Properties

Label 840.2.bt.a.433.8
Level $840$
Weight $2$
Character 840.433
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(97,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bt (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.8
Character \(\chi\) \(=\) 840.433
Dual form 840.2.bt.a.97.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{3} +(-1.43773 + 1.71258i) q^{5} +(-2.23600 - 1.41433i) q^{7} -1.00000i q^{9} +0.566389 q^{11} +(5.03342 - 5.03342i) q^{13} +(0.194349 + 2.22761i) q^{15} +(-0.984515 - 0.984515i) q^{17} -7.61898 q^{19} +(-2.58117 + 0.581008i) q^{21} +(2.55065 + 2.55065i) q^{23} +(-0.865867 - 4.92446i) q^{25} +(-0.707107 - 0.707107i) q^{27} -7.85354i q^{29} -7.09067i q^{31} +(0.400498 - 0.400498i) q^{33} +(5.63691 - 1.79591i) q^{35} +(0.887993 - 0.887993i) q^{37} -7.11833i q^{39} -6.29837i q^{41} +(-2.74095 - 2.74095i) q^{43} +(1.71258 + 1.43773i) q^{45} +(-3.25393 - 3.25393i) q^{47} +(2.99936 + 6.32486i) q^{49} -1.39231 q^{51} +(7.27748 + 7.27748i) q^{53} +(-0.814314 + 0.969987i) q^{55} +(-5.38743 + 5.38743i) q^{57} -6.62029 q^{59} -5.46929i q^{61} +(-1.41433 + 2.23600i) q^{63} +(1.38344 + 15.8568i) q^{65} +(-2.53098 + 2.53098i) q^{67} +3.60716 q^{69} +8.01809 q^{71} +(-8.97309 + 8.97309i) q^{73} +(-4.09438 - 2.86986i) q^{75} +(-1.26644 - 0.801059i) q^{77} -1.85942i q^{79} -1.00000 q^{81} +(2.61775 - 2.61775i) q^{83} +(3.10153 - 0.270595i) q^{85} +(-5.55329 - 5.55329i) q^{87} +10.2289 q^{89} +(-18.3736 + 4.13581i) q^{91} +(-5.01386 - 5.01386i) q^{93} +(10.9540 - 13.0481i) q^{95} +(4.32885 + 4.32885i) q^{97} -0.566389i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{7} - 8 q^{11} + 16 q^{13} + 4 q^{15} + 20 q^{17} + 8 q^{19} + 24 q^{23} - 4 q^{25} + 4 q^{37} - 16 q^{43} - 4 q^{45} - 24 q^{47} + 36 q^{49} + 16 q^{53} + 28 q^{55} + 4 q^{57} + 8 q^{59} + 24 q^{65}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 0 0
\(5\) −1.43773 + 1.71258i −0.642972 + 0.765890i
\(6\) 0 0
\(7\) −2.23600 1.41433i −0.845127 0.534565i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 0.566389 0.170773 0.0853864 0.996348i \(-0.472788\pi\)
0.0853864 + 0.996348i \(0.472788\pi\)
\(12\) 0 0
\(13\) 5.03342 5.03342i 1.39602 1.39602i 0.584947 0.811071i \(-0.301115\pi\)
0.811071 0.584947i \(-0.198885\pi\)
\(14\) 0 0
\(15\) 0.194349 + 2.22761i 0.0501808 + 0.575165i
\(16\) 0 0
\(17\) −0.984515 0.984515i −0.238780 0.238780i 0.577565 0.816345i \(-0.304003\pi\)
−0.816345 + 0.577565i \(0.804003\pi\)
\(18\) 0 0
\(19\) −7.61898 −1.74791 −0.873957 0.486004i \(-0.838454\pi\)
−0.873957 + 0.486004i \(0.838454\pi\)
\(20\) 0 0
\(21\) −2.58117 + 0.581008i −0.563257 + 0.126786i
\(22\) 0 0
\(23\) 2.55065 + 2.55065i 0.531847 + 0.531847i 0.921122 0.389275i \(-0.127274\pi\)
−0.389275 + 0.921122i \(0.627274\pi\)
\(24\) 0 0
\(25\) −0.865867 4.92446i −0.173173 0.984891i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 7.85354i 1.45837i −0.684319 0.729183i \(-0.739900\pi\)
0.684319 0.729183i \(-0.260100\pi\)
\(30\) 0 0
\(31\) 7.09067i 1.27352i −0.771061 0.636761i \(-0.780274\pi\)
0.771061 0.636761i \(-0.219726\pi\)
\(32\) 0 0
\(33\) 0.400498 0.400498i 0.0697177 0.0697177i
\(34\) 0 0
\(35\) 5.63691 1.79591i 0.952811 0.303563i
\(36\) 0 0
\(37\) 0.887993 0.887993i 0.145985 0.145985i −0.630337 0.776322i \(-0.717083\pi\)
0.776322 + 0.630337i \(0.217083\pi\)
\(38\) 0 0
\(39\) 7.11833i 1.13984i
\(40\) 0 0
\(41\) 6.29837i 0.983640i −0.870697 0.491820i \(-0.836332\pi\)
0.870697 0.491820i \(-0.163668\pi\)
\(42\) 0 0
\(43\) −2.74095 2.74095i −0.417992 0.417992i 0.466519 0.884511i \(-0.345508\pi\)
−0.884511 + 0.466519i \(0.845508\pi\)
\(44\) 0 0
\(45\) 1.71258 + 1.43773i 0.255297 + 0.214324i
\(46\) 0 0
\(47\) −3.25393 3.25393i −0.474634 0.474634i 0.428777 0.903411i \(-0.358945\pi\)
−0.903411 + 0.428777i \(0.858945\pi\)
\(48\) 0 0
\(49\) 2.99936 + 6.32486i 0.428480 + 0.903551i
\(50\) 0 0
\(51\) −1.39231 −0.194963
\(52\) 0 0
\(53\) 7.27748 + 7.27748i 0.999639 + 0.999639i 1.00000 0.000361159i \(-0.000114960\pi\)
−0.000361159 1.00000i \(0.500115\pi\)
\(54\) 0 0
\(55\) −0.814314 + 0.969987i −0.109802 + 0.130793i
\(56\) 0 0
\(57\) −5.38743 + 5.38743i −0.713583 + 0.713583i
\(58\) 0 0
\(59\) −6.62029 −0.861889 −0.430944 0.902378i \(-0.641819\pi\)
−0.430944 + 0.902378i \(0.641819\pi\)
\(60\) 0 0
\(61\) 5.46929i 0.700271i −0.936699 0.350135i \(-0.886136\pi\)
0.936699 0.350135i \(-0.113864\pi\)
\(62\) 0 0
\(63\) −1.41433 + 2.23600i −0.178188 + 0.281709i
\(64\) 0 0
\(65\) 1.38344 + 15.8568i 0.171595 + 1.96680i
\(66\) 0 0
\(67\) −2.53098 + 2.53098i −0.309209 + 0.309209i −0.844603 0.535394i \(-0.820163\pi\)
0.535394 + 0.844603i \(0.320163\pi\)
\(68\) 0 0
\(69\) 3.60716 0.434251
\(70\) 0 0
\(71\) 8.01809 0.951572 0.475786 0.879561i \(-0.342164\pi\)
0.475786 + 0.879561i \(0.342164\pi\)
\(72\) 0 0
\(73\) −8.97309 + 8.97309i −1.05022 + 1.05022i −0.0515507 + 0.998670i \(0.516416\pi\)
−0.998670 + 0.0515507i \(0.983584\pi\)
\(74\) 0 0
\(75\) −4.09438 2.86986i −0.472778 0.331382i
\(76\) 0 0
\(77\) −1.26644 0.801059i −0.144325 0.0912892i
\(78\) 0 0
\(79\) 1.85942i 0.209201i −0.994514 0.104601i \(-0.966644\pi\)
