Properties

Label 840.2.bt.b.97.11
Level $840$
Weight $2$
Character 840.97
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(97,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bt (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 97.11
Character \(\chi\) \(=\) 840.97
Dual form 840.2.bt.b.433.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{3} +(1.35806 - 1.77642i) q^{5} +(2.59845 - 0.498068i) q^{7} +1.00000i q^{9} -1.97065 q^{11} +(4.59535 + 4.59535i) q^{13} +(2.21641 - 0.295823i) q^{15} +(-4.07417 + 4.07417i) q^{17} +0.683247 q^{19} +(2.18957 + 1.48519i) q^{21} +(5.64986 - 5.64986i) q^{23} +(-1.31133 - 4.82498i) q^{25} +(-0.707107 + 0.707107i) q^{27} -5.55225i q^{29} -6.08883i q^{31} +(-1.39346 - 1.39346i) q^{33} +(2.64408 - 5.29234i) q^{35} +(2.16069 + 2.16069i) q^{37} +6.49881i q^{39} +9.16323i q^{41} +(0.140863 - 0.140863i) q^{43} +(1.77642 + 1.35806i) q^{45} +(-1.75970 + 1.75970i) q^{47} +(6.50386 - 2.58841i) q^{49} -5.76175 q^{51} +(-0.681330 + 0.681330i) q^{53} +(-2.67627 + 3.50070i) q^{55} +(0.483129 + 0.483129i) q^{57} +9.12135 q^{59} +2.91963i q^{61} +(0.498068 + 2.59845i) q^{63} +(14.4040 - 1.92249i) q^{65} +(-7.72475 - 7.72475i) q^{67} +7.99011 q^{69} -13.9714 q^{71} +(7.15260 + 7.15260i) q^{73} +(2.48452 - 4.33903i) q^{75} +(-5.12063 + 0.981518i) q^{77} +12.3497i q^{79} -1.00000 q^{81} +(-7.79039 - 7.79039i) q^{83} +(1.70446 + 12.7704i) q^{85} +(3.92604 - 3.92604i) q^{87} -9.74211 q^{89} +(14.2296 + 9.65198i) q^{91} +(4.30545 - 4.30545i) q^{93} +(0.927893 - 1.21373i) q^{95} +(-0.937590 + 0.937590i) q^{97} -1.97065i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{11} - 16 q^{13} + 4 q^{15} - 20 q^{17} - 8 q^{19} + 24 q^{23} - 4 q^{25} + 4 q^{37} - 16 q^{43} + 4 q^{45} + 24 q^{47} - 36 q^{49} + 16 q^{53} - 28 q^{55} + 4 q^{57} - 8 q^{59} + 4 q^{63} + 24 q^{65}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) 1.35806 1.77642i 0.607344 0.794439i
\(6\) 0 0
\(7\) 2.59845 0.498068i 0.982121 0.188252i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.97065 −0.594173 −0.297087 0.954851i \(-0.596015\pi\)
−0.297087 + 0.954851i \(0.596015\pi\)
\(12\) 0 0
\(13\) 4.59535 + 4.59535i 1.27452 + 1.27452i 0.943690 + 0.330831i \(0.107329\pi\)
0.330831 + 0.943690i \(0.392671\pi\)
\(14\) 0 0
\(15\) 2.21641 0.295823i 0.572276 0.0763811i
\(16\) 0 0
\(17\) −4.07417 + 4.07417i −0.988132 + 0.988132i −0.999930 0.0117982i \(-0.996244\pi\)
0.0117982 + 0.999930i \(0.496244\pi\)
\(18\) 0 0
\(19\) 0.683247 0.156748 0.0783738 0.996924i \(-0.475027\pi\)
0.0783738 + 0.996924i \(0.475027\pi\)
\(20\) 0 0
\(21\) 2.18957 + 1.48519i 0.477803 + 0.324095i
\(22\) 0 0
\(23\) 5.64986 5.64986i 1.17808 1.17808i 0.197844 0.980233i \(-0.436606\pi\)
0.980233 0.197844i \(-0.0633941\pi\)
\(24\) 0 0
\(25\) −1.31133 4.82498i −0.262266 0.964996i
\(26\) 0 0
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) 5.55225i 1.03103i −0.856881 0.515514i \(-0.827601\pi\)
0.856881 0.515514i \(-0.172399\pi\)
\(30\) 0 0
\(31\) 6.08883i 1.09359i −0.837268 0.546793i \(-0.815848\pi\)
0.837268 0.546793i \(-0.184152\pi\)
\(32\) 0 0
\(33\) −1.39346 1.39346i −0.242570 0.242570i
\(34\) 0 0
\(35\) 2.64408 5.29234i 0.446930 0.894569i
\(36\) 0 0
\(37\) 2.16069 + 2.16069i 0.355215 + 0.355215i 0.862046 0.506831i \(-0.169183\pi\)
−0.506831 + 0.862046i \(0.669183\pi\)
\(38\) 0 0
\(39\) 6.49881i 1.04064i
\(40\) 0 0
\(41\) 9.16323i 1.43106i 0.698584 + 0.715528i \(0.253814\pi\)
−0.698584 + 0.715528i \(0.746186\pi\)
\(42\) 0 0
\(43\) 0.140863 0.140863i 0.0214814 0.0214814i −0.696284 0.717766i \(-0.745165\pi\)
0.717766 + 0.696284i \(0.245165\pi\)
\(44\) 0 0
\(45\) 1.77642 + 1.35806i 0.264813 + 0.202448i
\(46\) 0 0
\(47\) −1.75970 + 1.75970i −0.256678 + 0.256678i −0.823702 0.567023i \(-0.808095\pi\)
0.567023 + 0.823702i \(0.308095\pi\)
\(48\) 0 0
\(49\) 6.50386 2.58841i 0.929122 0.369773i
\(50\) 0 0
\(51\) −5.76175 −0.806807
\(52\) 0 0
\(53\) −0.681330 + 0.681330i −0.0935878 + 0.0935878i −0.752351 0.658763i \(-0.771080\pi\)
0.658763 + 0.752351i \(0.271080\pi\)
\(54\) 0 0
\(55\) −2.67627 + 3.50070i −0.360868 + 0.472034i
\(56\) 0 0
\(57\) 0.483129 + 0.483129i 0.0639920 + 0.0639920i
\(58\) 0 0
\(59\) 9.12135 1.18750 0.593749 0.804650i \(-0.297647\pi\)
0.593749 + 0.804650i \(0.297647\pi\)
\(60\) 0 0
\(61\) 2.91963i 0.373820i 0.982377 + 0.186910i \(0.0598473\pi\)
−0.982377 + 0.186910i \(0.940153\pi\)
\(62\) 0 0
\(63\) 0.498068 + 2.59845i 0.0627507 + 0.327374i
\(64\) 0 0
\(65\) 14.4040 1.92249i 1.78660 0.238456i
\(66\) 0 0
\(67\) −7.72475 7.72475i −0.943729 0.943729i 0.0547703 0.998499i \(-0.482557\pi\)
−0.998499 + 0.0547703i \(0.982557\pi\)
\(68\) 0 0
\(69\) 7.99011 0.961897
\(70\) 0 0
\(71\) −13.9714 −1.65810 −0.829048 0.559177i \(-0.811117\pi\)
−0.829048 + 0.559177i \(0.811117\pi\)
\(72\) 0 0
\(73\) 7.15260 + 7.15260i 0.837148 + 0.837148i 0.988483 0.151335i \(-0.0483571\pi\)
−0.151335 + 0.988483i \(0.548357\pi\)
\(74\) 0 0
\(75\) 2.48452 4.33903i 0.286888 0.501028i
\(76\) 0 0
\(77\) −5.12063 + 0.981518i −0.583550 + 0.111854i
\(78\) 0 0
\(79\) 12.3497i 1.38945i 0.719278 + 0.694723i \(0.244473\pi\)
