(417\) −5.55209 8.75774i −0.271887 0.428869i
\(418\) 0 0
\(419\) −9.60952 −0.469456 −0.234728 0.972061i \(-0.575420\pi\)
−0.234728 + 0.972061i \(0.575420\pi\)
\(420\) 0 0
\(421\) 7.26725 0.354184 0.177092 0.984194i \(-0.443331\pi\)
0.177092 + 0.984194i \(0.443331\pi\)
\(422\) 0 0
\(423\) 17.5281 1.45538i 0.852246 0.0707631i
\(424\) 0 0
\(425\) 3.85223 + 6.67225i 0.186860 + 0.323652i
\(426\) 0 0
\(427\) −15.0713 7.18503i −0.729349 0.347708i
\(428\) 0 0
\(429\) −0.0852971 2.05811i −0.00411818 0.0993665i
\(430\) 0 0
\(431\) 10.1889 + 5.88259i 0.490784 + 0.283354i 0.724900 0.688854i \(-0.241886\pi\)
−0.234115 + 0.972209i \(0.575219\pi\)
\(432\) 0 0
\(433\) 5.08112i 0.244183i −0.992519 0.122092i \(-0.961040\pi\)
0.992519 0.122092i \(-0.0389602\pi\)
\(434\) 0 0
\(435\) 6.57242 12.5576i 0.315124 0.602090i
\(436\) 0 0
\(437\) −0.870399 + 1.50758i −0.0416368 + 0.0721171i
\(438\) 0 0
\(439\) 15.2664 8.81403i 0.728623 0.420671i −0.0892949 0.996005i \(-0.528461\pi\)
0.817918 + 0.575334i \(0.195128\pi\)
\(440\) 0 0
\(441\) 14.5267 + 15.1649i 0.691749 + 0.722138i
\(442\) 0 0
\(443\) −21.5228 + 12.4262i −1.02258 + 0.590387i −0.914851 0.403793i \(-0.867692\pi\)
−0.107731 + 0.994180i \(0.534358\pi\)
\(444\) 0 0
\(445\) 3.80761 6.59498i 0.180498 0.312632i
\(446\) 0 0
\(447\) 7.38923 14.1182i 0.349498 0.667769i
\(448\) 0 0
\(449\) 18.0711i 0.852830i 0.904528 + 0.426415i \(0.140224\pi\)
−0.904528 + 0.426415i \(0.859776\pi\)
\(450\) 0 0
\(451\) −53.4899 30.8824i −2.51874 1.45420i
\(452\) 0 0
\(453\) −1.21649 29.3523i −0.0571556 1.37909i
\(454\) 0 0
\(455\) 0.444864 + 0.212083i 0.0208555 + 0.00994261i
\(456\) 0 0
\(457\) 9.46311 + 16.3906i 0.442665 + 0.766719i 0.997886 0.0649839i \(-0.0206996\pi\)
−0.555221 + 0.831703i \(0.687366\pi\)
\(458\) 0 0
\(459\) −36.8836 15.5653i −1.72158 0.726527i
\(460\) 0 0
\(461\) −15.4024 −0.717363 −0.358681 0.933460i \(-0.616774\pi\)
−0.358681 + 0.933460i \(0.616774\pi\)
\(462\) 0 0
\(463\) −13.3839 −0.622004 −0.311002 0.950409i \(-0.600665\pi\)
−0.311002 + 0.950409i \(0.600665\pi\)
\(464\) 0 0
\(465\) 6.17760 + 9.74441i 0.286479 + 0.451886i
\(466\) 0 0
\(467\) −10.7413 18.6044i −0.497046 0.860909i 0.502948 0.864317i \(-0.332249\pi\)
−0.999994 + 0.00340761i \(0.998915\pi\)
\(468\) 0 0
\(469\) −2.43098 + 0.191798i −0.112252 + 0.00885639i
\(470\) 0 0
\(471\) −19.9110 + 0.825199i −0.917450 + 0.0380231i
\(472\) 0 0
\(473\) 1.48628 + 0.858106i 0.0683394 + 0.0394558i
\(474\) 0 0
\(475\) 5.87390i 0.269513i
\(476\) 0 0
\(477\) 7.75317 5.37785i 0.354993 0.246235i
\(478\) 0 0
\(479\) 7.81022 13.5277i 0.356858 0.618096i −0.630576 0.776127i \(-0.717181\pi\)
0.987434 + 0.158031i \(0.0505147\pi\)
\(480\) 0 0
\(481\) −0.548105 + 0.316449i −0.0249915 + 0.0144288i
\(482\) 0 0
\(483\) −1.34831 + 0.162790i −0.0613501 + 0.00740718i
\(484\) 0 0
\(485\) −8.86623 + 5.11892i −0.402595 + 0.232438i
\(486\) 0 0
