Newspace parameters
Level: | \( N \) | \(=\) | \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 840.cf (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.70743376979\) |
Analytic rank: | \(0\) |
Dimension: | \(256\) |
Relative dimension: | \(128\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 | −1.41345 | − | 0.0464010i | −0.314700 | + | 1.70322i | 1.99569 | + | 0.131171i | 0.866025 | − | 0.500000i | 0.523844 | − | 2.39282i | 1.40407 | − | 2.24245i | −2.81473 | − | 0.278006i | −2.80193 | − | 1.07201i | −1.24729 | + | 0.666542i |
101.2 | −1.40863 | + | 0.125583i | 1.67472 | + | 0.441957i | 1.96846 | − | 0.353800i | −0.866025 | + | 0.500000i | −2.41455 | − | 0.412236i | −1.92276 | + | 1.81742i | −2.72839 | + | 0.745579i | 2.60935 | + | 1.48031i | 1.15711 | − | 0.813072i |
101.3 | −1.40637 | − | 0.148734i | 1.30218 | − | 1.14208i | 1.95576 | + | 0.418349i | 0.866025 | − | 0.500000i | −2.00121 | + | 1.41250i | −1.45671 | − | 2.20862i | −2.68830 | − | 0.879241i | 0.391324 | − | 2.97437i | −1.29232 | + | 0.574378i |
101.4 | −1.40529 | − | 0.158613i | 0.0400234 | − | 1.73159i | 1.94968 | + | 0.445794i | 0.866025 | − | 0.500000i | −0.330897 | + | 2.42704i | −0.593444 | + | 2.57834i | −2.66916 | − | 0.935716i | −2.99680 | − | 0.138608i | −1.29632 | + | 0.565283i |
101.5 | −1.40319 | + | 0.176221i | 0.803145 | − | 1.53459i | 1.93789 | − | 0.494544i | −0.866025 | + | 0.500000i | −0.856539 | + | 2.29485i | 1.62875 | + | 2.08499i | −2.63208 | + | 1.03544i | −1.70992 | − | 2.46499i | 1.12709 | − | 0.854208i |
101.6 | −1.39955 | + | 0.203104i | −1.71710 | + | 0.227111i | 1.91750 | − | 0.568510i | 0.866025 | − | 0.500000i | 2.35704 | − | 0.666603i | 2.64224 | − | 0.136357i | −2.56817 | + | 1.18511i | 2.89684 | − | 0.779944i | −1.11050 | + | 0.875670i |
101.7 | −1.39458 | − | 0.234852i | 0.707405 | + | 1.58101i | 1.88969 | + | 0.655039i | −0.866025 | + | 0.500000i | −0.615228 | − | 2.37097i | 2.21860 | + | 1.44146i | −2.48148 | − | 1.35730i | −1.99916 | + | 2.23682i | 1.32517 | − | 0.493900i |
101.8 | −1.38593 | + | 0.281424i | −1.72907 | − | 0.101633i | 1.84160 | − | 0.780068i | −0.866025 | + | 0.500000i | 2.42497 | − | 0.345745i | −0.542825 | − | 2.58947i | −2.33280 | + | 1.59939i | 2.97934 | + | 0.351460i | 1.05954 | − | 0.936685i |
101.9 | −1.38253 | + | 0.297655i | −0.830199 | + | 1.52012i | 1.82280 | − | 0.823038i | −0.866025 | + | 0.500000i | 0.695306 | − | 2.34873i | −1.41654 | + | 2.23460i | −2.27511 | + | 1.68044i | −1.62154 | − | 2.52401i | 1.04848 | − | 0.949044i |
101.10 | −1.37981 | − | 0.310051i | 1.73203 | − | 0.00870717i | 1.80774 | + | 0.855622i | 0.866025 | − | 0.500000i | −2.39257 | − | 0.525004i | 0.204495 | + | 2.63784i | −2.22904 | − | 1.74109i | 2.99985 | − | 0.0301621i | −1.34997 | + | 0.421391i |
101.11 | −1.37748 | − | 0.320241i | −1.53075 | − | 0.810433i | 1.79489 | + | 0.882249i | −0.866025 | + | 0.500000i | 1.84904 | + | 1.60656i | −2.04110 | + | 1.68343i | −2.18989 | − | 1.79008i | 1.68640 | + | 2.48114i | 1.35305 | − | 0.411403i |
101.12 | −1.36499 | − | 0.369851i | −1.18582 | − | 1.26247i | 1.72642 | + | 1.00969i | 0.866025 | − | 0.500000i | 1.15172 | + | 2.16184i | 2.63832 | − | 0.198131i | −1.98312 | − | 2.01674i | −0.187642 | + | 2.99413i | −1.36705 | + | 0.362197i |