0.994514 0.104601i \(-0.0333565\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 2.61775 2.61775i 0.287336 0.287336i −0.548690 0.836026i \(-0.684873\pi\)
0.836026 + 0.548690i \(0.184873\pi\)
\(84\) 0 0
\(85\) 3.10153 0.270595i 0.336408 0.0293502i
\(86\) 0 0
\(87\) −5.55329 5.55329i −0.595376 0.595376i
\(88\) 0 0
\(89\) 10.2289 1.08427 0.542133 0.840293i \(-0.317617\pi\)
0.542133 + 0.840293i \(0.317617\pi\)
\(90\) 0 0
\(91\) −18.3736 + 4.13581i −1.92608 + 0.433550i
\(92\) 0 0
\(93\) −5.01386 5.01386i −0.519913 0.519913i
\(94\) 0 0
\(95\) 10.9540 13.0481i 1.12386 1.33871i
\(96\) 0 0
\(97\) 4.32885 + 4.32885i 0.439528 + 0.439528i 0.891853 0.452325i \(-0.149405\pi\)
−0.452325 + 0.891853i \(0.649405\pi\)
\(98\) 0 0
\(99\) 0.566389i 0.0569242i
\(100\) 0 0
\(101\) 10.9284i 1.08741i 0.839275 + 0.543707i \(0.182980\pi\)
−0.839275 + 0.543707i \(0.817020\pi\)
\(102\) 0 0
\(103\) 6.13481 6.13481i 0.604481 0.604481i −0.337018 0.941498i \(-0.609418\pi\)
0.941498 + 0.337018i \(0.109418\pi\)
\(104\) 0 0
\(105\) 2.71600 5.25579i 0.265054 0.512913i
\(106\) 0 0
\(107\) −8.07798 + 8.07798i −0.780927 + 0.780927i −0.979987 0.199060i \(-0.936211\pi\)
0.199060 + 0.979987i \(0.436211\pi\)
\(108\) 0 0
\(109\) 10.4871i 1.00448i −0.864729 0.502240i \(-0.832510\pi\)
0.864729 0.502240i \(-0.167490\pi\)
\(110\) 0 0
\(111\) 1.25581i 0.119196i
\(112\) 0 0
\(113\) 3.30769 + 3.30769i 0.311161 + 0.311161i 0.845359 0.534198i \(-0.179386\pi\)
−0.534198 + 0.845359i \(0.679386\pi\)
\(114\) 0 0
\(115\) −8.03533 + 0.701049i −0.749299 + 0.0653732i
\(116\) 0 0
\(117\) −5.03342 5.03342i −0.465340 0.465340i
\(118\) 0 0
\(119\) 0.808946 + 3.59380i 0.0741559 + 0.329443i
\(120\) 0 0
\(121\) −10.6792 −0.970837
\(122\) 0 0
\(123\) −4.45362 4.45362i −0.401569 0.401569i
\(124\) 0 0
\(125\) 9.67841 + 5.59717i 0.865664 + 0.500626i
\(126\) 0 0
\(127\) −1.85296 + 1.85296i −0.164424 + 0.164424i −0.784523 0.620099i \(-0.787092\pi\)
0.620099 + 0.784523i \(0.287092\pi\)
\(128\) 0 0
\(129\) −3.87629 −0.341289
\(130\) 0 0
\(131\) 21.3166i 1.86244i 0.364461 + 0.931219i \(0.381253\pi\)
−0.364461 + 0.931219i \(0.618747\pi\)
\(132\) 0 0
\(133\) 17.0360 + 10.7757i 1.47721 + 0.934374i
\(134\) 0 0
\(135\) 2.22761 0.194349i 0.191722 0.0167269i
\(136\) 0 0
\(137\) 9.80531 9.80531i 0.837724 0.837724i −0.150835 0.988559i \(-0.548196\pi\)
0.988559 + 0.150835i \(0.0481962\pi\)
\(138\) 0 0
\(139\) 0.596787 0.0506188 0.0253094 0.999680i \(-0.491943\pi\)
0.0253094 + 0.999680i \(0.491943\pi\)
\(140\) 0 0
\(141\) −4.60175 −0.387537
\(142\) 0 0
\(143\) 2.85087 2.85087i 0.238402 0.238402i
\(144\) 0 0
\(145\) 13.4498 + 11.2913i 1.11695 + 0.937689i
\(146\) 0 0
\(147\) 6.59322 + 2.35148i 0.543799 + 0.193947i
\(148\) 0 0
\(149\) 0.851348i 0.0697452i 0.999392 + 0.0348726i \(0.0111025\pi\)
−0.999392 + 0.0348726i \(0.988897\pi\)
\(150\) 0 0
\(151\) −9.10760 −0.741166 −0.370583 0.928799i \(-0.620842\pi\)
−0.370583 + 0.928799i \(0.620842\pi\)
\(152\) 0 0
\(153\) −0.984515 + 0.984515i −0.0795933 + 0.0795933i
\(154\) 0 0
\(155\) 12.1433 + 10.1945i 0.975377 + 0.818839i
\(156\) 0 0
\(157\) 12.6178 + 12.6178i 1.00701 + 1.00701i 0.999975 + 0.00703865i \(0.00224049\pi\)
0.00703865 + 0.999975i \(0.497760\pi\)
\(158\) 0 0
\(159\) 10.2919 0.816202
\(160\) 0 0
\(161\) −2.09579 9.31069i −0.165171 0.733785i
\(162\) 0 0
\(163\) −0.137845 0.137845i −0.0107968 0.0107968i 0.701688 0.712485i \(-0.252430\pi\)
−0.712485 + 0.701688i \(0.752430\pi\)
\(164\) 0 0
\(165\) 0.110077 + 1.26169i 0.00856951 + 0.0982226i
\(166\) 0 0
\(167\) −10.4961 10.4961i −0.812214 0.812214i 0.172752 0.984965i \(-0.444734\pi\)
−0.984965 + 0.172752i \(0.944734\pi\)
\(168\) 0 0
\(169\) 37.6706i 2.89774i
\(170\) 0 0
\(171\) 7.61898i 0.582638i
\(172\) 0 0
\(173\) −11.0115 + 11.0115i −0.837191 + 0.837191i −0.988488 0.151297i \(-0.951655\pi\)
0.151297 + 0.988488i \(0.451655\pi\)
\(174\) 0 0
\(175\) −5.02871 + 12.2357i −0.380135 + 0.924931i
\(176\) 0 0
\(177\) −4.68125 + 4.68125i −0.351865 + 0.351865i
\(178\) 0 0
\(179\) 25.7774i 1.92669i −0.268259 0.963347i \(-0.586448\pi\)
0.268259 0.963347i \(-0.413552\pi\)
\(180\) 0 0
\(181\) 10.3885i 0.772170i 0.922463 + 0.386085i \(0.126173\pi\)
−0.922463 + 0.386085i \(0.873827\pi\)
\(182\) 0 0
\(183\) −3.86737 3.86737i −0.285884 0.285884i
\(184\) 0 0
\(185\) 0.244066 + 2.79745i 0.0179441 + 0.205673i
\(186\) 0 0
\(187\) −0.557618 0.557618i −0.0407771 0.0407771i
\(188\) 0 0
\(189\) 0.581008 + 2.58117i 0.0422621 + 0.187752i
\(190\) 0 0
\(191\) 15.5937 1.12832 0.564161 0.825665i \(-0.309200\pi\)
0.564161 + 0.825665i \(0.309200\pi\)
\(192\) 0 0
\(193\) 2.02152 + 2.02152i 0.145512 + 0.145512i 0.776110 0.630598i \(-0.217190\pi\)
−0.630598 + 0.776110i \(0.717190\pi\)
\(194\) 0 0
\(195\) 12.1907 + 10.2342i 0.872995 + 0.732888i
\(196\) 0 0
\(197\) −5.12206 + 5.12206i −0.364932 + 0.364932i −0.865625 0.500693i \(-0.833079\pi\)
0.500693 + 0.865625i \(0.333079\pi\)
\(198\) 0 0
\(199\) 22.9768 1.62878 0.814389 0.580319i \(-0.197072\pi\)
0.814389 + 0.580319i \(0.197072\pi\)
\(200\) 0 0
\(201\) 3.57935i 0.252468i
\(202\) 0 0
\(203\) −11.1075 + 17.5605i −0.779592 + 1.23251i
\(204\) 0 0