\(487\) 1.75816 3.04523i 0.0796700 0.137993i −0.823438 0.567407i \(-0.807947\pi\)
0.903108 + 0.429414i \(0.141280\pi\)
\(488\) 0 0
\(489\) −10.9109 5.71058i −0.493408 0.258241i
\(490\) 0 0
\(491\) 20.2108i 0.912099i −0.889955 0.456049i \(-0.849264\pi\)
0.889955 0.456049i \(-0.150736\pi\)
\(492\) 0 0
\(493\) −54.5998 31.5232i −2.45905 1.41973i
\(494\) 0 0
\(495\) −17.3232 8.17144i −0.778618 0.367279i
\(496\) 0 0
\(497\) −16.2238 + 11.1550i −0.727737 + 0.500368i
\(498\) 0 0
\(499\) −0.763061 1.32166i −0.0341593 0.0591656i 0.848440 0.529291i \(-0.177542\pi\)
−0.882600 + 0.470125i \(0.844209\pi\)
\(500\) 0 0
\(501\) 20.0471 12.7091i 0.895636 0.567801i
\(502\) 0 0
\(503\) 4.12243 0.183810 0.0919050 0.995768i \(-0.470704\pi\)
0.0919050 + 0.995768i \(0.470704\pi\)
\(504\) 0 0
\(505\) 5.79840 0.258025
\(506\) 0 0
\(507\) 18.9663 12.0240i 0.842324 0.534003i
\(508\) 0 0
\(509\) −5.26336 9.11640i −0.233294 0.404077i 0.725481 0.688242i \(-0.241617\pi\)
−0.958776 + 0.284164i \(0.908284\pi\)
\(510\) 0 0
\(511\) 1.41793 + 17.9719i 0.0627256 + 0.795031i
\(512\) 0 0
\(513\) 18.4193 + 24.3373i 0.813231 + 1.07452i
\(514\) 0 0
\(515\) 1.75128 + 1.01110i 0.0771705 + 0.0445544i
\(516\) 0 0
\(517\) 37.4315i 1.64623i
\(518\) 0 0
\(519\) 19.9975 + 10.4663i 0.877792 + 0.459421i
\(520\) 0 0
\(521\) 3.90299 6.76018i 0.170993 0.296169i −0.767774 0.640720i \(-0.778636\pi\)
0.938767 + 0.344552i \(0.111969\pi\)
\(522\) 0 0
\(523\) 0.611446 0.353019i 0.0267367 0.0154364i −0.486572 0.873640i \(-0.661753\pi\)
0.513309 + 0.858204i \(0.328420\pi\)
\(524\) 0 0
\(525\) 3.66537 2.75047i 0.159970 0.120040i
\(526\) 0 0
\(527\) 44.4455 25.6606i 1.93607 1.11779i
\(528\) 0 0
\(529\) −11.4561 + 19.8425i −0.498091 + 0.862718i
\(530\) 0 0
\(531\) 12.1644 + 17.5373i 0.527892 + 0.761053i
\(532\) 0 0
\(533\) 1.80202i 0.0780541i
\(534\) 0 0
\(535\) 0.633070 + 0.365503i 0.0273700 + 0.0158021i
\(536\) 0 0
\(537\) 15.3539 0.636330i 0.662568 0.0274597i
\(538\) 0 0
\(539\) 34.7213 28.1390i 1.49555 1.21203i
\(540\) 0 0
\(541\) 15.5718 + 26.9711i 0.669484 + 1.15958i 0.978049 + 0.208376i \(0.0668179\pi\)
−0.308565 + 0.951203i \(0.599849\pi\)
\(542\) 0 0
\(543\) −15.1153 23.8424i −0.648658 1.02318i
\(544\) 0 0
\(545\) −8.40908 −0.360205
\(546\) 0 0
\(547\) 3.60254 0.154033 0.0770167 0.997030i \(-0.475461\pi\)
0.0770167 + 0.997030i \(0.475461\pi\)
\(548\) 0 0
\(549\) −1.56655 18.8669i −0.0668586 0.805221i
\(550\) 0 0
\(551\) 24.0334 + 41.6270i 1.02386 + 1.77337i
\(552\) 0 0
\(553\) 1.03630 2.17373i 0.0440680 0.0924366i
\(554\) 0 0
\(555\) 0.243690 + 5.87993i 0.0103441 + 0.249589i
\(556\) 0 0
\(557\) 13.5235 + 7.80780i 0.573009 + 0.330827i 0.758350 0.651847i \(-0.226006\pi\)
−0.185341 + 0.982674i \(0.559339\pi\)
\(558\) 0 0
\(559\) 0.0500713i 0.00211779i
\(560\) 0 0
\(561\) −39.5076 + 75.4851i −1.66801 + 3.18698i
\(562\) 0 0
\(563\) −9.23761 + 16.0000i −0.389319 + 0.674320i −0.992358 0.123392i \(-0.960623\pi\)
0.603039 + 0.797711i \(0.293956\pi\)