−0.719278 + 0.694723i \(0.755527\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −7.79039 7.79039i −0.855107 0.855107i 0.135650 0.990757i \(-0.456688\pi\)
−0.990757 + 0.135650i \(0.956688\pi\)
\(84\) 0 0
\(85\) 1.70446 + 12.7704i 0.184874 + 1.38515i
\(86\) 0 0
\(87\) 3.92604 3.92604i 0.420915 0.420915i
\(88\) 0 0
\(89\) −9.74211 −1.03266 −0.516331 0.856389i \(-0.672702\pi\)
−0.516331 + 0.856389i \(0.672702\pi\)
\(90\) 0 0
\(91\) 14.2296 + 9.65198i 1.49166 + 1.01180i
\(92\) 0 0
\(93\) 4.30545 4.30545i 0.446455 0.446455i
\(94\) 0 0
\(95\) 0.927893 1.21373i 0.0951998 0.124526i
\(96\) 0 0
\(97\) −0.937590 + 0.937590i −0.0951979 + 0.0951979i −0.753102 0.657904i \(-0.771443\pi\)
0.657904 + 0.753102i \(0.271443\pi\)
\(98\) 0 0
\(99\) 1.97065i 0.198058i
\(100\) 0 0
\(101\) 6.31532i 0.628398i −0.949357 0.314199i \(-0.898264\pi\)
0.949357 0.314199i \(-0.101736\pi\)
\(102\) 0 0
\(103\) −2.56589 2.56589i −0.252824 0.252824i 0.569303 0.822128i \(-0.307213\pi\)
−0.822128 + 0.569303i \(0.807213\pi\)
\(104\) 0 0
\(105\) 5.61189 1.87261i 0.547665 0.182748i
\(106\) 0 0
\(107\) −6.52588 6.52588i −0.630880 0.630880i 0.317408 0.948289i \(-0.397187\pi\)
−0.948289 + 0.317408i \(0.897187\pi\)
\(108\) 0 0
\(109\) 12.1055i 1.15950i 0.814795 + 0.579749i \(0.196849\pi\)
−0.814795 + 0.579749i \(0.803151\pi\)
\(110\) 0 0
\(111\) 3.05567i 0.290032i
\(112\) 0 0
\(113\) 9.03766 9.03766i 0.850192 0.850192i −0.139965 0.990156i \(-0.544699\pi\)
0.990156 + 0.139965i \(0.0446989\pi\)
\(114\) 0 0
\(115\) −2.36366 17.7094i −0.220412 1.65141i
\(116\) 0 0
\(117\) −4.59535 + 4.59535i −0.424840 + 0.424840i
\(118\) 0 0
\(119\) −8.55731 + 12.6157i −0.784447 + 1.15648i
\(120\) 0 0
\(121\) −7.11654 −0.646958
\(122\) 0 0
\(123\) −6.47938 + 6.47938i −0.584226 + 0.584226i
\(124\) 0 0
\(125\) −10.3521 4.22315i −0.925916 0.377730i
\(126\) 0 0
\(127\) −1.88536 1.88536i −0.167298 0.167298i 0.618492 0.785791i \(-0.287744\pi\)
−0.785791 + 0.618492i \(0.787744\pi\)
\(128\) 0 0
\(129\) 0.199211 0.0175395
\(130\) 0 0
\(131\) 6.91889i 0.604506i 0.953228 + 0.302253i \(0.0977387\pi\)
−0.953228 + 0.302253i \(0.902261\pi\)
\(132\) 0 0
\(133\) 1.77538 0.340304i 0.153945 0.0295081i
\(134\) 0 0
\(135\) 0.295823 + 2.21641i 0.0254604 + 0.190759i
\(136\) 0 0
\(137\) −13.3157 13.3157i −1.13764 1.13764i −0.988872 0.148768i \(-0.952469\pi\)
−0.148768 0.988872i \(-0.547531\pi\)
\(138\) 0 0
\(139\) 4.45662 0.378005 0.189003 0.981977i \(-0.439474\pi\)
0.189003 + 0.981977i \(0.439474\pi\)
\(140\) 0 0
\(141\) −2.48859 −0.209577
\(142\) 0 0
\(143\) −9.05583 9.05583i −0.757286 0.757286i
\(144\) 0 0
\(145\) −9.86313 7.54031i −0.819088 0.626189i
\(146\) 0 0
\(147\) 6.42920 + 2.76864i 0.530272 + 0.228354i
\(148\) 0 0
\(149\) 8.00416i 0.655726i −0.944725 0.327863i \(-0.893672\pi\)
0.944725 0.327863i \(-0.106328\pi\)
\(150\) 0 0
\(151\) −10.8999 −0.887019 −0.443510 0.896270i \(-0.646267\pi\)
−0.443510 + 0.896270i \(0.646267\pi\)
\(152\) 0 0
\(153\) −4.07417 4.07417i −0.329377 0.329377i
\(154\) 0 0
\(155\) −10.8163 8.26902i −0.868788 0.664183i
\(156\) 0 0
\(157\) −6.30526 + 6.30526i −0.503214 + 0.503214i −0.912435 0.409221i \(-0.865800\pi\)
0.409221 + 0.912435i \(0.365800\pi\)
\(158\) 0 0
\(159\) −0.963546 −0.0764142
\(160\) 0 0
\(161\) 11.8669 17.4949i 0.935239 1.37879i
\(162\) 0 0
\(163\) 17.7122 17.7122i 1.38732 1.38732i 0.556426 0.830897i \(-0.312172\pi\)
0.830897 0.556426i \(-0.187828\pi\)
\(164\) 0 0
\(165\) −4.36778 + 0.582963i −0.340031 + 0.0453836i
\(166\) 0 0
\(167\) −3.68257 + 3.68257i −0.284966 + 0.284966i −0.835086 0.550120i \(-0.814582\pi\)
0.550120 + 0.835086i \(0.314582\pi\)
\(168\) 0 0
\(169\) 29.2345i 2.24881i
\(170\) 0 0
\(171\) 0.683247i 0.0522492i
\(172\) 0 0
\(173\) 11.7646 + 11.7646i 0.894449 + 0.894449i 0.994938 0.100489i \(-0.0320409\pi\)
−0.100489 + 0.994938i \(0.532041\pi\)
\(174\) 0 0
\(175\) −5.81059 11.8843i −0.439240 0.898370i
\(176\) 0 0
\(177\) 6.44977 + 6.44977i 0.484794 + 0.484794i
\(178\) 0 0
\(179\) 5.16770i 0.386252i 0.981174 + 0.193126i \(0.0618626\pi\)
−0.981174 + 0.193126i \(0.938137\pi\)
\(180\) 0 0
\(181\) 1.59465i 0.118529i −0.998242 0.0592646i \(-0.981124\pi\)
0.998242 0.0592646i \(-0.0188756\pi\)
\(182\) 0 0
\(183\) −2.06449 + 2.06449i −0.152612 + 0.152612i
\(184\) 0 0
\(185\) 6.77264 0.903938i 0.497934 0.0664588i
\(186\) 0 0
\(187\) 8.02877 8.02877i 0.587122 0.587122i
\(188\) 0 0
\(189\) −1.48519 + 2.18957i −0.108032 + 0.159268i
\(190\) 0 0
\(191\) 8.88021 0.642549 0.321275 0.946986i \(-0.395889\pi\)
0.321275 + 0.946986i \(0.395889\pi\)
\(192\) 0 0
\(193\) −9.68963 + 9.68963i −0.697475 + 0.697475i −0.963865 0.266391i \(-0.914169\pi\)
0.266391 + 0.963865i \(0.414169\pi\)
\(194\) 0 0
\(195\) 11.5446 + 8.82579i 0.826726 + 0.632028i
\(196\) 0 0
\(197\) −0.207918 0.207918i −0.0148135 0.0148135i 0.699661 0.714475i \(-0.253334\pi\)
−0.714475 + 0.699661i \(0.753334\pi\)
\(198\) 0 0
\(199\) −12.1051 −0.858105 −0.429052 0.903280i \(-0.641152\pi\)
−0.429052 + 0.903280i \(0.641152\pi\)
\(200\) 0 0
\(201\) 10.9244i 0.770551i
\(202\) 0 0
\(203\) −2.76540 14.4272i −0.194093 1.01259i
\(204\) 0 0
\(205\) 16.2777 + 12.4442i 1.13689 + 0.869144i
