Properties

Label 840.2.bt.a.433.11
Level $840$
Weight $2$
Character 840.433
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(97,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bt (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.11
Character \(\chi\) \(=\) 840.433
Dual form 840.2.bt.a.97.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{3} +(1.54016 + 1.62109i) q^{5} +(-2.38404 + 1.14733i) q^{7} -1.00000i q^{9} +3.30657 q^{11} +(-2.80068 + 2.80068i) q^{13} +(2.23534 + 0.0572249i) q^{15} +(-0.927660 - 0.927660i) q^{17} +8.03228 q^{19} +(-0.874484 + 2.49705i) q^{21} +(5.04160 + 5.04160i) q^{23} +(-0.255834 + 4.99345i) q^{25} +(-0.707107 - 0.707107i) q^{27} +4.38863i q^{29} -5.01010i q^{31} +(2.33810 - 2.33810i) q^{33} +(-5.53171 - 2.09766i) q^{35} +(-4.76495 + 4.76495i) q^{37} +3.96076i q^{39} -0.992301i q^{41} +(7.33404 + 7.33404i) q^{43} +(1.62109 - 1.54016i) q^{45} +(-8.09377 - 8.09377i) q^{47} +(4.36727 - 5.47056i) q^{49} -1.31191 q^{51} +(3.10555 + 3.10555i) q^{53} +(5.09264 + 5.36023i) q^{55} +(5.67968 - 5.67968i) q^{57} -2.76943 q^{59} +0.411959i q^{61} +(1.14733 + 2.38404i) q^{63} +(-8.85363 - 0.226654i) q^{65} +(9.51496 - 9.51496i) q^{67} +7.12989 q^{69} -8.33595 q^{71} +(-0.0150660 + 0.0150660i) q^{73} +(3.35000 + 3.71180i) q^{75} +(-7.88299 + 3.79373i) q^{77} -3.28466i q^{79} -1.00000 q^{81} +(-1.33325 + 1.33325i) q^{83} +(0.0750738 - 2.93256i) q^{85} +(3.10323 + 3.10323i) q^{87} -6.49108 q^{89} +(3.46362 - 9.89023i) q^{91} +(-3.54267 - 3.54267i) q^{93} +(12.3710 + 13.0210i) q^{95} +(4.43930 + 4.43930i) q^{97} -3.30657i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{7} - 8 q^{11} + 16 q^{13} + 4 q^{15} + 20 q^{17} + 8 q^{19} + 24 q^{23} - 4 q^{25} + 4 q^{37} - 16 q^{43} - 4 q^{45} - 24 q^{47} + 36 q^{49} + 16 q^{53} + 28 q^{55} + 4 q^{57} + 8 q^{59} + 24 q^{65}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 0 0
\(5\) 1.54016 + 1.62109i 0.688779 + 0.724971i
\(6\) 0 0
\(7\) −2.38404 + 1.14733i −0.901081 + 0.433650i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 3.30657 0.996968 0.498484 0.866899i \(-0.333890\pi\)
0.498484 + 0.866899i \(0.333890\pi\)
\(12\) 0 0
\(13\) −2.80068 + 2.80068i −0.776769 + 0.776769i −0.979280 0.202511i \(-0.935090\pi\)
0.202511 + 0.979280i \(0.435090\pi\)
\(14\) 0 0
\(15\) 2.23534 + 0.0572249i 0.577161 + 0.0147754i
\(16\) 0 0
\(17\) −0.927660 0.927660i −0.224991 0.224991i 0.585606 0.810596i \(-0.300857\pi\)
−0.810596 + 0.585606i \(0.800857\pi\)
\(18\) 0 0
\(19\) 8.03228 1.84273 0.921365 0.388698i \(-0.127075\pi\)
0.921365 + 0.388698i \(0.127075\pi\)
\(20\) 0 0
\(21\) −0.874484 + 2.49705i −0.190828 + 0.544902i
\(22\) 0 0
\(23\) 5.04160 + 5.04160i 1.05125 + 1.05125i 0.998614 + 0.0526316i \(0.0167609\pi\)
0.0526316 + 0.998614i \(0.483239\pi\)
\(24\) 0 0
\(25\) −0.255834 + 4.99345i −0.0511667 + 0.998690i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 4.38863i 0.814947i 0.913217 + 0.407474i \(0.133590\pi\)
−0.913217 + 0.407474i \(0.866410\pi\)
\(30\) 0 0
\(31\) 5.01010i 0.899840i −0.893069 0.449920i \(-0.851453\pi\)
0.893069 0.449920i \(-0.148547\pi\)
\(32\) 0 0
\(33\) 2.33810 2.33810i 0.407011 0.407011i
\(34\) 0 0
\(35\) −5.53171 2.09766i −0.935030 0.354569i
\(36\) 0 0