\(205\) 10.7865 + 9.05535i 0.753359 + 0.632453i
\(206\) 0 0
\(207\) 2.55065 2.55065i 0.177282 0.177282i
\(208\) 0 0
\(209\) −4.31530 −0.298496
\(210\) 0 0
\(211\) −3.50166 −0.241064 −0.120532 0.992709i \(-0.538460\pi\)
−0.120532 + 0.992709i \(0.538460\pi\)
\(212\) 0 0
\(213\) 5.66964 5.66964i 0.388477 0.388477i
\(214\) 0 0
\(215\) 8.63486 0.753355i 0.588892 0.0513784i
\(216\) 0 0
\(217\) −10.0285 + 15.8547i −0.680780 + 1.07629i
\(218\) 0 0
\(219\) 12.6899i 0.857502i
\(220\) 0 0
\(221\) −9.91094 −0.666682
\(222\) 0 0
\(223\) 3.12336 3.12336i 0.209155 0.209155i −0.594753 0.803908i \(-0.702750\pi\)
0.803908 + 0.594753i \(0.202750\pi\)
\(224\) 0 0
\(225\) −4.92446 + 0.865867i −0.328297 + 0.0577245i
\(226\) 0 0
\(227\) 8.58965 + 8.58965i 0.570115 + 0.570115i 0.932161 0.362045i \(-0.117921\pi\)
−0.362045 + 0.932161i \(0.617921\pi\)
\(228\) 0 0
\(229\) −17.7361 −1.17204 −0.586018 0.810298i \(-0.699305\pi\)
−0.586018 + 0.810298i \(0.699305\pi\)
\(230\) 0 0
\(231\) −1.46195 + 0.329077i −0.0961889 + 0.0216517i
\(232\) 0 0
\(233\) 2.90534 + 2.90534i 0.190335 + 0.190335i 0.795841 0.605506i \(-0.207029\pi\)
−0.605506 + 0.795841i \(0.707029\pi\)
\(234\) 0 0
\(235\) 10.2509 0.894346i 0.668694 0.0583407i
\(236\) 0 0
\(237\) −1.31481 1.31481i −0.0854061 0.0854061i
\(238\) 0 0
\(239\) 22.2209i 1.43735i 0.695347 + 0.718674i \(0.255251\pi\)
−0.695347 + 0.718674i \(0.744749\pi\)
\(240\) 0 0
\(241\) 28.9186i 1.86281i −0.363984 0.931405i \(-0.618584\pi\)
0.363984 0.931405i \(-0.381416\pi\)
\(242\) 0 0
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −15.1441 3.95679i −0.967521 0.252790i
\(246\) 0 0
\(247\) −38.3495 + 38.3495i −2.44012 + 2.44012i
\(248\) 0 0
\(249\) 3.70206i 0.234609i
\(250\) 0 0
\(251\) 15.2202i 0.960693i 0.877079 + 0.480346i \(0.159489\pi\)
−0.877079 + 0.480346i \(0.840511\pi\)
\(252\) 0 0
\(253\) 1.44466 + 1.44466i 0.0908249 + 0.0908249i
\(254\) 0 0
\(255\) 2.00177 2.38445i 0.125356 0.149320i
\(256\) 0 0
\(257\) 14.5914 + 14.5914i 0.910186 + 0.910186i 0.996286 0.0861002i \(-0.0274405\pi\)
−0.0861002 + 0.996286i \(0.527441\pi\)
\(258\) 0 0
\(259\) −3.24146 + 0.729637i −0.201415 + 0.0453375i
\(260\) 0 0
\(261\) −7.85354 −0.486122
\(262\) 0 0
\(263\) −10.9688 10.9688i −0.676363 0.676363i 0.282812 0.959175i \(-0.408733\pi\)
−0.959175 + 0.282812i \(0.908733\pi\)
\(264\) 0 0
\(265\) −22.9263 + 2.00023i −1.40835 + 0.122873i
\(266\) 0 0
\(267\) 7.23295 7.23295i 0.442650 0.442650i
\(268\) 0 0
\(269\) 18.8822 1.15127 0.575635 0.817707i \(-0.304755\pi\)
0.575635 + 0.817707i \(0.304755\pi\)
\(270\) 0 0
\(271\) 28.8900i 1.75494i −0.479628 0.877472i \(-0.659228\pi\)
0.479628 0.877472i \(-0.340772\pi\)
\(272\) 0 0
\(273\) −10.0676 + 15.9166i −0.609321 + 0.963314i
\(274\) 0 0
\(275\) −0.490418 2.78916i −0.0295733 0.168193i
\(276\) 0 0
\(277\) 6.33752 6.33752i 0.380785 0.380785i −0.490600 0.871385i \(-0.663222\pi\)
0.871385 + 0.490600i \(0.163222\pi\)
\(278\) 0 0
\(279\) −7.09067 −0.424507
\(280\) 0 0
\(281\) −21.3194 −1.27181 −0.635905 0.771768i \(-0.719373\pi\)
−0.635905 + 0.771768i \(0.719373\pi\)
\(282\) 0 0
\(283\) −6.54910 + 6.54910i −0.389304 + 0.389304i −0.874439 0.485135i \(-0.838770\pi\)
0.485135 + 0.874439i \(0.338770\pi\)
\(284\) 0 0
\(285\) −1.48074 16.9721i −0.0877116 1.00534i
\(286\) 0 0
\(287\) −8.90795 + 14.0831i −0.525820 + 0.831301i
\(288\) 0 0
\(289\) 15.0615i 0.885968i
\(290\) 0 0
\(291\) 6.12192 0.358873
\(292\) 0 0
\(293\) −3.25380 + 3.25380i −0.190089 + 0.190089i −0.795735 0.605645i \(-0.792915\pi\)
0.605645 + 0.795735i \(0.292915\pi\)
\(294\) 0 0
\(295\) 9.51819 11.3378i 0.554171 0.660112i
\(296\) 0 0
\(297\) −0.400498 0.400498i −0.0232392 0.0232392i
\(298\) 0 0
\(299\) 25.6769 1.48494
\(300\) 0 0
\(301\) 2.25216 + 10.0054i 0.129812 + 0.576700i
\(302\) 0 0
\(303\) 7.72753 + 7.72753i 0.443935 + 0.443935i
\(304\) 0 0
\(305\) 9.36660 + 7.86336i 0.536330 + 0.450255i
\(306\) 0 0
\(307\) 11.2615 + 11.2615i 0.642730 + 0.642730i 0.951226 0.308496i \(-0.0998256\pi\)
−0.308496 + 0.951226i \(0.599826\pi\)
\(308\) 0 0
\(309\) 8.67593i 0.493556i
\(310\) 0 0
\(311\) 9.21941i 0.522785i −0.965233 0.261392i \(-0.915818\pi\)
0.965233 0.261392i \(-0.0841816\pi\)
\(312\) 0 0
\(313\) 8.95602 8.95602i 0.506224 0.506224i −0.407141 0.913365i \(-0.633474\pi\)
0.913365 + 0.407141i \(0.133474\pi\)
\(314\) 0 0
\(315\) −1.79591 5.63691i −0.101188 0.317604i
\(316\) 0 0
\(317\) −0.477985 + 0.477985i −0.0268463 + 0.0268463i −0.720403 0.693556i \(-0.756043\pi\)
0.693556 + 0.720403i \(0.256043\pi\)
\(318\) 0 0
\(319\) 4.44816i 0.249049i
\(320\) 0 0
\(321\) 11.4240i 0.637624i
\(322\) 0 0
\(323\) 7.50099 + 7.50099i 0.417366 + 0.417366i
\(324\) 0 0
\(325\) −29.1451 20.4286i −1.61668 1.13317i
\(326\) 0 0
\(327\) −7.41548 7.41548i −0.410077 0.410077i
\(328\) 0 0
\(329\) 2.67365 + 11.8779i 0.147403 + 0.654849i
\(330\) 0 0
\(331\) 17.9367 0.985892 0.492946 0.870060i \(-0.335920\pi\)
0.492946 + 0.870060i \(0.335920\pi\)
\(332\) 0 0
\(333\) −0.887993 0.887993i −0.0486617 0.0486617i
\(334\) 0 0
\(335\) −0.695644 7.97338i −0.0380071 0.435632i
\(336\) 0 0
\(337\) 16.3606 16.3606i 0.891217 0.891217i −0.103421 0.994638i \(-0.532979\pi\)