\(206\) 0 0
\(207\) 5.64986 + 5.64986i 0.392693 + 0.392693i
\(208\) 0 0
\(209\) −1.34644 −0.0931353
\(210\) 0 0
\(211\) −16.6097 −1.14346 −0.571729 0.820442i \(-0.693727\pi\)
−0.571729 + 0.820442i \(0.693727\pi\)
\(212\) 0 0
\(213\) −9.87925 9.87925i −0.676915 0.676915i
\(214\) 0 0
\(215\) −0.0589311 0.441533i −0.00401906 0.0301123i
\(216\) 0 0
\(217\) −3.03265 15.8215i −0.205870 1.07403i
\(218\) 0 0
\(219\) 10.1153i 0.683529i
\(220\) 0 0
\(221\) −37.4445 −2.51879
\(222\) 0 0
\(223\) −16.5656 16.5656i −1.10932 1.10932i −0.993240 0.116075i \(-0.962969\pi\)
−0.116075 0.993240i \(-0.537031\pi\)
\(224\) 0 0
\(225\) 4.82498 1.31133i 0.321665 0.0874221i
\(226\) 0 0
\(227\) −10.3172 + 10.3172i −0.684776 + 0.684776i −0.961072 0.276297i \(-0.910893\pi\)
0.276297 + 0.961072i \(0.410893\pi\)
\(228\) 0 0
\(229\) 12.2436 0.809083 0.404541 0.914520i \(-0.367431\pi\)
0.404541 + 0.914520i \(0.367431\pi\)
\(230\) 0 0
\(231\) −4.31487 2.92679i −0.283898 0.192569i
\(232\) 0 0
\(233\) −12.5193 + 12.5193i −0.820169 + 0.820169i −0.986132 0.165963i \(-0.946927\pi\)
0.165963 + 0.986132i \(0.446927\pi\)
\(234\) 0 0
\(235\) 0.736181 + 5.51574i 0.0480232 + 0.359807i
\(236\) 0 0
\(237\) −8.73253 + 8.73253i −0.567239 + 0.567239i
\(238\) 0 0
\(239\) 0.767767i 0.0496627i 0.999692 + 0.0248314i \(0.00790488\pi\)
−0.999692 + 0.0248314i \(0.992095\pi\)
\(240\) 0 0
\(241\) 20.1582i 1.29850i 0.760573 + 0.649252i \(0.224918\pi\)
−0.760573 + 0.649252i \(0.775082\pi\)
\(242\) 0 0
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) 4.23455 15.0688i 0.270535 0.962710i
\(246\) 0 0
\(247\) 3.13976 + 3.13976i 0.199778 + 0.199778i
\(248\) 0 0
\(249\) 11.0173i 0.698192i
\(250\) 0 0
\(251\) 6.15272i 0.388356i −0.980966 0.194178i \(-0.937796\pi\)
0.980966 0.194178i \(-0.0622040\pi\)
\(252\) 0 0
\(253\) −11.1339 + 11.1339i −0.699982 + 0.699982i
\(254\) 0 0
\(255\) −7.82482 + 10.2353i −0.490009 + 0.640958i
\(256\) 0 0
\(257\) −4.35819 + 4.35819i −0.271856 + 0.271856i −0.829847 0.557991i \(-0.811572\pi\)
0.557991 + 0.829847i \(0.311572\pi\)
\(258\) 0 0
\(259\) 6.69060 + 4.53826i 0.415734 + 0.281994i
\(260\) 0 0
\(261\) 5.55225 0.343676
\(262\) 0 0
\(263\) −13.4490 + 13.4490i −0.829301 + 0.829301i −0.987420 0.158119i \(-0.949457\pi\)
0.158119 + 0.987420i \(0.449457\pi\)
\(264\) 0 0
\(265\) 0.285039 + 2.13562i 0.0175098 + 0.131190i
\(266\) 0 0
\(267\) −6.88871 6.88871i −0.421582 0.421582i
\(268\) 0 0
\(269\) −4.88078 −0.297587 −0.148793 0.988868i \(-0.547539\pi\)
−0.148793 + 0.988868i \(0.547539\pi\)
\(270\) 0 0
\(271\) 8.71993i 0.529698i 0.964290 + 0.264849i \(0.0853222\pi\)
−0.964290 + 0.264849i \(0.914678\pi\)
\(272\) 0 0
\(273\) 3.23685 + 16.8868i 0.195903 + 1.02204i
\(274\) 0 0
\(275\) 2.58417 + 9.50834i 0.155832 + 0.573375i
\(276\) 0 0
\(277\) −23.0209 23.0209i −1.38319 1.38319i −0.838887 0.544306i \(-0.816793\pi\)
−0.544306 0.838887i \(-0.683207\pi\)
\(278\) 0 0
\(279\) 6.08883 0.364529
\(280\) 0 0
\(281\) 15.6786 0.935304 0.467652 0.883913i \(-0.345100\pi\)
0.467652 + 0.883913i \(0.345100\pi\)
\(282\) 0 0
\(283\) 17.0637 + 17.0637i 1.01433 + 1.01433i 0.999896 + 0.0144337i \(0.00459453\pi\)
0.0144337 + 0.999896i \(0.495405\pi\)
\(284\) 0 0
\(285\) 1.51436 0.202120i 0.0897029 0.0119726i
\(286\) 0 0
\(287\) 4.56392 + 23.8102i 0.269399 + 1.40547i
\(288\) 0 0
\(289\) 16.1978i 0.952810i
\(290\) 0 0
\(291\) −1.32595 −0.0777287
\(292\) 0 0
\(293\) −22.0794 22.0794i −1.28989 1.28989i −0.934851 0.355040i \(-0.884467\pi\)
−0.355040 0.934851i \(-0.615533\pi\)
\(294\) 0 0
\(295\) 12.3874 16.2033i 0.721220 0.943395i
\(296\) 0 0
\(297\) 1.39346 1.39346i 0.0808567 0.0808567i
\(298\) 0 0
\(299\) 51.9262 3.00297
\(300\) 0 0
\(301\) 0.295866 0.436185i 0.0170534 0.0251413i
\(302\) 0 0
\(303\) 4.46561 4.46561i 0.256543 0.256543i
\(304\) 0 0
\(305\) 5.18649 + 3.96504i 0.296977 + 0.227038i
\(306\) 0 0
\(307\) 15.4182 15.4182i 0.879961 0.879961i −0.113569 0.993530i \(-0.536228\pi\)
0.993530 + 0.113569i \(0.0362284\pi\)
\(308\) 0 0
\(309\) 3.62871i 0.206430i
\(310\) 0 0
\(311\) 20.0281i 1.13569i 0.823136 + 0.567844i \(0.192222\pi\)
−0.823136 + 0.567844i \(0.807778\pi\)
\(312\) 0 0
\(313\) −18.6499 18.6499i −1.05415 1.05415i −0.998447 0.0557054i \(-0.982259\pi\)
−0.0557054 0.998447i \(-0.517741\pi\)
\(314\) 0 0
\(315\) 5.29234 + 2.64408i 0.298190 + 0.148977i
\(316\) 0 0
\(317\) 7.14162 + 7.14162i 0.401113 + 0.401113i 0.878625 0.477512i \(-0.158461\pi\)
−0.477512 + 0.878625i \(0.658461\pi\)
\(318\) 0 0
\(319\) 10.9415i 0.612609i
\(320\) 0 0
\(321\) 9.22899i 0.515112i
\(322\) 0 0
\(323\) −2.78367 + 2.78367i −0.154887 + 0.154887i
\(324\) 0 0
\(325\) 16.1464 28.1985i 0.895643 1.56417i
\(326\) 0 0
\(327\) −8.55989 + 8.55989i −0.473363 + 0.473363i
\(328\) 0 0
\(329\) −3.69603 + 5.44893i −0.203769 + 0.300409i
\(330\) 0 0
\(331\) 18.9660 1.04247 0.521233 0.853414i \(-0.325472\pi\)
0.521233 + 0.853414i \(0.325472\pi\)
\(332\) 0 0
\(333\) −2.16069 + 2.16069i −0.118405 + 0.118405i
\(334\) 0 0
\(335\) −24.2131 + 3.23170i −1.32290 + 0.176567i
\(336\) 0 0
\(337\) −16.0050 16.0050i −0.871850 0.871850i 0.120824 0.992674i \(-0.461446\pi\)