\(37\) −4.76495 + 4.76495i −0.783353 + 0.783353i −0.980395 0.197042i \(-0.936866\pi\)
0.197042 + 0.980395i \(0.436866\pi\)
\(38\) 0 0
\(39\) 3.96076i 0.634229i
\(40\) 0 0
\(41\) 0.992301i 0.154971i −0.996993 0.0774857i \(-0.975311\pi\)
0.996993 0.0774857i \(-0.0246892\pi\)
\(42\) 0 0
\(43\) 7.33404 + 7.33404i 1.11843 + 1.11843i 0.991972 + 0.126459i \(0.0403612\pi\)
0.126459 + 0.991972i \(0.459639\pi\)
\(44\) 0 0
\(45\) 1.62109 1.54016i 0.241657 0.229593i
\(46\) 0 0
\(47\) −8.09377 8.09377i −1.18060 1.18060i −0.979590 0.201008i \(-0.935578\pi\)
−0.201008 0.979590i \(-0.564422\pi\)
\(48\) 0 0
\(49\) 4.36727 5.47056i 0.623895 0.781508i
\(50\) 0 0
\(51\) −1.31191 −0.183704
\(52\) 0 0
\(53\) 3.10555 + 3.10555i 0.426580 + 0.426580i 0.887461 0.460882i \(-0.152467\pi\)
−0.460882 + 0.887461i \(0.652467\pi\)
\(54\) 0 0
\(55\) 5.09264 + 5.36023i 0.686691 + 0.722774i
\(56\) 0 0
\(57\) 5.67968 5.67968i 0.752292 0.752292i
\(58\) 0 0
\(59\) −2.76943 −0.360549 −0.180274 0.983616i \(-0.557699\pi\)
−0.180274 + 0.983616i \(0.557699\pi\)
\(60\) 0 0
\(61\) 0.411959i 0.0527460i 0.999652 + 0.0263730i \(0.00839576\pi\)
−0.999652 + 0.0263730i \(0.991604\pi\)
\(62\) 0 0
\(63\) 1.14733 + 2.38404i 0.144550 + 0.300360i
\(64\) 0 0
\(65\) −8.85363 0.226654i −1.09816 0.0281130i
\(66\) 0 0
\(67\) 9.51496 9.51496i 1.16244 1.16244i 0.178497 0.983940i \(-0.442876\pi\)
0.983940 0.178497i \(-0.0571235\pi\)
\(68\) 0 0
\(69\) 7.12989 0.858338
\(70\) 0 0
\(71\) −8.33595 −0.989296 −0.494648 0.869093i \(-0.664703\pi\)
−0.494648 + 0.869093i \(0.664703\pi\)
\(72\) 0 0
\(73\) −0.0150660 + 0.0150660i −0.00176334 + 0.00176334i −0.707988 0.706225i \(-0.750397\pi\)
0.706225 + 0.707988i \(0.250397\pi\)
\(74\) 0 0
\(75\) 3.35000 + 3.71180i 0.386825 + 0.428602i
\(76\) 0 0
\(77\) −7.88299 + 3.79373i −0.898350 + 0.432335i
\(78\) 0 0
\(79\) 3.28466i 0.369554i −0.982781 0.184777i \(-0.940844\pi\)
0.982781 0.184777i \(-0.0591562\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −1.33325 + 1.33325i −0.146343 + 0.146343i −0.776482 0.630139i \(-0.782998\pi\)
0.630139 + 0.776482i \(0.282998\pi\)
\(84\) 0 0
\(85\) 0.0750738 2.93256i 0.00814290 0.318080i
\(86\) 0 0
\(87\) 3.10323 + 3.10323i 0.332701 + 0.332701i
\(88\) 0 0
\(89\) −6.49108 −0.688053 −0.344026 0.938960i \(-0.611791\pi\)
−0.344026 + 0.938960i \(0.611791\pi\)
\(90\) 0 0
\(91\) 3.46362 9.89023i 0.363086 1.03678i
\(92\) 0 0
\(93\) −3.54267 3.54267i −0.367358 0.367358i
\(94\) 0 0
\(95\) 12.3710 + 13.0210i 1.26923 + 1.33593i
\(96\) 0 0
\(97\) 4.43930 + 4.43930i 0.450743 + 0.450743i 0.895601 0.444858i \(-0.146746\pi\)
−0.444858 + 0.895601i \(0.646746\pi\)
\(98\) 0 0
\(99\) 3.30657i 0.332323i
\(100\) 0 0
\(101\) 12.2398i 1.21790i −0.793207 0.608952i \(-0.791590\pi\)
0.793207 0.608952i \(-0.208410\pi\)
\(102\) 0 0
\(103\) 13.8964 13.8964i 1.36925 1.36925i 0.507738 0.861511i \(-0.330482\pi\)
0.861511 0.507738i \(-0.169518\pi\)
\(104\) 0 0
\(105\) −5.39478 + 2.42824i −0.526477 + 0.236972i
\(106\) 0 0
\(107\) 1.10288 1.10288i 0.106620 0.106620i −0.651784 0.758404i \(-0.725979\pi\)
0.758404 + 0.651784i \(0.225979\pi\)
\(108\) 0 0
\(109\) 9.72802i 0.931775i −0.884844 0.465887i \(-0.845735\pi\)
0.884844 0.465887i \(-0.154265\pi\)
\(110\) 0 0