0.994638 + 0.103421i \(0.0329788\pi\)
\(338\) 0 0
\(339\) 4.67778 0.254062
\(340\) 0 0
\(341\) 4.01608i 0.217483i
\(342\) 0 0
\(343\) 2.23886 18.3844i 0.120887 0.992666i
\(344\) 0 0
\(345\) −5.18612 + 6.17756i −0.279211 + 0.332588i
\(346\) 0 0
\(347\) 11.4656 11.4656i 0.615508 0.615508i −0.328868 0.944376i \(-0.606667\pi\)
0.944376 + 0.328868i \(0.106667\pi\)
\(348\) 0 0
\(349\) −4.37394 −0.234132 −0.117066 0.993124i \(-0.537349\pi\)
−0.117066 + 0.993124i \(0.537349\pi\)
\(350\) 0 0
\(351\) −7.11833 −0.379948
\(352\) 0 0
\(353\) −6.72792 + 6.72792i −0.358091 + 0.358091i −0.863109 0.505018i \(-0.831486\pi\)
0.505018 + 0.863109i \(0.331486\pi\)
\(354\) 0 0
\(355\) −11.5278 + 13.7316i −0.611834 + 0.728799i
\(356\) 0 0
\(357\) 3.11321 + 1.96919i 0.164768 + 0.104220i
\(358\) 0 0
\(359\) 17.4579i 0.921393i −0.887558 0.460696i \(-0.847600\pi\)
0.887558 0.460696i \(-0.152400\pi\)
\(360\) 0 0
\(361\) 39.0488 2.05520
\(362\) 0 0
\(363\) −7.55134 + 7.55134i −0.396342 + 0.396342i
\(364\) 0 0
\(365\) −2.46627 28.2680i −0.129090 1.47962i
\(366\) 0 0
\(367\) 16.2987 + 16.2987i 0.850784 + 0.850784i 0.990230 0.139445i \(-0.0445320\pi\)
−0.139445 + 0.990230i \(0.544532\pi\)
\(368\) 0 0
\(369\) −6.29837 −0.327880
\(370\) 0 0
\(371\) −5.97969 26.5652i −0.310450 1.37919i
\(372\) 0 0
\(373\) 11.2031 + 11.2031i 0.580073 + 0.580073i 0.934923 0.354850i \(-0.115468\pi\)
−0.354850 + 0.934923i \(0.615468\pi\)
\(374\) 0 0
\(375\) 10.8015 2.88588i 0.557785 0.149026i
\(376\) 0 0
\(377\) −39.5302 39.5302i −2.03591 2.03591i
\(378\) 0 0
\(379\) 24.5366i 1.26036i 0.776450 + 0.630179i \(0.217019\pi\)
−0.776450 + 0.630179i \(0.782981\pi\)
\(380\) 0 0
\(381\) 2.62048i 0.134251i
\(382\) 0 0
\(383\) 9.28703 9.28703i 0.474545 0.474545i −0.428837 0.903382i \(-0.641077\pi\)
0.903382 + 0.428837i \(0.141077\pi\)
\(384\) 0 0
\(385\) 3.19268 1.01718i 0.162714 0.0518404i
\(386\) 0 0
\(387\) −2.74095 + 2.74095i −0.139331 + 0.139331i
\(388\) 0 0
\(389\) 25.4037i 1.28802i −0.765018 0.644009i \(-0.777270\pi\)
0.765018 0.644009i \(-0.222730\pi\)
\(390\) 0 0
\(391\) 5.02230i 0.253989i
\(392\) 0 0
\(393\) 15.0731 + 15.0731i 0.760337 + 0.760337i
\(394\) 0 0
\(395\) 3.18441 + 2.67335i 0.160225 + 0.134511i
\(396\) 0 0
\(397\) 1.00474 + 1.00474i 0.0504265 + 0.0504265i 0.731870 0.681444i \(-0.238648\pi\)
−0.681444 + 0.731870i \(0.738648\pi\)
\(398\) 0 0
\(399\) 19.6659 4.42669i 0.984525 0.221612i
\(400\) 0 0
\(401\) −18.3629 −0.916998 −0.458499 0.888695i \(-0.651613\pi\)
−0.458499 + 0.888695i \(0.651613\pi\)
\(402\) 0 0
\(403\) −35.6903 35.6903i −1.77786 1.77786i
\(404\) 0 0
\(405\) 1.43773 1.71258i 0.0714414 0.0850988i
\(406\) 0 0
\(407\) 0.502950 0.502950i 0.0249303 0.0249303i
\(408\) 0 0
\(409\) −10.1369 −0.501237 −0.250619 0.968086i \(-0.580634\pi\)
−0.250619 + 0.968086i \(0.580634\pi\)
\(410\) 0 0
\(411\) 13.8668i 0.683999i
\(412\) 0 0
\(413\) 14.8030 + 9.36326i 0.728406 + 0.460736i
\(414\) 0 0
\(415\) 0.719493 + 8.24674i 0.0353185 + 0.404816i
\(416\) 0 0
\(417\) 0.421992 0.421992i 0.0206650 0.0206650i
\(418\) 0 0
\(419\) −31.9057 −1.55869 −0.779347 0.626593i \(-0.784449\pi\)
−0.779347 + 0.626593i \(0.784449\pi\)
\(420\) 0 0
\(421\) −8.98313 −0.437811 −0.218906 0.975746i \(-0.570249\pi\)
−0.218906 + 0.975746i \(0.570249\pi\)
\(422\) 0 0
\(423\) −3.25393 + 3.25393i −0.158211 + 0.158211i
\(424\) 0 0
\(425\) −3.99574 + 5.70066i −0.193822 + 0.276523i
\(426\) 0 0
\(427\) −7.73536 + 12.2293i −0.374340 + 0.591818i
\(428\) 0 0
\(429\) 4.03174i 0.194654i
\(430\) 0 0
\(431\) −4.19551 −0.202091 −0.101045 0.994882i \(-0.532219\pi\)
−0.101045 + 0.994882i \(0.532219\pi\)
\(432\) 0 0
\(433\) 15.5040 15.5040i 0.745076 0.745076i −0.228474 0.973550i \(-0.573374\pi\)
0.973550 + 0.228474i \(0.0733737\pi\)
\(434\) 0 0
\(435\) 17.4946 1.52633i 0.838802 0.0731820i
\(436\) 0 0
\(437\) −19.4333 19.4333i −0.929622 0.929622i
\(438\) 0 0
\(439\) −19.5954 −0.935238 −0.467619 0.883930i \(-0.654888\pi\)
−0.467619 + 0.883930i \(0.654888\pi\)
\(440\) 0 0
\(441\) 6.32486 2.99936i 0.301184 0.142827i
\(442\) 0 0
\(443\) −6.22602 6.22602i −0.295807 0.295807i 0.543562 0.839369i \(-0.317075\pi\)
−0.839369 + 0.543562i \(0.817075\pi\)
\(444\) 0 0
\(445\) −14.7065 + 17.5179i −0.697153 + 0.830428i
\(446\) 0 0
\(447\) 0.601994 + 0.601994i 0.0284733 + 0.0284733i
\(448\) 0 0
\(449\) 14.4377i 0.681359i −0.940179 0.340680i \(-0.889343\pi\)
0.940179 0.340680i \(-0.110657\pi\)
\(450\) 0 0
\(451\) 3.56733i 0.167979i
\(452\) 0 0
\(453\) −6.44005 + 6.44005i −0.302580 + 0.302580i
\(454\) 0 0
\(455\) 19.3334 37.4124i 0.906362 1.75392i
\(456\) 0 0
\(457\) 10.0166 10.0166i 0.468555 0.468555i −0.432891 0.901446i \(-0.642507\pi\)
0.901446 + 0.432891i \(0.142507\pi\)
\(458\) 0 0
\(459\) 1.39231i 0.0649876i
\(460\) 0 0
\(461\) 27.1704i 1.26545i −0.774375 0.632727i \(-0.781936\pi\)
0.774375 0.632727i \(-0.218064\pi\)
\(462\) 0 0
\(463\) 19.6279 + 19.6279i 0.912186 + 0.912186i 0.996444 0.0842578i \(-0.0268519\pi\)
−0.0842578 + 0.996444i \(0.526852\pi\)
\(464\) 0 0
\(465\) 15.7952 1.37807i 0.732485 0.0639063i
\(466\) 0 0
\(467\) 7.41841 + 7.41841i 0.343283 + 0.343283i 0.857600 0.514317i \(-0.171955\pi\)