−0.992674 + 0.120824i \(0.961446\pi\)
\(338\) 0 0
\(339\) 12.7812 0.694179
\(340\) 0 0
\(341\) 11.9990i 0.649780i
\(342\) 0 0
\(343\) 15.6107 9.96521i 0.842900 0.538071i
\(344\) 0 0
\(345\) 10.8511 14.1938i 0.584202 0.764168i
\(346\) 0 0
\(347\) 6.34709 + 6.34709i 0.340730 + 0.340730i 0.856642 0.515912i \(-0.172547\pi\)
−0.515912 + 0.856642i \(0.672547\pi\)
\(348\) 0 0
\(349\) 20.6689 1.10638 0.553192 0.833054i \(-0.313410\pi\)
0.553192 + 0.833054i \(0.313410\pi\)
\(350\) 0 0
\(351\) −6.49881 −0.346881
\(352\) 0 0
\(353\) 1.82560 + 1.82560i 0.0971667 + 0.0971667i 0.754019 0.656852i \(-0.228113\pi\)
−0.656852 + 0.754019i \(0.728113\pi\)
\(354\) 0 0
\(355\) −18.9740 + 24.8190i −1.00704 + 1.31726i
\(356\) 0 0
\(357\) −14.9716 + 2.86975i −0.792381 + 0.151883i
\(358\) 0 0
\(359\) 13.5919i 0.717351i −0.933462 0.358675i \(-0.883228\pi\)
0.933462 0.358675i \(-0.116772\pi\)
\(360\) 0 0
\(361\) −18.5332 −0.975430
\(362\) 0 0
\(363\) −5.03215 5.03215i −0.264120 0.264120i
\(364\) 0 0
\(365\) 22.4197 2.99233i 1.17350 0.156626i
\(366\) 0 0
\(367\) 4.58532 4.58532i 0.239352 0.239352i −0.577230 0.816582i \(-0.695866\pi\)
0.816582 + 0.577230i \(0.195866\pi\)
\(368\) 0 0
\(369\) −9.16323 −0.477019
\(370\) 0 0
\(371\) −1.43105 + 2.10975i −0.0742965 + 0.109533i
\(372\) 0 0
\(373\) 4.52482 4.52482i 0.234286 0.234286i −0.580193 0.814479i \(-0.697023\pi\)
0.814479 + 0.580193i \(0.197023\pi\)
\(374\) 0 0
\(375\) −4.33379 10.3062i −0.223796 0.532211i
\(376\) 0 0
\(377\) 25.5146 25.5146i 1.31407 1.31407i
\(378\) 0 0
\(379\) 0.424878i 0.0218245i 0.999940 + 0.0109123i \(0.00347355\pi\)
−0.999940 + 0.0109123i \(0.996526\pi\)
\(380\) 0 0
\(381\) 2.66630i 0.136599i
\(382\) 0 0
\(383\) 13.5933 + 13.5933i 0.694587 + 0.694587i 0.963238 0.268650i \(-0.0865776\pi\)
−0.268650 + 0.963238i \(0.586578\pi\)
\(384\) 0 0
\(385\) −5.21055 + 10.4293i −0.265554 + 0.531529i
\(386\) 0 0
\(387\) 0.140863 + 0.140863i 0.00716048 + 0.00716048i
\(388\) 0 0
\(389\) 0.439801i 0.0222988i 0.999938 + 0.0111494i \(0.00354903\pi\)
−0.999938 + 0.0111494i \(0.996451\pi\)
\(390\) 0 0
\(391\) 46.0370i 2.32819i
\(392\) 0 0
\(393\) −4.89239 + 4.89239i −0.246788 + 0.246788i
\(394\) 0 0
\(395\) 21.9382 + 16.7716i 1.10383 + 0.843872i
\(396\) 0 0
\(397\) 10.5788 10.5788i 0.530934 0.530934i −0.389916 0.920850i \(-0.627496\pi\)
0.920850 + 0.389916i \(0.127496\pi\)
\(398\) 0 0
\(399\) 1.49602 + 1.01475i 0.0748945 + 0.0508012i
\(400\) 0 0
\(401\) −11.6054 −0.579545 −0.289772 0.957096i \(-0.593580\pi\)
−0.289772 + 0.957096i \(0.593580\pi\)
\(402\) 0 0
\(403\) 27.9803 27.9803i 1.39380 1.39380i
\(404\) 0 0
\(405\) −1.35806 + 1.77642i −0.0674827 + 0.0882710i
\(406\) 0 0
\(407\) −4.25796 4.25796i −0.211059 0.211059i
\(408\) 0 0
\(409\) −30.7361 −1.51980 −0.759901 0.650039i \(-0.774752\pi\)
−0.759901 + 0.650039i \(0.774752\pi\)
\(410\) 0 0
\(411\) 18.8313i 0.928879i
\(412\) 0 0
\(413\) 23.7013 4.54306i 1.16627 0.223549i
\(414\) 0 0
\(415\) −24.4188 + 3.25916i −1.19867 + 0.159986i
\(416\) 0 0
\(417\) 3.15131 + 3.15131i 0.154320 + 0.154320i
\(418\) 0 0
\(419\) 15.1533 0.740289 0.370144 0.928974i \(-0.379308\pi\)
0.370144 + 0.928974i \(0.379308\pi\)
\(420\) 0 0
\(421\) 32.9975 1.60820 0.804099 0.594495i \(-0.202648\pi\)
0.804099 + 0.594495i \(0.202648\pi\)
\(422\) 0 0
\(423\) −1.75970 1.75970i −0.0855594 0.0855594i
\(424\) 0 0
\(425\) 25.0004 + 14.3152i 1.21270 + 0.694390i
\(426\) 0 0
\(427\) 1.45418 + 7.58650i 0.0703725 + 0.367137i
\(428\) 0 0
\(429\) 12.8069i 0.618322i
\(430\) 0 0
\(431\) −6.72817 −0.324084 −0.162042 0.986784i \(-0.551808\pi\)
−0.162042 + 0.986784i \(0.551808\pi\)
\(432\) 0 0
\(433\) 19.1760 + 19.1760i 0.921539 + 0.921539i 0.997138 0.0755993i \(-0.0240870\pi\)
−0.0755993 + 0.997138i \(0.524087\pi\)
\(434\) 0 0
\(435\) −1.64248 12.3061i −0.0787510 0.590032i
\(436\) 0 0
\(437\) 3.86025 3.86025i 0.184661 0.184661i
\(438\) 0 0
\(439\) −24.4669 −1.16774 −0.583870 0.811847i \(-0.698462\pi\)
−0.583870 + 0.811847i \(0.698462\pi\)
\(440\) 0 0
\(441\) 2.58841 + 6.50386i 0.123258 + 0.309707i
\(442\) 0 0
\(443\) 17.7405 17.7405i 0.842874 0.842874i −0.146357 0.989232i \(-0.546755\pi\)
0.989232 + 0.146357i \(0.0467549\pi\)
\(444\) 0 0
\(445\) −13.2304 + 17.3061i −0.627181 + 0.820386i
\(446\) 0 0
\(447\) 5.65979 5.65979i 0.267699 0.267699i
\(448\) 0 0
\(449\) 23.5455i 1.11118i 0.831456 + 0.555590i \(0.187508\pi\)
−0.831456 + 0.555590i \(0.812492\pi\)
\(450\) 0 0
\(451\) 18.0575i 0.850296i
\(452\) 0 0
\(453\) −7.70737 7.70737i −0.362124 0.362124i
\(454\) 0 0
\(455\) 36.4706 12.1697i 1.70977 0.570524i
\(456\) 0 0
\(457\) 13.1762 + 13.1762i 0.616358 + 0.616358i 0.944595 0.328237i \(-0.106455\pi\)
−0.328237 + 0.944595i \(0.606455\pi\)
\(458\) 0 0
\(459\) 5.76175i 0.268936i
\(460\) 0 0
\(461\) 12.4128i 0.578124i −0.957310 0.289062i \(-0.906657\pi\)
0.957310 0.289062i \(-0.0933433\pi\)
\(462\) 0 0
\(463\) 1.78817 1.78817i 0.0831035 0.0831035i −0.664333 0.747437i \(-0.731284\pi\)
0.747437 + 0.664333i \(0.231284\pi\)
\(464\) 0 0
\(465\) −1.80121 13.4954i −0.0835293 0.625833i
\(466\) 0 0
\(467\) −3.33894 + 3.33894i −0.154508 + 0.154508i −0.780128 0.625620i \(-0.784846\pi\)