\(111\) 6.73866i 0.639605i
\(112\) 0 0
\(113\) −1.92001 1.92001i −0.180620 0.180620i 0.611006 0.791626i \(-0.290765\pi\)
−0.791626 + 0.611006i \(0.790765\pi\)
\(114\) 0 0
\(115\) −0.408007 + 15.9377i −0.0380469 + 1.48620i
\(116\) 0 0
\(117\) 2.80068 + 2.80068i 0.258923 + 0.258923i
\(118\) 0 0
\(119\) 3.27591 + 1.14724i 0.300302 + 0.105168i
\(120\) 0 0
\(121\) −0.0665922 −0.00605383
\(122\) 0 0
\(123\) −0.701663 0.701663i −0.0632668 0.0632668i
\(124\) 0 0
\(125\) −8.48883 + 7.27597i −0.759264 + 0.650782i
\(126\) 0 0
\(127\) −9.97622 + 9.97622i −0.885246 + 0.885246i −0.994062 0.108816i \(-0.965294\pi\)
0.108816 + 0.994062i \(0.465294\pi\)
\(128\) 0 0
\(129\) 10.3719 0.913195
\(130\) 0 0
\(131\) 6.98425i 0.610216i 0.952318 + 0.305108i \(0.0986926\pi\)
−0.952318 + 0.305108i \(0.901307\pi\)
\(132\) 0 0
\(133\) −19.1492 + 9.21567i −1.66045 + 0.799100i
\(134\) 0 0
\(135\) 0.0572249 2.23534i 0.00492513 0.192387i
\(136\) 0 0
\(137\) −2.38722 + 2.38722i −0.203954 + 0.203954i −0.801692 0.597738i \(-0.796066\pi\)
0.597738 + 0.801692i \(0.296066\pi\)
\(138\) 0 0
\(139\) −4.89319 −0.415035 −0.207517 0.978231i \(-0.566538\pi\)
−0.207517 + 0.978231i \(0.566538\pi\)
\(140\) 0 0
\(141\) −11.4463 −0.963954
\(142\) 0 0
\(143\) −9.26065 + 9.26065i −0.774414 + 0.774414i
\(144\) 0 0
\(145\) −7.11434 + 6.75917i −0.590813 + 0.561319i
\(146\) 0 0
\(147\) −0.780143 6.95639i −0.0643451 0.573753i
\(148\) 0 0
\(149\) 10.2311i 0.838165i −0.907948 0.419083i \(-0.862352\pi\)
0.907948 0.419083i \(-0.137648\pi\)
\(150\) 0 0
\(151\) 20.5091 1.66901 0.834504 0.551002i \(-0.185755\pi\)
0.834504 + 0.551002i \(0.185755\pi\)
\(152\) 0 0
\(153\) −0.927660 + 0.927660i −0.0749969 + 0.0749969i
\(154\) 0 0
\(155\) 8.12179 7.71633i 0.652358 0.619791i
\(156\) 0 0
\(157\) −6.39577 6.39577i −0.510438 0.510438i 0.404223 0.914661i \(-0.367542\pi\)
−0.914661 + 0.404223i \(0.867542\pi\)
\(158\) 0 0
\(159\) 4.39191 0.348301
\(160\) 0 0
\(161\) −17.8037 6.23498i −1.40313 0.491385i
\(162\) 0 0
\(163\) −17.4426 17.4426i −1.36621 1.36621i −0.865774 0.500436i \(-0.833173\pi\)
−0.500436 0.865774i \(-0.666827\pi\)
\(164\) 0 0
\(165\) 7.39129 + 0.189218i 0.575412 + 0.0147306i
\(166\) 0 0
\(167\) −10.8547 10.8547i −0.839965 0.839965i 0.148889 0.988854i \(-0.452430\pi\)
−0.988854 + 0.148889i \(0.952430\pi\)
\(168\) 0 0
\(169\) 2.68763i 0.206740i
\(170\) 0 0
\(171\) 8.03228i 0.614244i
\(172\) 0 0
\(173\) −18.1500 + 18.1500i −1.37992 + 1.37992i −0.535189 + 0.844732i \(0.679760\pi\)
−0.844732 + 0.535189i \(0.820240\pi\)
\(174\) 0 0
\(175\) −5.11922 12.1981i −0.386977 0.922090i
\(176\) 0 0
\(177\) −1.95828 + 1.95828i −0.147193 + 0.147193i
\(178\) 0 0
\(179\) 5.83440i 0.436083i −0.975939 0.218042i \(-0.930033\pi\)
0.975939 0.218042i \(-0.0699669\pi\)
\(180\) 0 0
\(181\) 8.93968i 0.664481i −0.943195 0.332241i \(-0.892195\pi\)
0.943195 0.332241i \(-0.107805\pi\)
\(182\) 0 0
\(183\) 0.291299 + 0.291299i 0.0215335 + 0.0215335i
\(184\) 0 0
\(185\) −15.0632 0.385619i −1.10747 0.0283513i
\(186\) 0 0
\(187\) −3.06737 3.06737i −0.224308 0.224308i
\(188\) 0 0
\(189\) 2.49705 + 0.874484i 0.181634 + 0.0636093i
\(190\) 0 0
\(191\) −20.8302 −1.50722 −0.753611 0.657321i \(-0.771690\pi\)
−0.753611 + 0.657321i \(0.771690\pi\)
\(192\) 0 0