101.13 | −1.35626 | − | 0.400715i | −1.62841 | + | 0.590144i | 1.67886 | + | 1.08694i | 0.866025 | − | 0.500000i | 2.44502 | − | 0.147856i | −2.64480 | + | 0.0708975i | −1.84140 | − | 2.14691i | 2.30346 | − | 1.92200i | −1.37491 | + | 0.331098i |
101.14 | −1.35436 | + | 0.407060i | 0.401248 | + | 1.68493i | 1.66860 | − | 1.10262i | 0.866025 | − | 0.500000i | −1.22931 | − | 2.11868i | −2.61061 | + | 0.429788i | −1.81107 | + | 2.17257i | −2.67800 | + | 1.35215i | −0.969383 | + | 1.02971i |
101.15 | −1.32538 | − | 0.493337i | 1.47720 | − | 0.904369i | 1.51324 | + | 1.30771i | −0.866025 | + | 0.500000i | −2.40400 | + | 0.469871i | 2.22730 | − | 1.42798i | −1.36047 | − | 2.47974i | 1.36423 | − | 2.67187i | 1.39448 | − | 0.235446i |
101.16 | −1.32124 | + | 0.504319i | 1.35380 | − | 1.08038i | 1.49132 | − | 1.33265i | −0.866025 | + | 0.500000i | −1.24383 | + | 2.11019i | −2.34427 | − | 1.22654i | −1.29831 | + | 2.51285i | 0.665543 | − | 2.92524i | 0.892064 | − | 1.09737i |
101.17 | −1.30091 | − | 0.554645i | −1.41157 | + | 1.00373i | 1.38474 | + | 1.44309i | −0.866025 | + | 0.500000i | 2.39304 | − | 0.522843i | 2.47291 | + | 0.940605i | −1.00102 | − | 2.64537i | 0.985054 | − | 2.83367i | 1.40394 | − | 0.170119i |
101.18 | −1.29619 | + | 0.565579i | 1.27809 | + | 1.16896i | 1.36024 | − | 1.46620i | −0.866025 | + | 0.500000i | −2.31780 | − | 0.792343i | −0.0356994 | − | 2.64551i | −0.933887 | + | 2.66980i | 0.267045 | + | 2.98809i | 0.839748 | − | 1.13790i |
101.19 | −1.27612 | + | 0.609528i | 1.29538 | + | 1.14978i | 1.25695 | − | 1.55566i | 0.866025 | − | 0.500000i | −2.35388 | − | 0.677684i | 2.04884 | + | 1.67400i | −0.655798 | + | 2.75135i | 0.356013 | + | 2.97880i | −0.800386 | + | 1.16593i |
101.20 | −1.27220 | − | 0.617664i | 0.00506025 | − | 1.73204i | 1.23698 | + | 1.57158i | −0.866025 | + | 0.500000i | −1.07626 | + | 2.20038i | −1.36209 | − | 2.26820i | −0.602979 | − | 2.76341i | −2.99995 | − | 0.0175291i | 1.41059 | − | 0.101187i |
See next 80 embeddings (of 256 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
8.b | even | 2 | 1 | inner |
21.g | even | 6 | 1 | inner |
24.h | odd | 2 | 1 | inner |
56.j | odd | 6 | 1 | inner |
168.ba | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 840.2.cf.a | ✓ | 256 |
3.b | odd | 2 | 1 | inner | 840.2.cf.a | ✓ | 256 |
7.d | odd | 6 | 1 | inner | 840.2.cf.a | ✓ | 256 |
8.b | even | 2 | 1 | inner | 840.2.cf.a | ✓ | 256 |
21.g | even | 6 | 1 | inner | 840.2.cf.a | ✓ | 256 |
24.h | odd | 2 | 1 | inner | 840.2.cf.a | ✓ | 256 |
56.j | odd | 6 | 1 | inner | 840.2.cf.a | ✓ | 256 |
168.ba | even | 6 | 1 | inner | 840.2.cf.a | ✓ | 256 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
840.2.cf.a | ✓ | 256 | 1.a | even | 1 | 1 | trivial |
840.2.cf.a | ✓ | 256 | 3.b | odd | 2 | 1 | inner |
840.2.cf.a | ✓ | 256 | 7.d | odd | 6 | 1 | inner |
840.2.cf.a | ✓ | 256 | 8.b | even | 2 | 1 | inner |
840.2.cf.a | ✓ | 256 | 21.g | even | 6 | 1 | inner |
840.2.cf.a | ✓ | 256 | 24.h | odd | 2 | 1 | inner |
840.2.cf.a | ✓ | 256 | 56.j | odd | 6 | 1 | inner |
840.2.cf.a | ✓ | 256 | 168.ba | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(840, [\chi])\).