0.625620 + 0.780128i \(0.284846\pi\)
\(468\) 0 0
\(469\) −23.9198 16.2249i −1.10451 0.749197i
\(470\) 0 0
\(471\) −8.91698 −0.410873
\(472\) 0 0
\(473\) −0.277592 + 0.277592i −0.0127637 + 0.0127637i
\(474\) 0 0
\(475\) −0.895963 3.29665i −0.0411096 0.151261i
\(476\) 0 0
\(477\) −0.681330 0.681330i −0.0311959 0.0311959i
\(478\) 0 0
\(479\) 22.0895 1.00930 0.504648 0.863325i \(-0.331622\pi\)
0.504648 + 0.863325i \(0.331622\pi\)
\(480\) 0 0
\(481\) 19.8582i 0.905457i
\(482\) 0 0
\(483\) 20.7619 3.97962i 0.944699 0.181079i
\(484\) 0 0
\(485\) 0.392247 + 2.93886i 0.0178110 + 0.133447i
\(486\) 0 0
\(487\) 17.5844 + 17.5844i 0.796826 + 0.796826i 0.982594 0.185768i \(-0.0594773\pi\)
−0.185768 + 0.982594i \(0.559477\pi\)
\(488\) 0 0
\(489\) 25.0488 1.13274
\(490\) 0 0
\(491\) 11.9520 0.539384 0.269692 0.962947i \(-0.413078\pi\)
0.269692 + 0.962947i \(0.413078\pi\)
\(492\) 0 0
\(493\) 22.6208 + 22.6208i 1.01879 + 1.01879i
\(494\) 0 0
\(495\) −3.50070 2.67627i −0.157345 0.120289i
\(496\) 0 0
\(497\) −36.3039 + 6.95870i −1.62845 + 0.312140i
\(498\) 0 0
\(499\) 12.3288i 0.551914i −0.961170 0.275957i \(-0.911005\pi\)
0.961170 0.275957i \(-0.0889948\pi\)
\(500\) 0 0
\(501\) −5.20794 −0.232674
\(502\) 0 0
\(503\) 2.91554 + 2.91554i 0.129997 + 0.129997i 0.769112 0.639114i \(-0.220699\pi\)
−0.639114 + 0.769112i \(0.720699\pi\)
\(504\) 0 0
\(505\) −11.2187 8.57661i −0.499224 0.381654i
\(506\) 0 0
\(507\) −20.6719 + 20.6719i −0.918071 + 0.918071i
\(508\) 0 0
\(509\) 17.3375 0.768472 0.384236 0.923235i \(-0.374465\pi\)
0.384236 + 0.923235i \(0.374465\pi\)
\(510\) 0 0
\(511\) 22.1481 + 15.0232i 0.979775 + 0.664586i
\(512\) 0 0
\(513\) −0.483129 + 0.483129i −0.0213307 + 0.0213307i
\(514\) 0 0
\(515\) −8.04273 + 1.07346i −0.354405 + 0.0473021i
\(516\) 0 0
\(517\) 3.46775 3.46775i 0.152511 0.152511i
\(518\) 0 0
\(519\) 16.6377i 0.730314i
\(520\) 0 0
\(521\) 40.4613i 1.77264i −0.463073 0.886320i \(-0.653253\pi\)
0.463073 0.886320i \(-0.346747\pi\)
\(522\) 0 0
\(523\) −10.9217 10.9217i −0.477574 0.477574i 0.426781 0.904355i \(-0.359648\pi\)
−0.904355 + 0.426781i \(0.859648\pi\)
\(524\) 0 0
\(525\) 4.29477 12.5122i 0.187439 0.546077i
\(526\) 0 0
\(527\) 24.8070 + 24.8070i 1.08061 + 1.08061i
\(528\) 0 0
\(529\) 40.8419i 1.77573i
\(530\) 0 0
\(531\) 9.12135i 0.395833i
\(532\) 0 0
\(533\) −42.1083 + 42.1083i −1.82391 + 1.82391i
\(534\) 0 0
\(535\) −20.4552 + 2.73014i −0.884357 + 0.118034i
\(536\) 0 0
\(537\) −3.65411 + 3.65411i −0.157687 + 0.157687i
\(538\) 0 0
\(539\) −12.8168 + 5.10085i −0.552060 + 0.219709i
\(540\) 0 0
\(541\) 38.3587 1.64917 0.824585 0.565738i \(-0.191409\pi\)
0.824585 + 0.565738i \(0.191409\pi\)
\(542\) 0 0
\(543\) 1.12759 1.12759i 0.0483894 0.0483894i
\(544\) 0 0
\(545\) 21.5045 + 16.4400i 0.921150 + 0.704214i
\(546\) 0 0
\(547\) −32.8559 32.8559i −1.40482 1.40482i −0.783786 0.621031i \(-0.786714\pi\)
−0.621031 0.783786i \(-0.713286\pi\)
\(548\) 0 0
\(549\) −2.91963 −0.124607
\(550\) 0 0
\(551\) 3.79356i 0.161611i
\(552\) 0 0
\(553\) 6.15098 + 32.0899i 0.261566 + 1.36460i
\(554\) 0 0
\(555\) 5.42816 + 4.14980i 0.230412 + 0.176149i
\(556\) 0 0
\(557\) 4.40050 + 4.40050i 0.186455 + 0.186455i 0.794162 0.607706i \(-0.207910\pi\)
−0.607706 + 0.794162i \(0.707910\pi\)
\(558\) 0 0
\(559\) 1.29463 0.0547571
\(560\) 0 0
\(561\) 11.3544 0.479383
\(562\) 0 0
\(563\) 14.3199 + 14.3199i 0.603512 + 0.603512i 0.941243 0.337731i \(-0.109659\pi\)
−0.337731 + 0.941243i \(0.609659\pi\)
\(564\) 0 0
\(565\) −3.78096 28.3284i −0.159066 1.19178i
\(566\) 0 0
\(567\) −2.59845 + 0.498068i −0.109125 + 0.0209169i
\(568\) 0 0
\(569\) 30.2602i 1.26857i 0.773099 + 0.634286i \(0.218706\pi\)
−0.773099 + 0.634286i \(0.781294\pi\)
\(570\) 0 0
\(571\) −18.9669 −0.793742 −0.396871 0.917874i \(-0.629904\pi\)
−0.396871 + 0.917874i \(0.629904\pi\)
\(572\) 0 0
\(573\) 6.27926 + 6.27926i 0.262320 + 0.262320i
\(574\) 0 0
\(575\) −34.6693 19.8516i −1.44581 0.827870i
\(576\) 0 0
\(577\) −4.89591 + 4.89591i −0.203820 + 0.203820i −0.801634 0.597815i \(-0.796036\pi\)
0.597815 + 0.801634i \(0.296036\pi\)
\(578\) 0 0
\(579\) −13.7032 −0.569486
\(580\) 0 0
\(581\) −24.1231 16.3628i −1.00079 0.678842i
\(582\) 0 0
\(583\) 1.34266 1.34266i 0.0556074 0.0556074i
\(584\) 0 0
\(585\) 1.92249 + 14.4040i 0.0794854 + 0.595534i
\(586\) 0 0
\(587\) 11.7091 11.7091i 0.483285 0.483285i −0.422894 0.906179i \(-0.638986\pi\)
0.906179 + 0.422894i \(0.138986\pi\)
\(588\) 0 0
\(589\) 4.16018i 0.171417i
\(590\) 0 0
\(591\) 0.294040i 0.0120952i
\(592\) 0 0
\(593\) 12.5801 + 12.5801i 0.516603 + 0.516603i 0.916542 0.399939i \(-0.130969\pi\)
−0.399939 + 0.916542i \(0.630969\pi\)
\(594\) 0 0
\(595\) 10.7895 + 32.3343i 0.442326 + 1.32558i
\(596\) 0 0
\(597\) −8.55957 8.55957i −0.350320 0.350320i
\(598\) 0 0
\(599\) 2.61211i 0.106728i −0.998575 0.0533640i \(-0.983006\pi\)
0.998575 0.0533640i \(-0.0169944\pi\)
\(600\) 0 0
\(601\) 1.90438i 0.0776814i 0.999245 + 0.0388407i \(0.0123665\pi\)
−0.999245 + 0.0388407i \(0.987634\pi\)
\(602\) 0 0
\(603\) 7.72475 7.72475i 0.314576 0.314576i
\(604\) 0 0
\(605\) −9.66471 + 12.6420i −0.392926 + 0.513969i
\(606\) 0 0