\(193\) 9.21153 + 9.21153i 0.663061 + 0.663061i 0.956100 0.293040i \(-0.0946668\pi\)
−0.293040 + 0.956100i \(0.594667\pi\)
\(194\) 0 0
\(195\) −6.42073 + 6.10019i −0.459798 + 0.436844i
\(196\) 0 0
\(197\) 17.9454 17.9454i 1.27856 1.27856i 0.337079 0.941477i \(-0.390561\pi\)
0.941477 0.337079i \(-0.109439\pi\)
\(198\) 0 0
\(199\) 11.2957 0.800729 0.400364 0.916356i \(-0.368884\pi\)
0.400364 + 0.916356i \(0.368884\pi\)
\(200\) 0 0
\(201\) 13.4562i 0.949126i
\(202\) 0 0
\(203\) −5.03520 10.4626i −0.353402 0.734334i
\(204\) 0 0
\(205\) 1.60860 1.52830i 0.112350 0.106741i
\(206\) 0 0
\(207\) 5.04160 5.04160i 0.350415 0.350415i
\(208\) 0 0
\(209\) 26.5593 1.83714
\(210\) 0 0
\(211\) −11.9867 −0.825196 −0.412598 0.910913i \(-0.635379\pi\)
−0.412598 + 0.910913i \(0.635379\pi\)
\(212\) 0 0
\(213\) −5.89441 + 5.89441i −0.403878 + 0.403878i
\(214\) 0 0
\(215\) −0.593531 + 23.1847i −0.0404785 + 1.58118i
\(216\) 0 0
\(217\) 5.74824 + 11.9443i 0.390216 + 0.810829i
\(218\) 0 0
\(219\) 0.0213066i 0.00143977i
\(220\) 0 0
\(221\) 5.19616 0.349531
\(222\) 0 0
\(223\) 5.55915 5.55915i 0.372269 0.372269i −0.496034 0.868303i \(-0.665211\pi\)
0.868303 + 0.496034i \(0.165211\pi\)
\(224\) 0 0
\(225\) 4.99345 + 0.255834i 0.332897 + 0.0170556i
\(226\) 0 0
\(227\) −9.17610 9.17610i −0.609039 0.609039i 0.333656 0.942695i \(-0.391718\pi\)
−0.942695 + 0.333656i \(0.891718\pi\)
\(228\) 0 0
\(229\) 9.02967 0.596697 0.298349 0.954457i \(-0.403564\pi\)
0.298349 + 0.954457i \(0.403564\pi\)
\(230\) 0 0
\(231\) −2.89154 + 8.25668i −0.190250 + 0.543250i
\(232\) 0 0
\(233\) −16.1719 16.1719i −1.05946 1.05946i −0.998117 0.0613399i \(-0.980463\pi\)
−0.0613399 0.998117i \(-0.519537\pi\)
\(234\) 0 0
\(235\) 0.655014 25.5864i 0.0427284 1.66907i
\(236\) 0 0
\(237\) −2.32261 2.32261i −0.150870 0.150870i
\(238\) 0 0
\(239\) 9.71673i 0.628523i 0.949336 + 0.314262i \(0.101757\pi\)
−0.949336 + 0.314262i \(0.898243\pi\)
\(240\) 0 0
\(241\) 6.15398i 0.396413i 0.980160 + 0.198206i \(0.0635116\pi\)
−0.980160 + 0.198206i \(0.936488\pi\)
\(242\) 0 0
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 15.5945 1.34580i 0.996297 0.0859802i
\(246\) 0 0
\(247\) −22.4958 + 22.4958i −1.43138 + 1.43138i
\(248\) 0 0
\(249\) 1.88549i 0.119488i
\(250\) 0 0
\(251\) 6.71090i 0.423588i −0.977314 0.211794i \(-0.932069\pi\)
0.977314 0.211794i \(-0.0679307\pi\)
\(252\) 0 0
\(253\) 16.6704 + 16.6704i 1.04806 + 1.04806i
\(254\) 0 0
\(255\) −2.02055 2.12672i −0.126531 0.133180i
\(256\) 0 0
\(257\) −11.7516 11.7516i −0.733044 0.733044i 0.238178 0.971222i \(-0.423450\pi\)
−0.971222 + 0.238178i \(0.923450\pi\)
\(258\) 0 0
\(259\) 5.89285 16.8268i 0.366164 1.04557i
\(260\) 0 0
\(261\) 4.38863 0.271649
\(262\) 0 0
\(263\) 6.36216 + 6.36216i 0.392308 + 0.392308i 0.875509 0.483202i \(-0.160526\pi\)
−0.483202 + 0.875509i \(0.660526\pi\)
\(264\) 0 0
\(265\) −0.251326 + 9.81738i −0.0154389 + 0.603077i
\(266\) 0 0
\(267\) −4.58989 + 4.58989i −0.280896 + 0.280896i
\(268\) 0 0
\(269\) 14.2170 0.866829 0.433414 0.901195i \(-0.357309\pi\)
0.433414 + 0.901195i \(0.357309\pi\)
\(270\) 0 0
\(271\) 9.72015i 0.590457i 0.955427 + 0.295229i \(0.0953958\pi\)
−0.955427 + 0.295229i \(0.904604\pi\)
\(272\) 0 0
\(273\) −4.54430 9.44260i −0.275034 0.571492i