−0.514317 + 0.857600i \(0.671955\pi\)
\(468\) 0 0
\(469\) 9.23891 2.07963i 0.426613 0.0960285i
\(470\) 0 0
\(471\) 17.8443 0.822223
\(472\) 0 0
\(473\) −1.55245 1.55245i −0.0713816 0.0713816i
\(474\) 0 0
\(475\) 6.59702 + 37.5193i 0.302692 + 1.72150i
\(476\) 0 0
\(477\) 7.27748 7.27748i 0.333213 0.333213i
\(478\) 0 0
\(479\) −7.58693 −0.346656 −0.173328 0.984864i \(-0.555452\pi\)
−0.173328 + 0.984864i \(0.555452\pi\)
\(480\) 0 0
\(481\) 8.93928i 0.407596i
\(482\) 0 0
\(483\) −8.06560 5.10170i −0.366997 0.232136i
\(484\) 0 0
\(485\) −13.6372 + 1.18979i −0.619234 + 0.0540256i
\(486\) 0 0
\(487\) 23.2682 23.2682i 1.05438 1.05438i 0.0559496 0.998434i \(-0.482181\pi\)
0.998434 0.0559496i \(-0.0178186\pi\)
\(488\) 0 0
\(489\) −0.194942 −0.00881557
\(490\) 0 0
\(491\) −29.1533 −1.31567 −0.657835 0.753162i \(-0.728527\pi\)
−0.657835 + 0.753162i \(0.728527\pi\)
\(492\) 0 0
\(493\) −7.73193 + 7.73193i −0.348228 + 0.348228i
\(494\) 0 0
\(495\) 0.969987 + 0.814314i 0.0435977 + 0.0366007i
\(496\) 0 0
\(497\) −17.9284 11.3402i −0.804199 0.508677i
\(498\) 0 0
\(499\) 18.0636i 0.808637i 0.914618 + 0.404319i \(0.132491\pi\)
−0.914618 + 0.404319i \(0.867509\pi\)
\(500\) 0 0
\(501\) −14.8437 −0.663170
\(502\) 0 0
\(503\) 22.9577 22.9577i 1.02363 1.02363i 0.0239171 0.999714i \(-0.492386\pi\)
0.999714 0.0239171i \(-0.00761377\pi\)
\(504\) 0 0
\(505\) −18.7157 15.7120i −0.832839 0.699177i
\(506\) 0 0
\(507\) −26.6371 26.6371i −1.18300 1.18300i
\(508\) 0 0
\(509\) −17.2001 −0.762382 −0.381191 0.924496i \(-0.624486\pi\)
−0.381191 + 0.924496i \(0.624486\pi\)
\(510\) 0 0
\(511\) 32.7547 7.37292i 1.44898 0.326159i
\(512\) 0 0
\(513\) 5.38743 + 5.38743i 0.237861 + 0.237861i
\(514\) 0 0
\(515\) 1.68616 + 19.3266i 0.0743011 + 0.851630i
\(516\) 0 0
\(517\) −1.84299 1.84299i −0.0810545 0.0810545i
\(518\) 0 0
\(519\) 15.5727i 0.683564i
\(520\) 0 0
\(521\) 7.92609i 0.347248i 0.984812 + 0.173624i \(0.0555478\pi\)
−0.984812 + 0.173624i \(0.944452\pi\)
\(522\) 0 0
\(523\) 15.1308 15.1308i 0.661624 0.661624i −0.294139 0.955763i \(-0.595033\pi\)
0.955763 + 0.294139i \(0.0950327\pi\)
\(524\) 0 0
\(525\) 5.09610 + 12.2078i 0.222412 + 0.532791i
\(526\) 0 0
\(527\) −6.98087 + 6.98087i −0.304091 + 0.304091i
\(528\) 0 0
\(529\) 9.98839i 0.434278i
\(530\) 0 0
\(531\) 6.62029i 0.287296i
\(532\) 0 0
\(533\) −31.7023 31.7023i −1.37318 1.37318i
\(534\) 0 0
\(535\) −2.22024 25.4481i −0.0959895 1.10022i
\(536\) 0 0
\(537\) −18.2274 18.2274i −0.786569 0.786569i
\(538\) 0 0
\(539\) 1.69880 + 3.58233i 0.0731727 + 0.154302i
\(540\) 0 0
\(541\) 5.37166 0.230946 0.115473 0.993311i \(-0.463162\pi\)
0.115473 + 0.993311i \(0.463162\pi\)
\(542\) 0 0
\(543\) 7.34576 + 7.34576i 0.315237 + 0.315237i
\(544\) 0 0
\(545\) 17.9600 + 15.0776i 0.769320 + 0.645852i
\(546\) 0 0
\(547\) −8.12081 + 8.12081i −0.347221 + 0.347221i −0.859073 0.511853i \(-0.828959\pi\)
0.511853 + 0.859073i \(0.328959\pi\)
\(548\) 0 0
\(549\) −5.46929 −0.233424
\(550\) 0 0
\(551\) 59.8360i 2.54910i
\(552\) 0 0
\(553\) −2.62983 + 4.15766i −0.111832 + 0.176802i
\(554\) 0 0
\(555\) 2.15068 + 1.80552i 0.0912913 + 0.0766400i
\(556\) 0 0
\(557\) −21.4908 + 21.4908i −0.910594 + 0.910594i −0.996319 0.0857249i \(-0.972679\pi\)
0.0857249 + 0.996319i \(0.472679\pi\)
\(558\) 0 0
\(559\) −27.5927 −1.16705
\(560\) 0 0
\(561\) −0.788591 −0.0332943
\(562\) 0 0
\(563\) −12.5985 + 12.5985i −0.530962 + 0.530962i −0.920859 0.389897i \(-0.872511\pi\)
0.389897 + 0.920859i \(0.372511\pi\)
\(564\) 0 0
\(565\) −10.4203 + 0.909124i −0.438383 + 0.0382471i
\(566\) 0 0
\(567\) 2.23600 + 1.41433i 0.0939030 + 0.0593961i
\(568\) 0 0
\(569\) 28.6425i 1.20075i 0.799717 + 0.600377i \(0.204983\pi\)
−0.799717 + 0.600377i \(0.795017\pi\)
\(570\) 0 0
\(571\) 14.2002 0.594260 0.297130 0.954837i \(-0.403971\pi\)
0.297130 + 0.954837i \(0.403971\pi\)
\(572\) 0 0
\(573\) 11.0264 11.0264i 0.460635 0.460635i
\(574\) 0 0
\(575\) 10.3520 14.7691i 0.431710 0.615913i
\(576\) 0 0
\(577\) 15.1116 + 15.1116i 0.629106 + 0.629106i 0.947843 0.318737i \(-0.103259\pi\)
−0.318737 + 0.947843i \(0.603259\pi\)
\(578\) 0 0
\(579\) 2.85886 0.118810
\(580\) 0 0
\(581\) −9.55565 + 2.15093i −0.396435 + 0.0892356i
\(582\) 0 0
\(583\) 4.12188 + 4.12188i 0.170711 + 0.170711i
\(584\) 0 0
\(585\) 15.8568 1.38344i 0.655599 0.0571983i
\(586\) 0 0
\(587\) −2.55057 2.55057i −0.105273 0.105273i 0.652508 0.757782i \(-0.273717\pi\)
−0.757782 + 0.652508i \(0.773717\pi\)
\(588\) 0 0
\(589\) 54.0236i 2.22601i
\(590\) 0 0
\(591\) 7.24369i 0.297966i
\(592\) 0 0
\(593\) −22.3517 + 22.3517i −0.917872 + 0.917872i −0.996874 0.0790021i \(-0.974827\pi\)
0.0790021 + 0.996874i \(0.474827\pi\)
\(594\) 0 0
\(595\) −7.31771 3.78152i −0.299997 0.155027i
\(596\) 0 0
\(597\) 16.2470 16.2470i 0.664946 0.664946i
\(598\) 0 0
\(599\) 1.64390i 0.0671681i 0.999436 + 0.0335840i \(0.0106921\pi\)
−0.999436 + 0.0335840i \(0.989308\pi\)
\(600\) 0 0
\(601\) 16.9911i 0.693081i 0.938035 + 0.346541i \(0.112644\pi\)
−0.938035 + 0.346541i \(0.887356\pi\)
\(602\) 0 0
\(603\) 2.53098 + 2.53098i 0.103070 + 0.103070i
\(604\) 0 0