\(607\) 27.7279 27.7279i 1.12544 1.12544i 0.134530 0.990909i \(-0.457047\pi\)
0.990909 0.134530i \(-0.0429526\pi\)
\(608\) 0 0
\(609\) 8.24616 12.1570i 0.334151 0.492628i
\(610\) 0 0
\(611\) −16.1729 −0.654284
\(612\) 0 0
\(613\) −9.91105 + 9.91105i −0.400304 + 0.400304i −0.878340 0.478036i \(-0.841349\pi\)
0.478036 + 0.878340i \(0.341349\pi\)
\(614\) 0 0
\(615\) 2.71069 + 20.3095i 0.109306 + 0.818959i
\(616\) 0 0
\(617\) 12.8082 + 12.8082i 0.515637 + 0.515637i 0.916248 0.400611i \(-0.131202\pi\)
−0.400611 + 0.916248i \(0.631202\pi\)
\(618\) 0 0
\(619\) −31.8325 −1.27946 −0.639728 0.768601i \(-0.720953\pi\)
−0.639728 + 0.768601i \(0.720953\pi\)
\(620\) 0 0
\(621\) 7.99011i 0.320632i
\(622\) 0 0
\(623\) −25.3143 + 4.85223i −1.01420 + 0.194401i
\(624\) 0 0
\(625\) −21.5608 + 12.6543i −0.862433 + 0.506171i
\(626\) 0 0
\(627\) −0.952078 0.952078i −0.0380223 0.0380223i
\(628\) 0 0
\(629\) −17.6060 −0.701998
\(630\) 0 0
\(631\) 9.75354 0.388282 0.194141 0.980974i \(-0.437808\pi\)
0.194141 + 0.980974i \(0.437808\pi\)
\(632\) 0 0
\(633\) −11.7448 11.7448i −0.466815 0.466815i
\(634\) 0 0
\(635\) −5.90962 + 0.788751i −0.234516 + 0.0313006i
\(636\) 0 0
\(637\) 41.7821 + 17.9929i 1.65547 + 0.712903i
\(638\) 0 0
\(639\) 13.9714i 0.552699i
\(640\) 0 0
\(641\) 31.4887 1.24373 0.621864 0.783125i \(-0.286376\pi\)
0.621864 + 0.783125i \(0.286376\pi\)
\(642\) 0 0
\(643\) 3.16301 + 3.16301i 0.124737 + 0.124737i 0.766719 0.641982i \(-0.221888\pi\)
−0.641982 + 0.766719i \(0.721888\pi\)
\(644\) 0 0
\(645\) 0.270541 0.353882i 0.0106525 0.0139341i
\(646\) 0 0
\(647\) −12.7949 + 12.7949i −0.503018 + 0.503018i −0.912375 0.409356i \(-0.865753\pi\)
0.409356 + 0.912375i \(0.365753\pi\)
\(648\) 0 0
\(649\) −17.9750 −0.705580
\(650\) 0 0
\(651\) 9.04309 13.3319i 0.354426 0.522519i
\(652\) 0 0
\(653\) 15.0684 15.0684i 0.589671 0.589671i −0.347871 0.937542i \(-0.613095\pi\)
0.937542 + 0.347871i \(0.113095\pi\)
\(654\) 0 0
\(655\) 12.2908 + 9.39628i 0.480243 + 0.367143i
\(656\) 0 0
\(657\) −7.15260 + 7.15260i −0.279049 + 0.279049i
\(658\) 0 0
\(659\) 1.22588i 0.0477537i 0.999715 + 0.0238768i \(0.00760095\pi\)
−0.999715 + 0.0238768i \(0.992399\pi\)
\(660\) 0 0
\(661\) 19.0300i 0.740180i 0.928996 + 0.370090i \(0.120673\pi\)
−0.928996 + 0.370090i \(0.879327\pi\)
\(662\) 0 0
\(663\) −26.4773 26.4773i −1.02829 1.02829i
\(664\) 0 0
\(665\) 1.80656 3.61598i 0.0700553 0.140222i
\(666\) 0 0
\(667\) −31.3695 31.3695i −1.21463 1.21463i
\(668\) 0 0
\(669\) 23.4273i 0.905752i
\(670\) 0 0
\(671\) 5.75357i 0.222114i
\(672\) 0 0
\(673\) 33.5536 33.5536i 1.29340 1.29340i 0.360724 0.932673i \(-0.382530\pi\)
0.932673 0.360724i \(-0.117470\pi\)
\(674\) 0 0
\(675\) 4.33903 + 2.48452i 0.167009 + 0.0956294i
\(676\) 0 0
\(677\) 12.4780 12.4780i 0.479569 0.479569i −0.425425 0.904994i \(-0.639875\pi\)
0.904994 + 0.425425i \(0.139875\pi\)
\(678\) 0 0
\(679\) −1.96929 + 2.90326i −0.0755746 + 0.111417i
\(680\) 0 0
\(681\) −14.5907 −0.559117
\(682\) 0 0
\(683\) −2.96088 + 2.96088i −0.113295 + 0.113295i −0.761481 0.648187i \(-0.775528\pi\)
0.648187 + 0.761481i \(0.275528\pi\)
\(684\) 0 0
\(685\) −41.7379 + 5.57073i −1.59472 + 0.212846i
\(686\) 0 0
\(687\) 8.65757 + 8.65757i 0.330307 + 0.330307i
\(688\) 0 0
\(689\) −6.26190 −0.238559
\(690\) 0 0
\(691\) 27.7109i 1.05417i −0.849812 0.527085i \(-0.823285\pi\)
0.849812 0.527085i \(-0.176715\pi\)
\(692\) 0 0
\(693\) −0.981518 5.12063i −0.0372848 0.194517i
\(694\) 0 0
\(695\) 6.05237 7.91682i 0.229579 0.300302i
\(696\) 0 0
\(697\) −37.3326 37.3326i −1.41407 1.41407i
\(698\) 0 0
\(699\) −17.7050 −0.669665
\(700\) 0 0
\(701\) 28.5208 1.07722 0.538608 0.842556i \(-0.318950\pi\)
0.538608 + 0.842556i \(0.318950\pi\)
\(702\) 0 0
\(703\) 1.47628 + 1.47628i 0.0556791 + 0.0556791i
\(704\) 0 0
\(705\) −3.37966 + 4.42078i −0.127285 + 0.166496i
\(706\) 0 0
\(707\) −3.14546 16.4100i −0.118297 0.617163i
\(708\) 0 0
\(709\) 15.9132i 0.597633i −0.954311 0.298816i \(-0.903408\pi\)
0.954311 0.298816i \(-0.0965918\pi\)
\(710\) 0 0
\(711\) −12.3497 −0.463149
\(712\) 0 0
\(713\) −34.4011 34.4011i −1.28833 1.28833i
\(714\) 0 0
\(715\) −28.3853 + 3.78856i −1.06155 + 0.141684i
\(716\) 0 0
\(717\) −0.542894 + 0.542894i −0.0202747 + 0.0202747i
\(718\) 0 0
\(719\) 4.32645 0.161349 0.0806746 0.996740i \(-0.474293\pi\)
0.0806746 + 0.996740i \(0.474293\pi\)
\(720\) 0 0
\(721\) −7.94531 5.38934i −0.295899 0.200709i
\(722\) 0 0
\(723\) −14.2540 + 14.2540i −0.530112 + 0.530112i
\(724\) 0 0
\(725\) −26.7895 + 7.28084i −0.994937 + 0.270404i
\(726\) 0 0
\(727\) 24.9770 24.9770i 0.926347 0.926347i −0.0711208 0.997468i \(-0.522658\pi\)
0.997468 + 0.0711208i \(0.0226576\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 1.14780i 0.0424530i
\(732\) 0 0
\(733\) −31.3036 31.3036i −1.15623 1.15623i −0.985280 0.170946i \(-0.945318\pi\)
−0.170946 0.985280i \(-0.554682\pi\)
\(734\) 0 0
\(735\) 13.6495 7.66097i 0.503470 0.282579i
\(736\) 0 0
\(737\) 15.2228 + 15.2228i 0.560738 + 0.560738i
\(738\) 0 0
\(739\) 48.2374i 1.77444i 0.461345 + 0.887221i \(0.347367\pi\)
−0.461345 + 0.887221i \(0.652633\pi\)
\(740\) 0 0
\(741\) 4.44029i 0.163118i