\(274\) 0 0
\(275\) −0.845932 + 16.5112i −0.0510116 + 0.995663i
\(276\) 0 0
\(277\) −14.0922 + 14.0922i −0.846721 + 0.846721i −0.989722 0.143001i \(-0.954325\pi\)
0.143001 + 0.989722i \(0.454325\pi\)
\(278\) 0 0
\(279\) −5.01010 −0.299947
\(280\) 0 0
\(281\) 30.8301 1.83917 0.919584 0.392894i \(-0.128526\pi\)
0.919584 + 0.392894i \(0.128526\pi\)
\(282\) 0 0
\(283\) 12.8741 12.8741i 0.765288 0.765288i −0.211985 0.977273i \(-0.567993\pi\)
0.977273 + 0.211985i \(0.0679928\pi\)
\(284\) 0 0
\(285\) 17.9548 + 0.459646i 1.06355 + 0.0272271i
\(286\) 0 0
\(287\) 1.13850 + 2.36568i 0.0672033 + 0.139642i
\(288\) 0 0
\(289\) 15.2789i 0.898758i
\(290\) 0 0
\(291\) 6.27812 0.368030
\(292\) 0 0
\(293\) 17.8266 17.8266i 1.04144 1.04144i 0.0423367 0.999103i \(-0.486520\pi\)
0.999103 0.0423367i \(-0.0134802\pi\)
\(294\) 0 0
\(295\) −4.26535 4.48948i −0.248338 0.261387i
\(296\) 0 0
\(297\) −2.33810 2.33810i −0.135670 0.135670i
\(298\) 0 0
\(299\) −28.2398 −1.63315
\(300\) 0 0
\(301\) −25.8992 9.07006i −1.49280 0.522790i
\(302\) 0 0
\(303\) −8.65484 8.65484i −0.497207 0.497207i
\(304\) 0 0
\(305\) −0.667821 + 0.634482i −0.0382393 + 0.0363303i
\(306\) 0 0
\(307\) −4.05722 4.05722i −0.231558 0.231558i 0.581785 0.813343i \(-0.302355\pi\)
−0.813343 + 0.581785i \(0.802355\pi\)
\(308\) 0 0
\(309\) 19.6524i 1.11799i
\(310\) 0 0
\(311\) 13.8490i 0.785305i 0.919687 + 0.392652i \(0.128442\pi\)
−0.919687 + 0.392652i \(0.871558\pi\)
\(312\) 0 0
\(313\) −17.1203 + 17.1203i −0.967695 + 0.967695i −0.999494 0.0317993i \(-0.989876\pi\)
0.0317993 + 0.999494i \(0.489876\pi\)
\(314\) 0 0
\(315\) −2.09766 + 5.53171i −0.118190 + 0.311677i
\(316\) 0 0
\(317\) 2.01391 2.01391i 0.113112 0.113112i −0.648285 0.761398i \(-0.724514\pi\)
0.761398 + 0.648285i \(0.224514\pi\)
\(318\) 0 0
\(319\) 14.5113i 0.812477i
\(320\) 0 0
\(321\) 1.55971i 0.0870547i
\(322\) 0 0
\(323\) −7.45122 7.45122i −0.414597 0.414597i
\(324\) 0 0
\(325\) −13.2686 14.7016i −0.736007 0.815496i
\(326\) 0 0
\(327\) −6.87875 6.87875i −0.380396 0.380396i
\(328\) 0 0
\(329\) 28.5821 + 10.0096i 1.57578 + 0.551848i
\(330\) 0 0
\(331\) 2.92509 0.160777 0.0803886 0.996764i \(-0.474384\pi\)
0.0803886 + 0.996764i \(0.474384\pi\)
\(332\) 0 0
\(333\) 4.76495 + 4.76495i 0.261118 + 0.261118i
\(334\) 0 0
\(335\) 30.0791 + 0.770029i 1.64340 + 0.0420712i
\(336\) 0 0
\(337\) −3.05556 + 3.05556i −0.166447 + 0.166447i −0.785416 0.618969i \(-0.787551\pi\)
0.618969 + 0.785416i \(0.287551\pi\)
\(338\) 0 0
\(339\) −2.71531 −0.147475
\(340\) 0 0
\(341\) 16.5662i 0.897112i
\(342\) 0 0
\(343\) −4.13519 + 18.0527i −0.223279 + 0.974754i
\(344\) 0 0
\(345\) 10.9812 + 11.5582i 0.591206 + 0.622271i
\(346\) 0 0
\(347\) 5.84450 5.84450i 0.313749 0.313749i −0.532611 0.846360i \(-0.678789\pi\)
0.846360 + 0.532611i \(0.178789\pi\)
\(348\) 0 0
\(349\) −18.0309 −0.965172 −0.482586 0.875849i \(-0.660302\pi\)
−0.482586 + 0.875849i \(0.660302\pi\)
\(350\) 0 0
\(351\) 3.96076 0.211410
\(352\) 0 0
\(353\) −21.4252 + 21.4252i −1.14035 + 1.14035i −0.151961 + 0.988387i \(0.548559\pi\)
−0.988387 + 0.151961i \(0.951441\pi\)
\(354\) 0 0
\(355\) −12.8387 13.5133i −0.681406 0.717211i
\(356\) 0 0
\(357\) 3.12764 1.50519i 0.165532 0.0796633i
\(358\) 0 0