\(605\) 15.3538 18.2890i 0.624221 0.743554i
\(606\) 0 0
\(607\) −23.9674 23.9674i −0.972808 0.972808i 0.0268319 0.999640i \(-0.491458\pi\)
−0.999640 + 0.0268319i \(0.991458\pi\)
\(608\) 0 0
\(609\) 4.56297 + 20.2713i 0.184901 + 0.821435i
\(610\) 0 0
\(611\) −32.7567 −1.32520
\(612\) 0 0
\(613\) 28.8618 + 28.8618i 1.16572 + 1.16572i 0.983204 + 0.182512i \(0.0584228\pi\)
0.182512 + 0.983204i \(0.441577\pi\)
\(614\) 0 0
\(615\) 14.0303 1.22408i 0.565756 0.0493598i
\(616\) 0 0
\(617\) 28.8828 28.8828i 1.16278 1.16278i 0.178915 0.983865i \(-0.442741\pi\)
0.983865 0.178915i \(-0.0572587\pi\)
\(618\) 0 0
\(619\) 23.3279 0.937629 0.468814 0.883297i \(-0.344681\pi\)
0.468814 + 0.883297i \(0.344681\pi\)
\(620\) 0 0
\(621\) 3.60716i 0.144750i
\(622\) 0 0
\(623\) −22.8719 14.4671i −0.916342 0.579611i
\(624\) 0 0
\(625\) −23.5005 + 8.52785i −0.940022 + 0.341114i
\(626\) 0 0
\(627\) −3.05138 + 3.05138i −0.121860 + 0.121860i
\(628\) 0 0
\(629\) −1.74848 −0.0697166
\(630\) 0 0
\(631\) 14.4398 0.574840 0.287420 0.957805i \(-0.407202\pi\)
0.287420 + 0.957805i \(0.407202\pi\)
\(632\) 0 0
\(633\) −2.47605 + 2.47605i −0.0984141 + 0.0984141i
\(634\) 0 0
\(635\) −0.509289 5.83740i −0.0202105 0.231650i
\(636\) 0 0
\(637\) 46.9327 + 16.7386i 1.85954 + 0.663208i
\(638\) 0 0
\(639\) 8.01809i 0.317191i
\(640\) 0 0
\(641\) 33.5748 1.32612 0.663062 0.748564i \(-0.269256\pi\)
0.663062 + 0.748564i \(0.269256\pi\)
\(642\) 0 0
\(643\) 14.6432 14.6432i 0.577473 0.577473i −0.356733 0.934206i \(-0.616109\pi\)
0.934206 + 0.356733i \(0.116109\pi\)
\(644\) 0 0
\(645\) 5.57306 6.63847i 0.219439 0.261389i
\(646\) 0 0
\(647\) 8.05411 + 8.05411i 0.316640 + 0.316640i 0.847475 0.530835i \(-0.178122\pi\)
−0.530835 + 0.847475i \(0.678122\pi\)
\(648\) 0 0
\(649\) −3.74966 −0.147187
\(650\) 0 0
\(651\) 4.11974 + 18.3022i 0.161465 + 0.717320i
\(652\) 0 0
\(653\) −9.98708 9.98708i −0.390825 0.390825i 0.484157 0.874981i \(-0.339126\pi\)
−0.874981 + 0.484157i \(0.839126\pi\)
\(654\) 0 0
\(655\) −36.5064 30.6475i −1.42642 1.19750i
\(656\) 0 0
\(657\) 8.97309 + 8.97309i 0.350074 + 0.350074i
\(658\) 0 0
\(659\) 1.39462i 0.0543266i 0.999631 + 0.0271633i \(0.00864741\pi\)
−0.999631 + 0.0271633i \(0.991353\pi\)
\(660\) 0 0
\(661\) 21.6158i 0.840756i −0.907349 0.420378i \(-0.861897\pi\)
0.907349 0.420378i \(-0.138103\pi\)
\(662\) 0 0
\(663\) −7.00810 + 7.00810i −0.272172 + 0.272172i
\(664\) 0 0
\(665\) −42.9475 + 13.6830i −1.66543 + 0.530603i
\(666\) 0 0
\(667\) 20.0316 20.0316i 0.775628 0.775628i
\(668\) 0 0
\(669\) 4.41709i 0.170775i
\(670\) 0 0
\(671\) 3.09774i 0.119587i
\(672\) 0 0
\(673\) 5.24015 + 5.24015i 0.201993 + 0.201993i 0.800853 0.598861i \(-0.204380\pi\)
−0.598861 + 0.800853i \(0.704380\pi\)
\(674\) 0 0
\(675\) −2.86986 + 4.09438i −0.110461 + 0.157593i
\(676\) 0 0
\(677\) 6.97956 + 6.97956i 0.268246 + 0.268246i 0.828393 0.560147i \(-0.189255\pi\)
−0.560147 + 0.828393i \(0.689255\pi\)
\(678\) 0 0
\(679\) −3.55689 15.8017i −0.136501 0.606414i
\(680\) 0 0
\(681\) 12.1476 0.465497
\(682\) 0 0
\(683\) −35.7411 35.7411i −1.36759 1.36759i −0.863857 0.503737i \(-0.831958\pi\)
−0.503737 0.863857i \(-0.668042\pi\)
\(684\) 0 0
\(685\) 2.69500 + 30.8898i 0.102971 + 1.18024i
\(686\) 0 0
\(687\) −12.5413 + 12.5413i −0.478482 + 0.478482i
\(688\) 0 0
\(689\) 73.2612 2.79103
\(690\) 0 0
\(691\) 17.4404i 0.663466i 0.943373 + 0.331733i \(0.107633\pi\)
−0.943373 + 0.331733i \(0.892367\pi\)
\(692\) 0 0
\(693\) −0.801059 + 1.26644i −0.0304297 + 0.0481082i
\(694\) 0 0
\(695\) −0.858018 + 1.02205i −0.0325465 + 0.0387684i
\(696\) 0 0
\(697\) −6.20083 + 6.20083i −0.234873 + 0.234873i
\(698\) 0 0
\(699\) 4.10877 0.155408
\(700\) 0 0
\(701\) 4.54698 0.171737 0.0858686 0.996306i \(-0.472633\pi\)
0.0858686 + 0.996306i \(0.472633\pi\)
\(702\) 0 0
\(703\) −6.76560 + 6.76560i −0.255169 + 0.255169i
\(704\) 0 0
\(705\) 6.61607 7.88086i 0.249175 0.296810i
\(706\) 0 0
\(707\) 15.4563 24.4358i 0.581294 0.919003i
\(708\) 0 0
\(709\) 26.2362i 0.985320i −0.870222 0.492660i \(-0.836025\pi\)
0.870222 0.492660i \(-0.163975\pi\)
\(710\) 0 0
\(711\) −1.85942 −0.0697338
\(712\) 0 0
\(713\) 18.0858 18.0858i 0.677318 0.677318i
\(714\) 0 0
\(715\) 0.783566 + 8.98113i 0.0293037 + 0.335875i
\(716\) 0 0
\(717\) 15.7125 + 15.7125i 0.586795 + 0.586795i
\(718\) 0 0
\(719\) −8.49807 −0.316924 −0.158462 0.987365i \(-0.550654\pi\)
−0.158462 + 0.987365i \(0.550654\pi\)
\(720\) 0 0
\(721\) −22.3940 + 5.04079i −0.833998 + 0.187729i
\(722\) 0 0
\(723\) −20.4485 20.4485i −0.760489 0.760489i
\(724\) 0 0
\(725\) −38.6744 + 6.80013i −1.43633 + 0.252550i
\(726\) 0 0
\(727\) 5.00053 + 5.00053i 0.185459 + 0.185459i 0.793730 0.608271i \(-0.208136\pi\)
−0.608271 + 0.793730i \(0.708136\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 5.39702i 0.199616i
\(732\) 0 0
\(733\) 16.5721 16.5721i 0.612105 0.612105i −0.331389 0.943494i \(-0.607517\pi\)
0.943494 + 0.331389i \(0.107517\pi\)
\(734\) 0 0
\(735\) −13.5064 + 7.91062i −0.498190 + 0.291788i
\(736\) 0 0
\(737\) −1.43352 + 1.43352i −0.0528044 + 0.0528044i
\(738\) 0 0
\(739\) 15.1772i 0.558304i 0.960247 + 0.279152i \(0.0900534\pi\)
−0.960247 + 0.279152i \(0.909947\pi\)