\(564\) 0 0
\(565\) −11.9211 + 6.88267i −0.501526 + 0.289556i
\(566\) 0 0
\(567\) −6.56180 + 22.8898i −0.275570 + 0.961281i
\(568\) 0 0
\(569\) 3.92281 2.26483i 0.164453 0.0949468i −0.415515 0.909586i \(-0.636399\pi\)
0.579967 + 0.814640i \(0.303065\pi\)
\(570\) 0 0
\(571\) −19.4533 + 33.6941i −0.814094 + 1.41005i 0.0958818 + 0.995393i \(0.469433\pi\)
−0.909976 + 0.414660i \(0.863900\pi\)
\(572\) 0 0
\(573\) −7.66405 + 14.6433i −0.320170 + 0.611733i
\(574\) 0 0
\(575\) 0.296362i 0.0123591i
\(576\) 0 0
\(577\) −2.37456 1.37095i −0.0988540 0.0570734i 0.449758 0.893150i \(-0.351510\pi\)
−0.548612 + 0.836077i \(0.684844\pi\)
\(578\) 0 0
\(579\) 0.994235 + 23.9896i 0.0413190 + 0.996975i
\(580\) 0 0
\(581\) 2.68424 + 3.90396i 0.111361 + 0.161964i
\(582\) 0 0
\(583\) −10.0405 17.3907i −0.415835 0.720247i
\(584\) 0 0
\(585\) 0.0462403 + 0.556902i 0.00191180 + 0.0230251i
\(586\) 0 0
\(587\) 16.5793 0.684302 0.342151 0.939645i \(-0.388845\pi\)
0.342151 + 0.939645i \(0.388845\pi\)
\(588\) 0 0
\(589\) −39.1274 −1.61222
\(590\) 0 0
\(591\) 24.3067 + 38.3408i 0.999844 + 1.57713i
\(592\) 0 0
\(593\) −7.24841 12.5546i −0.297657 0.515556i 0.677943 0.735115i \(-0.262872\pi\)
−0.975599 + 0.219558i \(0.929538\pi\)
\(594\) 0 0
\(595\) −11.5489 16.7968i −0.473460 0.688602i
\(596\) 0 0
\(597\) 28.5281 1.18233i 1.16758 0.0483896i
\(598\) 0 0
\(599\) −22.6646 13.0854i −0.926051 0.534656i −0.0404906 0.999180i \(-0.512892\pi\)
−0.885560 + 0.464524i \(0.846225\pi\)
\(600\) 0 0
\(601\) 39.8722i 1.62642i 0.581970 + 0.813211i \(0.302282\pi\)
−0.581970 + 0.813211i \(0.697718\pi\)
\(602\) 0 0
\(603\) −1.57593 2.27199i −0.0641766 0.0925224i
\(604\) 0 0
\(605\) −14.8813 + 25.7752i −0.605013 + 1.04791i
\(606\) 0 0
\(607\) −9.68625 + 5.59236i −0.393153 + 0.226987i −0.683525 0.729927i \(-0.739554\pi\)
0.290373 + 0.956914i \(0.406221\pi\)
\(608\) 0 0
\(609\) −14.7219 + 34.4890i −0.596563 + 1.39757i
\(610\) 0 0
\(611\) −0.945770 + 0.546041i −0.0382618 + 0.0220904i
\(612\) 0 0
\(613\) 8.86155 15.3487i 0.357915 0.619926i −0.629698 0.776840i \(-0.716821\pi\)
0.987612 + 0.156914i \(0.0501546\pi\)
\(614\) 0 0
\(615\) 14.8456 + 7.76993i 0.598633 + 0.313314i
\(616\) 0 0
\(617\) 13.5065i 0.543752i −0.962332 0.271876i \(-0.912356\pi\)
0.962332 0.271876i \(-0.0876441\pi\)
\(618\) 0 0
\(619\) −4.61699 2.66562i −0.185573 0.107140i 0.404336 0.914611i \(-0.367503\pi\)
−0.589908 + 0.807470i \(0.700836\pi\)
\(620\) 0 0
\(621\) −0.929326 1.22791i −0.0372926 0.0492744i
\(622\) 0 0
\(623\) −8.67041 + 18.1870i −0.347373 + 0.728646i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 54.8603 34.7795i 2.19091 1.38896i
\(628\) 0 0
\(629\) 26.1774 1.04376
\(630\) 0 0
\(631\) −18.6464 −0.742300 −0.371150 0.928573i \(-0.621036\pi\)
−0.371150 + 0.928573i \(0.621036\pi\)
\(632\) 0 0
\(633\) 37.3610 23.6855i 1.48497 0.941415i
\(634\) 0 0
\(635\) 7.81626 + 13.5382i 0.310179 + 0.537246i