\(359\) 4.81661i 0.254211i 0.991889 + 0.127106i \(0.0405687\pi\)
−0.991889 + 0.127106i \(0.959431\pi\)
\(360\) 0 0
\(361\) 45.5175 2.39566
\(362\) 0 0
\(363\) −0.0470878 + 0.0470878i −0.00247147 + 0.00247147i
\(364\) 0 0
\(365\) −0.0476273 0.00121927i −0.00249293 6.38193e-5i
\(366\) 0 0
\(367\) 6.17728 + 6.17728i 0.322451 + 0.322451i 0.849707 0.527256i \(-0.176779\pi\)
−0.527256 + 0.849707i \(0.676779\pi\)
\(368\) 0 0
\(369\) −0.992301 −0.0516571
\(370\) 0 0
\(371\) −10.9668 3.84065i −0.569369 0.199397i
\(372\) 0 0
\(373\) 23.9129 + 23.9129i 1.23816 + 1.23816i 0.960751 + 0.277413i \(0.0894770\pi\)
0.277413 + 0.960751i \(0.410523\pi\)
\(374\) 0 0
\(375\) −0.857624 + 11.1474i −0.0442875 + 0.575649i
\(376\) 0 0
\(377\) −12.2911 12.2911i −0.633026 0.633026i
\(378\) 0 0
\(379\) 11.7119i 0.601599i 0.953687 + 0.300800i \(0.0972536\pi\)
−0.953687 + 0.300800i \(0.902746\pi\)
\(380\) 0 0
\(381\) 14.1085i 0.722800i
\(382\) 0 0
\(383\) −0.575801 + 0.575801i −0.0294221 + 0.0294221i −0.721665 0.692243i \(-0.756623\pi\)
0.692243 + 0.721665i \(0.256623\pi\)
\(384\) 0 0
\(385\) −18.2910 6.93606i −0.932195 0.353494i
\(386\) 0 0
\(387\) 7.33404 7.33404i 0.372810 0.372810i
\(388\) 0 0
\(389\) 0.169265i 0.00858209i −0.999991 0.00429104i \(-0.998634\pi\)
0.999991 0.00429104i \(-0.00136589\pi\)
\(390\) 0 0
\(391\) 9.35377i 0.473041i
\(392\) 0 0
\(393\) 4.93861 + 4.93861i 0.249120 + 0.249120i
\(394\) 0 0
\(395\) 5.32472 5.05890i 0.267916 0.254541i
\(396\) 0 0
\(397\) 5.20067 + 5.20067i 0.261014 + 0.261014i 0.825466 0.564452i \(-0.190912\pi\)
−0.564452 + 0.825466i \(0.690912\pi\)
\(398\) 0 0
\(399\) −7.02410 + 20.0570i −0.351645 + 1.00411i
\(400\) 0 0
\(401\) −2.69380 −0.134522 −0.0672610 0.997735i \(-0.521426\pi\)
−0.0672610 + 0.997735i \(0.521426\pi\)
\(402\) 0 0
\(403\) 14.0317 + 14.0317i 0.698968 + 0.698968i
\(404\) 0 0
\(405\) −1.54016 1.62109i −0.0765310 0.0805524i
\(406\) 0 0
\(407\) −15.7556 + 15.7556i −0.780978 + 0.780978i
\(408\) 0 0
\(409\) 20.1291 0.995319 0.497659 0.867373i \(-0.334193\pi\)
0.497659 + 0.867373i \(0.334193\pi\)
\(410\) 0 0
\(411\) 3.37604i 0.166528i
\(412\) 0 0
\(413\) 6.60241 3.17745i 0.324884 0.156352i
\(414\) 0 0
\(415\) −4.21471 0.107897i −0.206892 0.00529646i
\(416\) 0 0
\(417\) −3.46001 + 3.46001i −0.169437 + 0.169437i
\(418\) 0 0
\(419\) −14.3204 −0.699599 −0.349800 0.936825i \(-0.613750\pi\)
−0.349800 + 0.936825i \(0.613750\pi\)
\(420\) 0 0
\(421\) 24.1470 1.17685 0.588426 0.808551i \(-0.299748\pi\)
0.588426 + 0.808551i \(0.299748\pi\)
\(422\) 0 0
\(423\) −8.09377 + 8.09377i −0.393533 + 0.393533i
\(424\) 0 0
\(425\) 4.86955 4.39490i 0.236208 0.213184i
\(426\) 0 0
\(427\) −0.472653 0.982127i −0.0228733 0.0475284i
\(428\) 0 0
\(429\) 13.0965i 0.632307i
\(430\) 0 0
\(431\) 10.9386 0.526894 0.263447 0.964674i \(-0.415141\pi\)
0.263447 + 0.964674i \(0.415141\pi\)
\(432\) 0 0
\(433\) 4.37049 4.37049i 0.210032 0.210032i −0.594249 0.804281i \(-0.702551\pi\)
0.804281 + 0.594249i \(0.202551\pi\)
\(434\) 0 0
\(435\) −0.251139 + 9.81005i −0.0120412 + 0.470356i
\(436\) 0 0
\(437\) 40.4955 + 40.4955i 1.93716 + 1.93716i
\(438\) 0 0
\(439\) 29.6474 1.41499 0.707497 0.706717i \(-0.249824\pi\)
0.707497 + 0.706717i \(0.249824\pi\)
\(440\) 0 0