\(740\) 0 0
\(741\) 54.2344i 1.99235i
\(742\) 0 0
\(743\) 21.9303 + 21.9303i 0.804545 + 0.804545i 0.983802 0.179257i \(-0.0573694\pi\)
−0.179257 + 0.983802i \(0.557369\pi\)
\(744\) 0 0
\(745\) −1.45800 1.22401i −0.0534171 0.0448442i
\(746\) 0 0
\(747\) −2.61775 2.61775i −0.0957786 0.0957786i
\(748\) 0 0
\(749\) 29.4872 6.63743i 1.07744 0.242526i
\(750\) 0 0
\(751\) 13.6852 0.499380 0.249690 0.968326i \(-0.419671\pi\)
0.249690 + 0.968326i \(0.419671\pi\)
\(752\) 0 0
\(753\) 10.7623 + 10.7623i 0.392201 + 0.392201i
\(754\) 0 0
\(755\) 13.0943 15.5975i 0.476549 0.567651i
\(756\) 0 0
\(757\) −6.30930 + 6.30930i −0.229315 + 0.229315i −0.812407 0.583091i \(-0.801843\pi\)
0.583091 + 0.812407i \(0.301843\pi\)
\(758\) 0 0
\(759\) 2.04306 0.0741582
\(760\) 0 0
\(761\) 7.62961i 0.276573i 0.990392 + 0.138287i \(0.0441595\pi\)
−0.990392 + 0.138287i \(0.955841\pi\)
\(762\) 0 0
\(763\) −14.8321 + 23.4491i −0.536960 + 0.848913i
\(764\) 0 0
\(765\) −0.270595 3.10153i −0.00978339 0.112136i
\(766\) 0 0
\(767\) −33.3227 + 33.3227i −1.20321 + 1.20321i
\(768\) 0 0
\(769\) −6.15472 −0.221945 −0.110973 0.993823i \(-0.535397\pi\)
−0.110973 + 0.993823i \(0.535397\pi\)
\(770\) 0 0
\(771\) 20.6354 0.743164
\(772\) 0 0
\(773\) −8.65805 + 8.65805i −0.311408 + 0.311408i −0.845455 0.534047i \(-0.820671\pi\)
0.534047 + 0.845455i \(0.320671\pi\)
\(774\) 0 0
\(775\) −34.9177 + 6.13958i −1.25428 + 0.220540i
\(776\) 0 0
\(777\) −1.77613 + 2.80799i −0.0637183 + 0.100736i
\(778\) 0 0
\(779\) 47.9871i 1.71932i
\(780\) 0 0
\(781\) 4.54136 0.162502
\(782\) 0 0
\(783\) −5.55329 + 5.55329i −0.198459 + 0.198459i
\(784\) 0 0
\(785\) −39.7501 + 3.46803i −1.41874 + 0.123779i
\(786\) 0 0
\(787\) 23.1970 + 23.1970i 0.826884 + 0.826884i 0.987085 0.160200i \(-0.0512140\pi\)
−0.160200 + 0.987085i \(0.551214\pi\)
\(788\) 0 0
\(789\) −15.5122 −0.552248
\(790\) 0 0
\(791\) −2.71783 12.0741i −0.0966349 0.429307i
\(792\) 0 0
\(793\) −27.5292 27.5292i −0.977591 0.977591i
\(794\) 0 0
\(795\) −14.7970 + 17.6257i −0.524795 + 0.625120i
\(796\) 0 0
\(797\) −0.125809 0.125809i −0.00445637 0.00445637i 0.704875 0.709331i \(-0.251003\pi\)
−0.709331 + 0.704875i \(0.751003\pi\)
\(798\) 0 0
\(799\) 6.40707i 0.226666i
\(800\) 0 0
\(801\) 10.2289i 0.361422i
\(802\) 0 0
\(803\) −5.08226 + 5.08226i −0.179349 + 0.179349i
\(804\) 0 0
\(805\) 18.9585 + 9.79704i 0.668199 + 0.345300i
\(806\) 0 0
\(807\) 13.3518 13.3518i 0.470004 0.470004i
\(808\) 0 0
\(809\) 19.4348i 0.683292i 0.939829 + 0.341646i \(0.110984\pi\)
−0.939829 + 0.341646i \(0.889016\pi\)
\(810\) 0 0
\(811\) 35.3797i 1.24235i −0.783672 0.621175i \(-0.786656\pi\)
0.783672 0.621175i \(-0.213344\pi\)
\(812\) 0 0
\(813\) −20.4283 20.4283i −0.716453 0.716453i
\(814\) 0 0
\(815\) 0.434254 0.0378868i 0.0152112 0.00132712i
\(816\) 0 0
\(817\) 20.8833 + 20.8833i 0.730613 + 0.730613i
\(818\) 0 0
\(819\) 4.13581 + 18.3736i 0.144517 + 0.642025i
\(820\) 0 0
\(821\) 51.0482 1.78159 0.890797 0.454402i \(-0.150147\pi\)
0.890797 + 0.454402i \(0.150147\pi\)
\(822\) 0 0
\(823\) 16.3286 + 16.3286i 0.569178 + 0.569178i 0.931898 0.362720i \(-0.118152\pi\)
−0.362720 + 0.931898i \(0.618152\pi\)
\(824\) 0 0
\(825\) −2.31901 1.62545i −0.0807376 0.0565911i
\(826\) 0 0
\(827\) 6.41901 6.41901i 0.223211 0.223211i −0.586638 0.809849i \(-0.699549\pi\)
0.809849 + 0.586638i \(0.199549\pi\)
\(828\) 0 0
\(829\) −54.3081 −1.88620 −0.943100 0.332509i \(-0.892105\pi\)
−0.943100 + 0.332509i \(0.892105\pi\)
\(830\) 0 0
\(831\) 8.96261i 0.310909i
\(832\) 0 0
\(833\) 3.27400 9.17983i 0.113437 0.318062i
\(834\) 0 0
\(835\) 33.0660 2.88487i 1.14430 0.0998351i
\(836\) 0 0
\(837\) −5.01386 + 5.01386i −0.173304 + 0.173304i
\(838\) 0 0
\(839\) −34.7651 −1.20022 −0.600112 0.799916i \(-0.704877\pi\)
−0.600112 + 0.799916i \(0.704877\pi\)
\(840\) 0 0
\(841\) −32.6781 −1.12683
\(842\) 0 0
\(843\) −15.0751 + 15.0751i −0.519214 + 0.519214i
\(844\) 0 0
\(845\) 64.5139 + 54.1601i 2.21935 + 1.86316i
\(846\) 0 0
\(847\) 23.8787 + 15.1039i 0.820481 + 0.518976i
\(848\) 0 0
\(849\) 9.26183i 0.317865i
\(850\) 0 0
\(851\) 4.52992 0.155284
\(852\) 0 0
\(853\) 23.2485 23.2485i 0.796013 0.796013i −0.186451 0.982464i \(-0.559699\pi\)
0.982464 + 0.186451i \(0.0596987\pi\)
\(854\) 0 0
\(855\) −13.0481 10.9540i −0.446236 0.374620i
\(856\) 0 0
\(857\) 17.6594 + 17.6594i 0.603234 + 0.603234i 0.941169 0.337936i \(-0.109729\pi\)
−0.337936 + 0.941169i \(0.609729\pi\)
\(858\) 0 0
\(859\) −28.4270 −0.969916 −0.484958 0.874538i \(-0.661165\pi\)
−0.484958 + 0.874538i \(0.661165\pi\)
\(860\) 0 0
\(861\) 3.65940 + 16.2571i 0.124712 + 0.554042i
\(862\) 0 0
\(863\) −20.7557 20.7557i −0.706533 0.706533i 0.259271 0.965805i \(-0.416518\pi\)
−0.965805 + 0.259271i \(0.916518\pi\)
\(864\) 0 0
\(865\) −3.02653 34.6897i −0.102905 1.17949i
\(866\) 0 0
\(867\) −10.6501 10.6501i −0.361695 0.361695i
\(868\) 0 0
\(869\) 1.05316i 0.0357259i
\(870\) 0 0
\(871\) 25.4790i 0.863322i
\(872\) 0 0
\(873\) 4.32885 4.32885i 0.146509 0.146509i
\(874\) 0 0
\(875\) −13.7247 26.2037i −0.463979 0.885846i
\(876\) 0 0
\(877\) −19.2652 + 19.2652i −0.650538 + 0.650538i −0.953123 0.302584i \(-0.902151\pi\)