\(636\) 0 0
\(637\) −1.21749 0.466807i −0.0482385 0.0184956i
\(638\) 0 0
\(639\) −20.1913 9.52435i −0.798754 0.376777i
\(640\) 0 0
\(641\) −6.24029 3.60283i −0.246477 0.142303i 0.371673 0.928364i \(-0.378784\pi\)
−0.618150 + 0.786060i \(0.712118\pi\)
\(642\) 0 0
\(643\) 17.2991i 0.682211i −0.940025 0.341106i \(-0.889199\pi\)
0.940025 0.341106i \(-0.110801\pi\)
\(644\) 0 0
\(645\) −0.412503 0.215897i −0.0162423 0.00850094i
\(646\) 0 0
\(647\) −21.1985 + 36.7169i −0.833399 + 1.44349i 0.0619275 + 0.998081i \(0.480275\pi\)
−0.895327 + 0.445410i \(0.853058\pi\)
\(648\) 0 0
\(649\) 39.3368 22.7111i 1.54410 0.891489i
\(650\) 0 0
\(651\) −18.3215 24.4159i −0.718077 0.956934i
\(652\) 0 0
\(653\) −40.6027 + 23.4420i −1.58891 + 0.917355i −0.595418 + 0.803416i \(0.703013\pi\)
−0.993488 + 0.113939i \(0.963653\pi\)
\(654\) 0 0
\(655\) 6.01615 10.4203i 0.235070 0.407154i
\(656\) 0 0
\(657\) −16.7965 + 11.6506i −0.655293 + 0.454533i
\(658\) 0 0
\(659\) 13.9569i 0.543682i 0.962342 + 0.271841i \(0.0876324\pi\)
−0.962342 + 0.271841i \(0.912368\pi\)
\(660\) 0 0
\(661\) 0.214647 + 0.123927i 0.00834881 + 0.00482019i 0.504169 0.863605i \(-0.331799\pi\)
−0.495820 + 0.868425i \(0.665132\pi\)
\(662\) 0 0
\(663\) 2.48359 0.102931i 0.0964545 0.00399749i
\(664\) 0 0
\(665\) 1.22233 + 15.4927i 0.0474000 + 0.600783i
\(666\) 0 0
\(667\) −1.21258 2.10025i −0.0469513 0.0813220i
\(668\) 0 0
\(669\) 23.9012 + 37.7013i 0.924075 + 1.45761i
\(670\) 0 0
\(671\) −40.2906 −1.55540
\(672\) 0 0
\(673\) 32.7763 1.26343 0.631716 0.775200i \(-0.282351\pi\)
0.631716 + 0.775200i \(0.282351\pi\)
\(674\) 0 0
\(675\) 4.78731 + 2.02030i 0.184264 + 0.0777615i
\(676\) 0 0
\(677\) −5.77061 9.99498i −0.221782 0.384138i 0.733567 0.679617i \(-0.237854\pi\)
−0.955349 + 0.295479i \(0.904521\pi\)
\(678\) 0 0
\(679\) 22.3199 15.3465i 0.856561 0.588943i
\(680\) 0 0
\(681\) −0.966453 23.3193i −0.0370346 0.893597i
\(682\) 0 0
\(683\) 30.5108 + 17.6154i 1.16746 + 0.674034i 0.953081 0.302716i \(-0.0978933\pi\)
0.214381 + 0.976750i \(0.431227\pi\)
\(684\) 0 0
\(685\) 16.0992i 0.615117i
\(686\) 0 0
\(687\) 4.06710 7.77079i 0.155169 0.296474i
\(688\) 0 0
\(689\) −0.292936 + 0.507381i −0.0111600 + 0.0193297i
\(690\) 0 0
\(691\) −12.5509 + 7.24625i −0.477458 + 0.275660i −0.719356 0.694641i \(-0.755563\pi\)
0.241899 + 0.970301i \(0.422230\pi\)
\(692\) 0 0
\(693\) 47.3912 + 17.9478i 1.80024 + 0.681779i
\(694\) 0 0
\(695\) 5.18468 2.99338i 0.196666 0.113545i
\(696\) 0 0
\(697\) 37.2668 64.5480i 1.41158 2.44493i
\(698\) 0 0
\(699\) −2.46745 + 4.71444i −0.0933277 + 0.178316i
\(700\) 0 0
\(701\) 15.1922i 0.573801i −0.957960 0.286901i \(-0.907375\pi\)
0.957960 0.286901i \(-0.0926250\pi\)
\(702\) 0 0
\(703\) −17.2839 9.97885i −0.651874 0.376360i
\(704\) 0 0
\(705\) 0.420493 + 10.1460i 0.0158367 + 0.382119i
\(706\) 0 0
\(707\) −15.2936 + 1.20662i −0.575175 + 0.0453796i
\(708\) 0 0