\(441\) −5.47056 4.36727i −0.260503 0.207965i
\(442\) 0 0
\(443\) −17.6204 17.6204i −0.837168 0.837168i 0.151317 0.988485i \(-0.451649\pi\)
−0.988485 + 0.151317i \(0.951649\pi\)
\(444\) 0 0
\(445\) −9.99728 10.5226i −0.473916 0.498819i
\(446\) 0 0
\(447\) −7.23449 7.23449i −0.342179 0.342179i
\(448\) 0 0
\(449\) 20.1212i 0.949576i 0.880100 + 0.474788i \(0.157475\pi\)
−0.880100 + 0.474788i \(0.842525\pi\)
\(450\) 0 0
\(451\) 3.28111i 0.154502i
\(452\) 0 0
\(453\) 14.5021 14.5021i 0.681369 0.681369i
\(454\) 0 0
\(455\) 21.3674 9.61769i 1.00172 0.450884i
\(456\) 0 0
\(457\) −1.47111 + 1.47111i −0.0688157 + 0.0688157i −0.740677 0.671861i \(-0.765495\pi\)
0.671861 + 0.740677i \(0.265495\pi\)
\(458\) 0 0
\(459\) 1.31191i 0.0612347i
\(460\) 0 0
\(461\) 18.2023i 0.847768i 0.905717 + 0.423884i \(0.139334\pi\)
−0.905717 + 0.423884i \(0.860666\pi\)
\(462\) 0 0
\(463\) −5.77953 5.77953i −0.268598 0.268598i 0.559937 0.828535i \(-0.310825\pi\)
−0.828535 + 0.559937i \(0.810825\pi\)
\(464\) 0 0
\(465\) 0.286702 11.1992i 0.0132955 0.519353i
\(466\) 0 0
\(467\) 20.6171 + 20.6171i 0.954046 + 0.954046i 0.998990 0.0449436i \(-0.0143108\pi\)
−0.0449436 + 0.998990i \(0.514311\pi\)
\(468\) 0 0
\(469\) −11.7672 + 33.6008i −0.543360 + 1.55154i
\(470\) 0 0
\(471\) −9.04498 −0.416771
\(472\) 0 0
\(473\) 24.2505 + 24.2505i 1.11504 + 1.11504i
\(474\) 0 0
\(475\) −2.05493 + 40.1088i −0.0942865 + 1.84032i
\(476\) 0 0
\(477\) 3.10555 3.10555i 0.142193 0.142193i
\(478\) 0 0
\(479\) 22.7500 1.03947 0.519737 0.854327i \(-0.326030\pi\)
0.519737 + 0.854327i \(0.326030\pi\)
\(480\) 0 0
\(481\) 26.6902i 1.21697i
\(482\) 0 0
\(483\) −16.9979 + 8.18034i −0.773433 + 0.372219i
\(484\) 0 0
\(485\) −0.359265 + 14.0337i −0.0163134 + 0.637238i
\(486\) 0 0
\(487\) −2.43248 + 2.43248i −0.110226 + 0.110226i −0.760069 0.649843i \(-0.774835\pi\)
0.649843 + 0.760069i \(0.274835\pi\)
\(488\) 0 0
\(489\) −24.6676 −1.11551
\(490\) 0 0
\(491\) −18.2591 −0.824022 −0.412011 0.911179i \(-0.635173\pi\)
−0.412011 + 0.911179i \(0.635173\pi\)
\(492\) 0 0
\(493\) 4.07115 4.07115i 0.183355 0.183355i
\(494\) 0 0
\(495\) 5.36023 5.09264i 0.240925 0.228897i
\(496\) 0 0
\(497\) 19.8732 9.56409i 0.891436 0.429008i
\(498\) 0 0
\(499\) 21.4299i 0.959334i −0.877451 0.479667i \(-0.840758\pi\)
0.877451 0.479667i \(-0.159242\pi\)
\(500\) 0 0
\(501\) −15.3509 −0.685829
\(502\) 0 0
\(503\) 29.5361 29.5361i 1.31695 1.31695i 0.400770 0.916179i \(-0.368743\pi\)
0.916179 0.400770i \(-0.131257\pi\)
\(504\) 0 0
\(505\) 19.8417 18.8512i 0.882946 0.838867i
\(506\) 0 0
\(507\) −1.90044 1.90044i −0.0844014 0.0844014i
\(508\) 0 0
\(509\) 9.47432 0.419942 0.209971 0.977708i \(-0.432663\pi\)
0.209971 + 0.977708i \(0.432663\pi\)
\(510\) 0 0
\(511\) 0.0186323 0.0532037i 0.000824243 0.00235359i
\(512\) 0 0
\(513\) −5.67968 5.67968i −0.250764 0.250764i
\(514\) 0 0
\(515\) 43.9298 + 1.12461i 1.93578 + 0.0495561i
\(516\) 0 0
\(517\) −26.7626 26.7626i −1.17702 1.17702i
\(518\) 0 0
\(519\) 25.6680i 1.12670i
\(520\) 0 0
\(521\) 14.6502i 0.641837i −0.947107 0.320918i \(-0.896008\pi\)
0.947107 0.320918i \(-0.103992\pi\)
\(522\) 0 0
\(523\) 20.0200 20.0200i 0.875413 0.875413i −0.117643 0.993056i \(-0.537534\pi\)
0.993056 + 0.117643i \(0.0375337\pi\)