\(742\) 0 0
\(743\) −23.2968 + 23.2968i −0.854678 + 0.854678i −0.990705 0.136027i \(-0.956567\pi\)
0.136027 + 0.990705i \(0.456567\pi\)
\(744\) 0 0
\(745\) −14.2187 10.8702i −0.520934 0.398251i
\(746\) 0 0
\(747\) 7.79039 7.79039i 0.285036 0.285036i
\(748\) 0 0
\(749\) −20.2075 13.7068i −0.738365 0.500836i
\(750\) 0 0
\(751\) −33.1438 −1.20943 −0.604717 0.796440i \(-0.706714\pi\)
−0.604717 + 0.796440i \(0.706714\pi\)
\(752\) 0 0
\(753\) 4.35063 4.35063i 0.158546 0.158546i
\(754\) 0 0
\(755\) −14.8027 + 19.3627i −0.538726 + 0.704682i
\(756\) 0 0
\(757\) 30.8579 + 30.8579i 1.12155 + 1.12155i 0.991509 + 0.130040i \(0.0415106\pi\)
0.130040 + 0.991509i \(0.458489\pi\)
\(758\) 0 0
\(759\) −15.7457 −0.571533
\(760\) 0 0
\(761\) 23.1590i 0.839512i 0.907637 + 0.419756i \(0.137884\pi\)
−0.907637 + 0.419756i \(0.862116\pi\)
\(762\) 0 0
\(763\) 6.02937 + 31.4555i 0.218278 + 1.13877i
\(764\) 0 0
\(765\) −12.7704 + 1.70446i −0.461716 + 0.0616248i
\(766\) 0 0
\(767\) 41.9158 + 41.9158i 1.51349 + 1.51349i
\(768\) 0 0
\(769\) 2.05749 0.0741949 0.0370975 0.999312i \(-0.488189\pi\)
0.0370975 + 0.999312i \(0.488189\pi\)
\(770\) 0 0
\(771\) −6.16341 −0.221970
\(772\) 0 0
\(773\) 36.8161 + 36.8161i 1.32418 + 1.32418i 0.910356 + 0.413825i \(0.135808\pi\)
0.413825 + 0.910356i \(0.364192\pi\)
\(774\) 0 0
\(775\) −29.3785 + 7.98447i −1.05531 + 0.286811i
\(776\) 0 0
\(777\) 1.52193 + 7.94001i 0.0545991 + 0.284846i
\(778\) 0 0
\(779\) 6.26075i 0.224315i
\(780\) 0 0
\(781\) 27.5327 0.985197
\(782\) 0 0
\(783\) 3.92604 + 3.92604i 0.140305 + 0.140305i
\(784\) 0 0
\(785\) 2.63784 + 19.7637i 0.0941487 + 0.705397i
\(786\) 0 0
\(787\) 4.12436 4.12436i 0.147018 0.147018i −0.629767 0.776784i \(-0.716850\pi\)
0.776784 + 0.629767i \(0.216850\pi\)
\(788\) 0 0
\(789\) −19.0198 −0.677122
\(790\) 0 0
\(791\) 18.9825 27.9853i 0.674941 0.995041i
\(792\) 0 0
\(793\) −13.4167 + 13.4167i −0.476442 + 0.476442i
\(794\) 0 0
\(795\) −1.30856 + 1.71166i −0.0464097 + 0.0607064i
\(796\) 0 0
\(797\) −33.5761 + 33.5761i −1.18933 + 1.18933i −0.212073 + 0.977254i \(0.568021\pi\)
−0.977254 + 0.212073i \(0.931979\pi\)
\(798\) 0 0
\(799\) 14.3386i 0.507264i
\(800\) 0 0
\(801\) 9.74211i 0.344220i
\(802\) 0 0
\(803\) −14.0953 14.0953i −0.497411 0.497411i
\(804\) 0 0
\(805\) −14.9623 44.8397i −0.527353 1.58039i
\(806\) 0 0
\(807\) −3.45123 3.45123i −0.121489 0.121489i
\(808\) 0 0
\(809\) 15.9367i 0.560306i −0.959955 0.280153i \(-0.909615\pi\)
0.959955 0.280153i \(-0.0903852\pi\)
\(810\) 0 0
\(811\) 12.0920i 0.424608i −0.977204 0.212304i \(-0.931903\pi\)
0.977204 0.212304i \(-0.0680967\pi\)
\(812\) 0 0
\(813\) −6.16592 + 6.16592i −0.216248 + 0.216248i
\(814\) 0 0
\(815\) −7.41000 55.5184i −0.259561 1.94473i
\(816\) 0 0
\(817\) 0.0962444 0.0962444i 0.00336717 0.00336717i
\(818\) 0 0
\(819\) −9.65198 + 14.2296i −0.337267 + 0.497222i
\(820\) 0 0
\(821\) −1.45068 −0.0506291 −0.0253146 0.999680i \(-0.508059\pi\)
−0.0253146 + 0.999680i \(0.508059\pi\)
\(822\) 0 0
\(823\) −5.18910 + 5.18910i −0.180881 + 0.180881i −0.791740 0.610859i \(-0.790824\pi\)
0.610859 + 0.791740i \(0.290824\pi\)
\(824\) 0 0
\(825\) −4.89613 + 8.55070i −0.170461 + 0.297697i
\(826\) 0 0
\(827\) 24.6960 + 24.6960i 0.858763 + 0.858763i 0.991192 0.132430i \(-0.0422778\pi\)
−0.132430 + 0.991192i \(0.542278\pi\)
\(828\) 0 0
\(829\) −12.4758 −0.433303 −0.216652 0.976249i \(-0.569514\pi\)
−0.216652 + 0.976249i \(0.569514\pi\)
\(830\) 0 0
\(831\) 32.5565i 1.12937i
\(832\) 0 0
\(833\) −15.9522 + 37.0435i −0.552711 + 1.28348i
\(834\) 0 0
\(835\) 1.54063 + 11.5430i 0.0533156 + 0.399460i
\(836\) 0 0
\(837\) 4.30545 + 4.30545i 0.148818 + 0.148818i
\(838\) 0 0
\(839\) 22.8955 0.790439 0.395219 0.918587i \(-0.370669\pi\)
0.395219 + 0.918587i \(0.370669\pi\)
\(840\) 0 0
\(841\) −1.82753 −0.0630182
\(842\) 0 0
\(843\) 11.0864 + 11.0864i 0.381836 + 0.381836i
\(844\) 0 0
\(845\) 51.9327 + 39.7023i 1.78654 + 1.36580i
\(846\) 0 0
\(847\) −18.4920 + 3.54452i −0.635391 + 0.121791i
\(848\) 0 0
\(849\) 24.1317i 0.828197i
\(850\) 0 0
\(851\) 24.4152 0.836942
\(852\) 0 0
\(853\) −15.1444 15.1444i −0.518534 0.518534i 0.398594 0.917128i \(-0.369498\pi\)
−0.917128 + 0.398594i \(0.869498\pi\)
\(854\) 0 0
\(855\) 1.21373 + 0.927893i 0.0415088 + 0.0317333i
\(856\) 0 0
\(857\) 11.6937 11.6937i 0.399451 0.399451i −0.478588 0.878039i \(-0.658851\pi\)
0.878039 + 0.478588i \(0.158851\pi\)
\(858\) 0 0
\(859\) −3.79617 −0.129524 −0.0647618 0.997901i \(-0.520629\pi\)
−0.0647618 + 0.997901i \(0.520629\pi\)
\(860\) 0 0
\(861\) −13.6092 + 20.0635i −0.463799 + 0.683763i
\(862\) 0 0
\(863\) −9.47926 + 9.47926i −0.322678 + 0.322678i −0.849793 0.527116i \(-0.823273\pi\)
0.527116 + 0.849793i \(0.323273\pi\)
\(864\) 0 0
\(865\) 36.8760 4.92181i 1.25382 0.167347i
\(866\) 0 0
\(867\) 11.4536 11.4536i 0.388983 0.388983i
\(868\) 0 0
\(869\) 24.3369i 0.825572i
\(870\) 0 0
\(871\) 70.9959i 2.40560i
\(872\) 0 0
\(873\) −0.937590 0.937590i −0.0317326 0.0317326i
\(874\) 0 0
\(875\) −29.0027 5.81760i −0.980470 0.196671i
\(876\) 0 0
\(877\) −14.6600 14.6600i −0.495032 0.495032i 0.414855 0.909887i \(-0.363832\pi\)
−0.909887 + 0.414855i \(0.863832\pi\)