\(709\) 3.59857 + 6.23291i 0.135147 + 0.234082i 0.925654 0.378372i \(-0.123516\pi\)
−0.790506 + 0.612454i \(0.790183\pi\)
\(710\) 0 0
\(711\) 2.72119 0.225944i 0.102052 0.00847355i
\(712\) 0 0
\(713\) 1.97413 0.0739319
\(714\) 0 0
\(715\) 1.18927 0.0444762
\(716\) 0 0
\(717\) 21.1749 + 33.4007i 0.790789 + 1.24737i
\(718\) 0 0
\(719\) −7.67282 13.2897i −0.286148 0.495622i 0.686739 0.726904i \(-0.259041\pi\)
−0.972887 + 0.231282i \(0.925708\pi\)
\(720\) 0 0
\(721\) −4.82950 2.30240i −0.179860 0.0857459i
\(722\) 0 0
\(723\) −32.6676 + 1.35389i −1.21492 + 0.0503516i
\(724\) 0 0
\(725\) 7.08678 + 4.09155i 0.263196 + 0.151957i
\(726\) 0 0
\(727\) 35.1502i 1.30365i 0.758370 + 0.651824i \(0.225996\pi\)
−0.758370 + 0.651824i \(0.774004\pi\)
\(728\) 0 0
\(729\) −26.1705 + 6.64128i −0.969277 + 0.245973i
\(730\) 0 0
\(731\) −1.03550 + 1.79354i −0.0382995 + 0.0663366i
\(732\) 0 0
\(733\) −27.4367 + 15.8406i −1.01340 + 0.585086i −0.912185 0.409779i \(-0.865606\pi\)
−0.101214 + 0.994865i \(0.532273\pi\)
\(734\) 0 0
\(735\) −9.09525 + 8.01726i −0.335483 + 0.295721i
\(736\) 0 0
\(737\) −5.09616 + 2.94227i −0.187719 + 0.108380i
\(738\) 0 0
\(739\) −11.7713 + 20.3886i −0.433016 + 0.750006i −0.997131 0.0756904i \(-0.975884\pi\)
0.564115 + 0.825696i \(0.309217\pi\)
\(740\) 0 0
\(741\) −1.67905 0.878786i −0.0616815 0.0322830i
\(742\) 0 0
\(743\) 28.3130i 1.03870i −0.854560 0.519352i \(-0.826173\pi\)
0.854560 0.519352i \(-0.173827\pi\)
\(744\) 0 0
\(745\) 7.96751 + 4.60004i 0.291907 + 0.168532i
\(746\) 0 0
\(747\) −2.29186 + 4.85866i −0.0838548 + 0.177769i
\(748\) 0 0
\(749\) −1.74582 0.832295i −0.0637907 0.0304114i
\(750\) 0 0
\(751\) −26.4096 45.7427i −0.963699 1.66917i −0.713072 0.701091i \(-0.752697\pi\)
−0.250627 0.968084i \(-0.580637\pi\)
\(752\) 0 0
\(753\) −4.62821 + 2.93412i −0.168661 + 0.106925i
\(754\) 0 0
\(755\) 16.9611 0.617278
\(756\) 0 0
\(757\) 39.3857 1.43150 0.715750 0.698357i \(-0.246085\pi\)
0.715750 + 0.698357i \(0.246085\pi\)
\(758\) 0 0
\(759\) −2.76792 + 1.75476i −0.100469 + 0.0636938i
\(760\) 0 0
\(761\) 6.19194 + 10.7248i 0.224458 + 0.388772i 0.956157 0.292856i \(-0.0946056\pi\)
−0.731699 + 0.681628i \(0.761272\pi\)
\(762\) 0 0
\(763\) 22.1794 1.74989i 0.802949 0.0633503i
\(764\) 0 0
\(765\) 9.86073 20.9044i 0.356515 0.755800i
\(766\) 0 0
\(767\) −1.14767 0.662608i −0.0414400 0.0239254i
\(768\) 0 0
\(769\) 38.5632i 1.39062i 0.718708 + 0.695312i \(0.244734\pi\)
−0.718708 + 0.695312i \(0.755266\pi\)
\(770\) 0 0
\(771\) −4.43865 2.32311i −0.159854 0.0836649i
\(772\) 0 0
\(773\) −16.1494 + 27.9717i −0.580855 + 1.00607i 0.414523 + 0.910039i \(0.363948\pi\)
−0.995378 + 0.0960319i \(0.969385\pi\)
\(774\) 0 0
\(775\) −5.76880 + 3.33062i −0.207221 + 0.119639i
\(776\) 0 0
\(777\) −1.86633 15.4579i −0.0669542 0.554550i
\(778\) 0 0
\(779\) −49.2116 + 28.4123i −1.76319 + 1.01798i
\(780\) 0 0
\(781\) −23.7558 + 41.1462i −0.850049 + 1.47233i
\(782\) 0 0
\(783\) −42.1928 + 5.27012i −1.50785 + 0.188339i