0.302584 + 0.953123i \(0.402151\pi\)
\(878\) 0 0
\(879\) 4.60157i 0.155207i
\(880\) 0 0
\(881\) 48.3786i 1.62992i 0.579520 + 0.814958i \(0.303240\pi\)
−0.579520 + 0.814958i \(0.696760\pi\)
\(882\) 0 0
\(883\) −5.45177 5.45177i −0.183467 0.183467i 0.609398 0.792865i \(-0.291411\pi\)
−0.792865 + 0.609398i \(0.791411\pi\)
\(884\) 0 0
\(885\) −1.28665 14.7474i −0.0432502 0.495729i
\(886\) 0 0
\(887\) 34.6612 + 34.6612i 1.16381 + 1.16381i 0.983635 + 0.180173i \(0.0576659\pi\)
0.180173 + 0.983635i \(0.442334\pi\)
\(888\) 0 0
\(889\) 6.76391 1.52252i 0.226854 0.0510638i
\(890\) 0 0
\(891\) −0.566389 −0.0189747
\(892\) 0 0
\(893\) 24.7916 + 24.7916i 0.829619 + 0.829619i
\(894\) 0 0
\(895\) 44.1459 + 37.0609i 1.47563 + 1.23881i
\(896\) 0 0
\(897\) 18.1563 18.1563i 0.606223 0.606223i
\(898\) 0 0
\(899\) −55.6869 −1.85726
\(900\) 0 0
\(901\) 14.3296i 0.477387i
\(902\) 0 0
\(903\) 8.66738 + 5.48235i 0.288432 + 0.182441i
\(904\) 0 0
\(905\) −17.7911 14.9358i −0.591397 0.496484i
\(906\) 0 0
\(907\) 24.8856 24.8856i 0.826313 0.826313i −0.160692 0.987005i \(-0.551373\pi\)
0.987005 + 0.160692i \(0.0513726\pi\)
\(908\) 0 0
\(909\) 10.9284 0.362471
\(910\) 0 0
\(911\) 30.5002 1.01052 0.505258 0.862968i \(-0.331397\pi\)
0.505258 + 0.862968i \(0.331397\pi\)
\(912\) 0 0
\(913\) 1.48267 1.48267i 0.0490691 0.0490691i
\(914\) 0 0
\(915\) 12.1834 1.06295i 0.402771 0.0351401i
\(916\) 0 0
\(917\) 30.1486 47.6638i 0.995594 1.57400i
\(918\) 0 0
\(919\) 14.2577i 0.470317i −0.971957 0.235158i \(-0.924439\pi\)
0.971957 0.235158i \(-0.0755608\pi\)
\(920\) 0 0
\(921\) 15.9262 0.524787
\(922\) 0 0
\(923\) 40.3584 40.3584i 1.32841 1.32841i
\(924\) 0 0
\(925\) −5.14177 3.60400i −0.169060 0.118499i
\(926\) 0 0
\(927\) −6.13481 6.13481i −0.201494 0.201494i
\(928\) 0 0
\(929\) 44.9793 1.47572 0.737861 0.674953i \(-0.235836\pi\)
0.737861 + 0.674953i \(0.235836\pi\)
\(930\) 0 0
\(931\) −22.8521 48.1890i −0.748946 1.57933i
\(932\) 0 0
\(933\) −6.51911 6.51911i −0.213426 0.213426i
\(934\) 0 0
\(935\) 1.75667 0.153262i 0.0574493 0.00501221i
\(936\) 0 0
\(937\) 6.27637 + 6.27637i 0.205040 + 0.205040i 0.802155 0.597115i \(-0.203687\pi\)
−0.597115 + 0.802155i \(0.703687\pi\)
\(938\) 0 0
\(939\) 12.6657i 0.413330i
\(940\) 0 0
\(941\) 17.1580i 0.559334i 0.960097 + 0.279667i \(0.0902241\pi\)
−0.960097 + 0.279667i \(0.909776\pi\)
\(942\) 0 0
\(943\) 16.0649 16.0649i 0.523146 0.523146i
\(944\) 0 0
\(945\) −5.25579 2.71600i −0.170971 0.0883514i
\(946\) 0 0
\(947\) 29.8882 29.8882i 0.971235 0.971235i −0.0283627 0.999598i \(-0.509029\pi\)
0.999598 + 0.0283627i \(0.00902935\pi\)
\(948\) 0 0
\(949\) 90.3306i 2.93226i
\(950\) 0 0
\(951\) 0.675973i 0.0219199i
\(952\) 0 0
\(953\) 17.5878 + 17.5878i 0.569726 + 0.569726i 0.932052 0.362325i \(-0.118017\pi\)
−0.362325 + 0.932052i \(0.618017\pi\)
\(954\) 0 0
\(955\) −22.4195 + 26.7055i −0.725479 + 0.864169i
\(956\) 0 0
\(957\) −3.14532 3.14532i −0.101674 0.101674i
\(958\) 0 0
\(959\) −35.7925 + 8.05673i −1.15580 + 0.260165i
\(960\) 0 0
\(961\) −19.2776 −0.621857
\(962\) 0 0
\(963\) 8.07798 + 8.07798i 0.260309 + 0.260309i
\(964\) 0 0
\(965\) −6.36841 + 0.555617i −0.205006 + 0.0178859i
\(966\) 0 0
\(967\) −23.9895 + 23.9895i −0.771450 + 0.771450i −0.978360 0.206910i \(-0.933659\pi\)
0.206910 + 0.978360i \(0.433659\pi\)
\(968\) 0 0
\(969\) 10.6080 0.340778
\(970\) 0 0
\(971\) 18.8172i 0.603872i 0.953328 + 0.301936i \(0.0976329\pi\)
−0.953328 + 0.301936i \(0.902367\pi\)
\(972\) 0 0
\(973\) −1.33441 0.844052i −0.0427793 0.0270591i
\(974\) 0 0
\(975\) −35.0539 + 6.16353i −1.12262 + 0.197391i
\(976\) 0 0
\(977\) −6.84647 + 6.84647i −0.219038 + 0.219038i −0.808093 0.589055i \(-0.799500\pi\)
0.589055 + 0.808093i \(0.299500\pi\)
\(978\) 0 0
\(979\) 5.79356 0.185163
\(980\) 0 0
\(981\) −10.4871 −0.334826
\(982\) 0 0
\(983\) −31.3553 + 31.3553i −1.00008 + 1.00008i −7.76361e−5 1.00000i \(0.500025\pi\)
−1.00000 7.76361e-5i \(0.999975\pi\)
\(984\) 0 0
\(985\) −1.40781 16.1361i −0.0448564 0.514139i
\(986\) 0 0
\(987\) 10.2895 + 6.50837i 0.327518 + 0.207164i
\(988\) 0 0
\(989\) 13.9824i 0.444615i
\(990\) 0 0
\(991\) 18.2867 0.580896 0.290448 0.956891i \(-0.406196\pi\)
0.290448 + 0.956891i \(0.406196\pi\)
\(992\) 0 0
\(993\) 12.6832 12.6832i 0.402489 0.402489i
\(994\) 0 0
\(995\) −33.0344 + 39.3496i −1.04726 + 1.24746i
\(996\) 0 0
\(997\) −13.1117 13.1117i −0.415251 0.415251i 0.468312 0.883563i \(-0.344862\pi\)
−0.883563 + 0.468312i \(0.844862\pi\)
\(998\) 0 0
\(999\) −1.25581 −0.0397321
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bt.a.433.8 yes 24
4.3 odd 2 1680.2.cz.f.433.4 24
5.2 odd 4 840.2.bt.b.97.5 yes 24
7.6 odd 2 840.2.bt.b.433.5 yes 24
20.7 even 4 1680.2.cz.e.97.9 24
28.27 even 2 1680.2.cz.e.433.9 24
35.27 even 4 inner 840.2.bt.a.97.8 24
140.27 odd 4 1680.2.cz.f.97.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.8 24 35.27 even 4 inner
840.2.bt.a.433.8 yes 24 1.1 even 1 trivial
840.2.bt.b.97.5 yes 24 5.2 odd 4
840.2.bt.b.433.5 yes 24 7.6 odd 2
1680.2.cz.e.97.9 24 20.7 even 4
1680.2.cz.e.433.9 24 28.27 even 2
1680.2.cz.f.97.4 24 140.27 odd 4
1680.2.cz.f.433.4 24 4.3 odd 2