\(878\) 0 0
\(879\) 31.2250i 1.05319i
\(880\) 0 0
\(881\) 22.7855i 0.767661i −0.923403 0.383831i \(-0.874605\pi\)
0.923403 0.383831i \(-0.125395\pi\)
\(882\) 0 0
\(883\) 11.6399 11.6399i 0.391713 0.391713i −0.483585 0.875298i \(-0.660666\pi\)
0.875298 + 0.483585i \(0.160666\pi\)
\(884\) 0 0
\(885\) 20.2167 2.69830i 0.679576 0.0907024i
\(886\) 0 0
\(887\) −4.73444 + 4.73444i −0.158967 + 0.158967i −0.782109 0.623142i \(-0.785856\pi\)
0.623142 + 0.782109i \(0.285856\pi\)
\(888\) 0 0
\(889\) −5.83804 3.95996i −0.195801 0.132813i
\(890\) 0 0
\(891\) 1.97065 0.0660193
\(892\) 0 0
\(893\) −1.20231 + 1.20231i −0.0402337 + 0.0402337i
\(894\) 0 0
\(895\) 9.17999 + 7.01805i 0.306853 + 0.234588i
\(896\) 0 0
\(897\) 36.7174 + 36.7174i 1.22596 + 1.22596i
\(898\) 0 0
\(899\) −33.8067 −1.12752
\(900\) 0 0
\(901\) 5.55171i 0.184954i
\(902\) 0 0
\(903\) 0.517639 0.0992206i 0.0172259 0.00330185i
\(904\) 0 0
\(905\) −2.83276 2.16563i −0.0941642 0.0719880i
\(906\) 0 0
\(907\) 26.6203 + 26.6203i 0.883912 + 0.883912i 0.993930 0.110018i \(-0.0350907\pi\)
−0.110018 + 0.993930i \(0.535091\pi\)
\(908\) 0 0
\(909\) 6.31532 0.209466
\(910\) 0 0
\(911\) −28.4116 −0.941318 −0.470659 0.882315i \(-0.655984\pi\)
−0.470659 + 0.882315i \(0.655984\pi\)
\(912\) 0 0
\(913\) 15.3521 + 15.3521i 0.508081 + 0.508081i
\(914\) 0 0
\(915\) 0.863693 + 6.47111i 0.0285528 + 0.213928i
\(916\) 0 0
\(917\) 3.44608 + 17.9784i 0.113800 + 0.593698i
\(918\) 0 0
\(919\) 8.04720i 0.265453i −0.991153 0.132726i \(-0.957627\pi\)
0.991153 0.132726i \(-0.0423731\pi\)
\(920\) 0 0
\(921\) 21.8046 0.718485
\(922\) 0 0
\(923\) −64.2033 64.2033i −2.11328 2.11328i
\(924\) 0 0
\(925\) 7.59189 13.2586i 0.249620 0.435942i
\(926\) 0 0
\(927\) 2.56589 2.56589i 0.0842748 0.0842748i
\(928\) 0 0
\(929\) −13.0181 −0.427109 −0.213555 0.976931i \(-0.568504\pi\)
−0.213555 + 0.976931i \(0.568504\pi\)
\(930\) 0 0
\(931\) 4.44374 1.76852i 0.145638 0.0579610i
\(932\) 0 0
\(933\) −14.1620 + 14.1620i −0.463643 + 0.463643i
\(934\) 0 0
\(935\) −3.35889 25.1660i −0.109847 0.823017i
\(936\) 0 0
\(937\) 9.43451 9.43451i 0.308212 0.308212i −0.536004 0.844216i \(-0.680067\pi\)
0.844216 + 0.536004i \(0.180067\pi\)
\(938\) 0 0
\(939\) 26.3749i 0.860712i
\(940\) 0 0
\(941\) 11.7663i 0.383570i −0.981437 0.191785i \(-0.938572\pi\)
0.981437 0.191785i \(-0.0614277\pi\)
\(942\) 0 0
\(943\) 51.7710 + 51.7710i 1.68590 + 1.68590i
\(944\) 0 0
\(945\) 1.87261 + 5.61189i 0.0609158 + 0.182555i
\(946\) 0 0
\(947\) 5.73808 + 5.73808i 0.186462 + 0.186462i 0.794165 0.607702i \(-0.207909\pi\)
−0.607702 + 0.794165i \(0.707909\pi\)
\(948\) 0 0
\(949\) 65.7374i 2.13393i
\(950\) 0 0
\(951\) 10.0998i 0.327508i
\(952\) 0 0
\(953\) 7.48123 7.48123i 0.242341 0.242341i −0.575477 0.817818i \(-0.695184\pi\)
0.817818 + 0.575477i \(0.195184\pi\)
\(954\) 0 0
\(955\) 12.0599 15.7750i 0.390249 0.510466i
\(956\) 0 0
\(957\) −7.73684 + 7.73684i −0.250097 + 0.250097i
\(958\) 0 0
\(959\) −41.2324 27.9681i −1.33146 0.903137i
\(960\) 0 0
\(961\) −6.07387 −0.195931
\(962\) 0 0
\(963\) 6.52588 6.52588i 0.210293 0.210293i
\(964\) 0 0
\(965\) 4.05372 + 30.3720i 0.130494 + 0.977708i
\(966\) 0 0
\(967\) −9.63598 9.63598i −0.309872 0.309872i 0.534988 0.844860i \(-0.320316\pi\)
−0.844860 + 0.534988i \(0.820316\pi\)
\(968\) 0 0
\(969\) −3.93670 −0.126465
\(970\) 0 0
\(971\) 6.59374i 0.211603i 0.994387 + 0.105802i \(0.0337409\pi\)
−0.994387 + 0.105802i \(0.966259\pi\)
\(972\) 0 0
\(973\) 11.5803 2.21970i 0.371247 0.0711603i
\(974\) 0 0
\(975\) 31.3566 8.52208i 1.00421 0.272925i
\(976\) 0 0
\(977\) −9.55056 9.55056i −0.305550 0.305550i 0.537631 0.843180i \(-0.319319\pi\)
−0.843180 + 0.537631i \(0.819319\pi\)
\(978\) 0 0
\(979\) 19.1983 0.613580
\(980\) 0 0
\(981\) −12.1055 −0.386499
\(982\) 0 0
\(983\) 18.8461 + 18.8461i 0.601098 + 0.601098i 0.940604 0.339506i \(-0.110260\pi\)
−0.339506 + 0.940604i \(0.610260\pi\)
\(984\) 0 0
\(985\) −0.651714 + 0.0869836i −0.0207653 + 0.00277153i
\(986\) 0 0
\(987\) −6.46647 + 1.23949i −0.205830 + 0.0394533i
\(988\) 0 0
\(989\) 1.59172i 0.0506136i
\(990\) 0 0
\(991\) −0.336364 −0.0106850 −0.00534248 0.999986i \(-0.501701\pi\)
−0.00534248 + 0.999986i \(0.501701\pi\)
\(992\) 0 0
\(993\) 13.4110 + 13.4110i 0.425585 + 0.425585i
\(994\) 0 0
\(995\) −16.4394 + 21.5037i −0.521165 + 0.681712i
\(996\) 0 0
\(997\) 1.35096 1.35096i 0.0427854 0.0427854i −0.685390 0.728176i \(-0.740368\pi\)
0.728176 + 0.685390i \(0.240368\pi\)
\(998\) 0 0
\(999\) −3.05567 −0.0966772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bt.b.97.11 yes 24
4.3 odd 2 1680.2.cz.e.97.1 24
5.3 odd 4 840.2.bt.a.433.2 yes 24
7.6 odd 2 840.2.bt.a.97.2 24
20.3 even 4 1680.2.cz.f.433.12 24
28.27 even 2 1680.2.cz.f.97.12 24
35.13 even 4 inner 840.2.bt.b.433.11 yes 24
140.83 odd 4 1680.2.cz.e.433.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.2 24 7.6 odd 2
840.2.bt.a.433.2 yes 24 5.3 odd 4
840.2.bt.b.97.11 yes 24 1.1 even 1 trivial
840.2.bt.b.433.11 yes 24 35.13 even 4 inner
1680.2.cz.e.97.1 24 4.3 odd 2
1680.2.cz.e.433.1 24 140.83 odd 4
1680.2.cz.f.97.12 24 28.27 even 2
1680.2.cz.f.433.12 24 20.3 even 4