\(784\) 0 0
\(785\) 11.5055i 0.410649i
\(786\) 0 0
\(787\) 34.2715 + 19.7866i 1.22165 + 0.705318i 0.965269 0.261259i \(-0.0841377\pi\)
0.256377 + 0.966577i \(0.417471\pi\)
\(788\) 0 0
\(789\) 12.7094 0.526732i 0.452466 0.0187522i
\(790\) 0 0
\(791\) 30.0104 20.6341i 1.06705 0.733666i
\(792\) 0 0
\(793\) 0.587748 + 1.01801i 0.0208716 + 0.0361506i
\(794\) 0 0
\(795\) 2.91688 + 4.60102i 0.103451 + 0.163181i
\(796\) 0 0
\(797\) −12.9298 −0.457998 −0.228999 0.973427i \(-0.573545\pi\)
−0.228999 + 0.973427i \(0.573545\pi\)
\(798\) 0 0
\(799\) 45.1697 1.59799
\(800\) 0 0
\(801\) −22.7673 + 1.89040i −0.804444 + 0.0667941i
\(802\) 0 0
\(803\) 21.7518 + 37.6751i 0.767603 + 1.32953i
\(804\) 0 0
\(805\) −0.0616715 0.781670i −0.00217363 0.0275502i
\(806\) 0 0
\(807\) 1.37023 + 33.0620i 0.0482345 + 1.16384i
\(808\) 0 0
\(809\) −21.2251 12.2543i −0.746234 0.430838i 0.0780978 0.996946i \(-0.475115\pi\)
−0.824331 + 0.566108i \(0.808449\pi\)
\(810\) 0 0
\(811\) 28.4376i 0.998579i −0.866435 0.499289i \(-0.833594\pi\)
0.866435 0.499289i \(-0.166406\pi\)
\(812\) 0 0
\(813\) 14.2135 27.1569i 0.498487 0.952434i
\(814\) 0 0
\(815\) 3.55503 6.15749i 0.124527 0.215687i
\(816\) 0 0
\(817\) 1.36740 0.789471i 0.0478394 0.0276201i
\(818\) 0 0
\(819\) −0.237850 1.45924i −0.00831116 0.0509899i
\(820\) 0 0
\(821\) 8.66190 5.00095i 0.302302 0.174534i −0.341174 0.940000i \(-0.610825\pi\)
0.643477 + 0.765466i \(0.277491\pi\)
\(822\) 0 0
\(823\) −23.4186 + 40.5621i −0.816320 + 1.41391i 0.0920564 + 0.995754i \(0.470656\pi\)
−0.908376 + 0.418154i \(0.862677\pi\)
\(824\) 0 0
\(825\) 5.12789 9.79759i 0.178530 0.341108i
\(826\) 0 0
\(827\) 8.37360i 0.291179i 0.989345 + 0.145589i \(0.0465078\pi\)
−0.989345 + 0.145589i \(0.953492\pi\)
\(828\) 0 0
\(829\) 40.9987 + 23.6706i 1.42394 + 0.822114i 0.996633 0.0819904i \(-0.0261277\pi\)
0.427311 + 0.904105i \(0.359461\pi\)
\(830\) 0 0
\(831\) 1.41740 + 34.2001i 0.0491691 + 1.18639i
\(832\) 0 0
\(833\) 33.9563 + 41.8992i 1.17651 + 1.45172i
\(834\) 0 0
\(835\) 6.85204 + 11.8681i 0.237125 + 0.410712i
\(836\) 0 0
\(837\) 13.4577 31.8894i 0.465167 1.10226i
\(838\) 0 0
\(839\) −14.0087 −0.483634 −0.241817 0.970322i \(-0.577743\pi\)
−0.241817 + 0.970322i \(0.577743\pi\)
\(840\) 0 0
\(841\) −37.9633 −1.30908
\(842\) 0 0
\(843\) −4.18903 6.60768i −0.144278 0.227580i
\(844\) 0 0
\(845\) 6.48265 + 11.2283i 0.223010 + 0.386265i
\(846\) 0 0
\(847\) 33.8867 71.0804i 1.16436 2.44235i
\(848\) 0 0
\(849\) 1.30454 0.0540660i 0.0447718 0.00185554i
\(850\) 0 0
\(851\) 0.872040 + 0.503472i 0.0298931 + 0.0172588i
\(852\) 0 0
\(853\) 18.1485i 0.621392i 0.950509 + 0.310696i \(0.100562\pi\)
−0.950509 + 0.310696i \(0.899438\pi\)
\(854\) 0 0
\(855\) −14.4794 + 10.0434i −0.495186 + 0.343478i
\(856\) 0 0
\(857\) 21.2325 36.7758i 0.725290 1.25624i −0.233565 0.972341i \(-0.575039\pi\)
0.958855 0.283897i \(-0.0916275\pi\)
\(858\) 0 0
\(859\) 30.9486 17.8682i 1.05595 0.609655i 0.131644 0.991297i \(-0.457975\pi\)
0.924310 + 0.381642i \(0.124641\pi\)
\(860\) 0 0
\(861\) −40.7730 17.4043i −1.38954 0.593138i
\(862\) 0 0
\(863\) −5.53956 + 3.19826i −0.188569 + 0.108870i −0.591312 0.806443i \(-0.701390\pi\)
0.402744 + 0.915313i \(0.368057\pi\)
\(864\) 0 0
\(865\) −6.51565 + 11.2854i −0.221539 + 0.383716i
\(866\) 0 0
\(867\) −65.0024 34.0211i −2.20760 1.15542i
\(868\) 0 0
\(869\) 5.81113i 0.197129i
\(870\) 0 0
\(871\) 0.148683 + 0.0858421i 0.00503792 + 0.00290865i
\(872\) 0 0
\(873\) 27.7782 + 13.1031i 0.940149 + 0.443474i
\(874\) 0 0
\(875\) 1.49899 + 2.18014i 0.0506752 + 0.0737022i
\(876\) 0 0
\(877\) 21.6364 + 37.4753i 0.730608 + 1.26545i 0.956624 + 0.291327i \(0.0940966\pi\)
−0.226016 + 0.974124i \(0.572570\pi\)
\(878\) 0 0
\(879\) −5.04649 + 3.19929i −0.170214 + 0.107909i
\(880\) 0 0
\(881\) 51.4321 1.73279 0.866396 0.499357i \(-0.166430\pi\)
0.866396 + 0.499357i \(0.166430\pi\)
\(882\) 0 0
\(883\) 13.8503 0.466101 0.233051 0.972465i \(-0.425129\pi\)
0.233051 + 0.972465i \(0.425129\pi\)
\(884\) 0 0
\(885\) −10.4073 + 6.59785i −0.349837 + 0.221784i
\(886\) 0 0
\(887\) 17.7602 + 30.7615i 0.596328 + 1.03287i 0.993358 + 0.115065i \(0.0367077\pi\)
−0.397030 + 0.917806i \(0.629959\pi\)
\(888\) 0 0
\(889\) −23.4331 34.0811i −0.785919 1.14304i
\(890\) 0 0
\(891\) 9.47681 + 56.6742i 0.317485 + 1.89866i
\(892\) 0 0
\(893\) −29.8238 17.2188i −0.998015 0.576204i
\(894\) 0 0
\(895\) 8.87216i 0.296564i
\(896\) 0 0
\(897\) 0.0847148 + 0.0443382i 0.00282854 + 0.00148041i
\(898\) 0 0
\(899\) 27.2548 47.2067i 0.908999 1.57443i
\(900\) 0 0
\(901\) 20.9858 12.1162i 0.699140 0.403649i
\(902\) 0 0
\(903\) 1.13293 + 0.483600i 0.0377015 + 0.0160932i
\(904\) 0 0
\(905\) 14.1150 8.14930i 0.469199 0.270892i
\(906\) 0 0
\(907\) 10.1629 17.6026i 0.337453 0.584486i −0.646500 0.762914i \(-0.723768\pi\)
0.983953 + 0.178428i \(0.0571012\pi\)
\(908\) 0 0
\(909\) −9.91432 14.2933i −0.328837 0.474080i
\(910\) 0 0
\(911\) 36.1989i 1.19932i 0.800254 + 0.599661i \(0.204698\pi\)
−0.800254 + 0.599661i \(0.795302\pi\)
\(912\) 0 0
\(913\) 9.90109 + 5.71640i 0.327678 + 0.189185i
\(914\) 0 0
\(915\) 10.9209 0.452611i 0.361035 0.0149629i
\(916\) 0 0
\(917\) −13.6995 + 28.7360i −0.452398 + 0.948946i
\(918\) 0 0
\(919\) −22.6036 39.1506i −0.745624 1.29146i −0.949903 0.312546i \(-0.898818\pi\)
0.204279 0.978913i \(-0.434515\pi\)
\(920\) 0 0
\(921\) −7.09993 11.1993i −0.233951 0.369028i
\(922\) 0 0
\(923\) 1.38617 0.0456264
\(924\) 0 0
\(925\) −3.39769 −0.111715
\(926\) 0 0
\(927\) −0.501991 6.04580i −0.0164875 0.198570i
\(928\) 0 0
\(929\) −18.8963 32.7294i −0.619969 1.07382i −0.989491 0.144596i \(-0.953812\pi\)
0.369522 0.929222i \(-0.379521\pi\)
\(930\) 0 0
\(931\) −6.44793 40.6086i −0.211322 1.33089i
\(932\) 0 0
\(933\) −2.36688 57.1099i −0.0774882 1.86969i
\(934\) 0 0
\(935\) −42.5994 24.5948i −1.39315 0.804336i
\(936\) 0 0
\(937\) 22.9137i 0.748557i −0.927316 0.374278i \(-0.877890\pi\)
0.927316 0.374278i \(-0.122110\pi\)
\(938\) 0 0
\(939\) 14.7253 28.1349i 0.480542 0.918147i
\(940\) 0 0
\(941\) −24.0405 + 41.6393i −0.783697 + 1.35740i 0.146077 + 0.989273i \(0.453335\pi\)
−0.929774 + 0.368130i \(0.879998\pi\)
\(942\) 0 0
\(943\) 2.48292 1.43351i 0.0808550 0.0466816i
\(944\) 0 0
\(945\) −13.0472 4.33244i −0.424426 0.140934i
\(946\) 0 0
\(947\) 21.6521 12.5008i 0.703597 0.406222i −0.105088 0.994463i \(-0.533513\pi\)
0.808686 + 0.588241i \(0.200179\pi\)
\(948\) 0 0
\(949\) 0.634618 1.09919i 0.0206006 0.0356812i
\(950\) 0 0
\(951\) 2.13375 4.07685i 0.0691916 0.132201i
\(952\) 0 0
\(953\) 41.8152i 1.35453i −0.735741 0.677263i \(-0.763166\pi\)
0.735741 0.677263i \(-0.236834\pi\)
\(954\) 0 0
\(955\) −8.26384 4.77113i −0.267411 0.154390i
\(956\) 0 0
\(957\) 3.74717 + 90.4144i 0.121129 + 2.92268i
\(958\) 0 0
\(959\) 3.35016 + 42.4624i 0.108182 + 1.37118i
\(960\) 0 0
\(961\) 6.68604 + 11.5806i 0.215679 + 0.373566i
\(962\) 0 0
\(963\) −0.181465 2.18550i −0.00584762 0.0704267i
\(964\) 0 0
\(965\) −13.8623 −0.446243
\(966\) 0 0
\(967\) 43.9591 1.41363 0.706814 0.707399i \(-0.250132\pi\)
0.706814 + 0.707399i \(0.250132\pi\)
\(968\) 0 0
\(969\) 41.9695 + 66.2017i 1.34825 + 2.12670i
\(970\) 0 0
\(971\) 6.34320 + 10.9867i 0.203563 + 0.352582i 0.949674 0.313240i \(-0.101414\pi\)
−0.746111 + 0.665822i \(0.768081\pi\)
\(972\) 0 0
\(973\) −13.0520 + 8.97411i −0.418427 + 0.287697i
\(974\) 0 0
\(975\) −0.322357 + 0.0133599i −0.0103237 + 0.000427859i
\(976\) 0 0
\(977\) 5.52395 + 3.18925i 0.176727 + 0.102033i 0.585754 0.810489i \(-0.300799\pi\)
−0.409027 + 0.912522i \(0.634132\pi\)
\(978\) 0 0
\(979\) 48.6199i 1.55390i
\(980\) 0 0
\(981\) 14.3782 + 20.7288i 0.459059 + 0.661819i
\(982\) 0 0
\(983\) −2.32496 + 4.02694i −0.0741546 + 0.128440i −0.900718 0.434404i \(-0.856959\pi\)
0.826564 + 0.562843i \(0.190293\pi\)
\(984\) 0 0
\(985\) −22.6982 + 13.1048i −0.723225 + 0.417554i
\(986\) 0 0
\(987\) −3.22040 26.6731i −0.102507 0.849013i
\(988\) 0 0
\(989\) −0.0689909 + 0.0398319i −0.00219378 + 0.00126658i
\(990\) 0 0
\(991\) 8.85455 15.3365i 0.281274 0.487181i −0.690425 0.723404i \(-0.742576\pi\)
0.971699 + 0.236223i \(0.0759097\pi\)
\(992\) 0 0
\(993\) −5.57509 2.91790i −0.176920 0.0925969i
\(994\) 0 0
\(995\) 16.4849i 0.522606i
\(996\) 0 0
\(997\) −11.6266 6.71259i −0.368217 0.212590i 0.304462 0.952524i \(-0.401523\pi\)
−0.672679 + 0.739934i \(0.734857\pi\)
\(998\) 0 0
\(999\) 14.0776 10.6544i 0.445396 0.337091i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.cp.b.521.12 yes 32
3.2 odd 2 840.2.cp.a.521.8 32
7.5 odd 6 840.2.cp.a.761.8 yes 32
21.5 even 6 inner 840.2.cp.b.761.12 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.cp.a.521.8 32 3.2 odd 2
840.2.cp.a.761.8 yes 32 7.5 odd 6
840.2.cp.b.521.12 yes 32 1.1 even 1 trivial
840.2.cp.b.761.12 yes 32 21.5 even 6 inner