\(524\) 0 0
\(525\) −12.2452 5.00552i −0.534424 0.218459i
\(526\) 0 0
\(527\) −4.64767 + 4.64767i −0.202455 + 0.202455i
\(528\) 0 0
\(529\) 27.8354i 1.21023i
\(530\) 0 0
\(531\) 2.76943i 0.120183i
\(532\) 0 0
\(533\) 2.77912 + 2.77912i 0.120377 + 0.120377i
\(534\) 0 0
\(535\) 3.48648 + 0.0892544i 0.150734 + 0.00385880i
\(536\) 0 0
\(537\) −4.12554 4.12554i −0.178030 0.178030i
\(538\) 0 0
\(539\) 14.4407 18.0888i 0.622004 0.779139i
\(540\) 0 0
\(541\) −11.4133 −0.490696 −0.245348 0.969435i \(-0.578902\pi\)
−0.245348 + 0.969435i \(0.578902\pi\)
\(542\) 0 0
\(543\) −6.32131 6.32131i −0.271273 0.271273i
\(544\) 0 0
\(545\) 15.7699 14.9827i 0.675510 0.641787i
\(546\) 0 0
\(547\) −3.48155 + 3.48155i −0.148861 + 0.148861i −0.777609 0.628748i \(-0.783568\pi\)
0.628748 + 0.777609i \(0.283568\pi\)
\(548\) 0 0
\(549\) 0.411959 0.0175820
\(550\) 0 0
\(551\) 35.2507i 1.50173i
\(552\) 0 0
\(553\) 3.76860 + 7.83076i 0.160257 + 0.332998i
\(554\) 0 0
\(555\) −10.9239 + 10.3786i −0.463695 + 0.440547i
\(556\) 0 0
\(557\) 7.76382 7.76382i 0.328964 0.328964i −0.523229 0.852192i \(-0.675273\pi\)
0.852192 + 0.523229i \(0.175273\pi\)
\(558\) 0 0
\(559\) −41.0806 −1.73753
\(560\) 0 0
\(561\) −4.33792 −0.183147
\(562\) 0 0
\(563\) 6.97727 6.97727i 0.294057 0.294057i −0.544624 0.838681i \(-0.683328\pi\)
0.838681 + 0.544624i \(0.183328\pi\)
\(564\) 0 0
\(565\) 0.155383 6.06963i 0.00653702 0.255351i
\(566\) 0 0
\(567\) 2.38404 1.14733i 0.100120 0.0481833i
\(568\) 0 0
\(569\) 12.3582i 0.518082i 0.965866 + 0.259041i \(0.0834064\pi\)
−0.965866 + 0.259041i \(0.916594\pi\)
\(570\) 0 0
\(571\) −1.05801 −0.0442764 −0.0221382 0.999755i \(-0.507047\pi\)
−0.0221382 + 0.999755i \(0.507047\pi\)
\(572\) 0 0
\(573\) −14.7292 + 14.7292i −0.615321 + 0.615321i
\(574\) 0 0
\(575\) −26.4648 + 23.8852i −1.10366 + 0.996080i
\(576\) 0 0
\(577\) 7.14961 + 7.14961i 0.297642 + 0.297642i 0.840090 0.542448i \(-0.182502\pi\)
−0.542448 + 0.840090i \(0.682502\pi\)
\(578\) 0 0
\(579\) 13.0271 0.541387
\(580\) 0 0
\(581\) 1.64883 4.70818i 0.0684052 0.195328i
\(582\) 0 0
\(583\) 10.2687 + 10.2687i 0.425286 + 0.425286i
\(584\) 0 0
\(585\) −0.226654 + 8.85363i −0.00937099 + 0.366053i
\(586\) 0 0
\(587\) 11.8070 + 11.8070i 0.487326 + 0.487326i 0.907461 0.420135i \(-0.138017\pi\)
−0.420135 + 0.907461i \(0.638017\pi\)
\(588\) 0 0
\(589\) 40.2425i 1.65816i
\(590\) 0 0
\(591\) 25.3786i 1.04394i
\(592\) 0 0
\(593\) −7.07055 + 7.07055i −0.290353 + 0.290353i −0.837220 0.546867i \(-0.815820\pi\)
0.546867 + 0.837220i \(0.315820\pi\)
\(594\) 0 0
\(595\) 3.18563 + 7.07746i 0.130598 + 0.290148i
\(596\) 0 0
\(597\) 7.98724 7.98724i 0.326896 0.326896i
\(598\) 0 0
\(599\) 43.9995i 1.79777i −0.438182 0.898886i \(-0.644377\pi\)
0.438182 0.898886i \(-0.355623\pi\)
\(600\) 0 0
\(601\) 36.1285i 1.47371i 0.676051 + 0.736855i \(0.263690\pi\)
−0.676051 + 0.736855i \(0.736310\pi\)
\(602\) 0 0
\(603\) −9.51496 9.51496i −0.387479 0.387479i
\(604\) 0 0
\(605\) −0.102562 0.107952i −0.00416975 0.00438886i
\(606\) 0 0
\(607\) −16.4198 16.4198i −0.666457 0.666457i 0.290437 0.956894i \(-0.406199\pi\)
−0.956894 + 0.290437i \(0.906199\pi\)
\(608\) 0 0
\(609\) −10.9586 3.83778i −0.444066 0.155515i
\(610\) 0 0
\(611\) 45.3361 1.83410
\(612\) 0 0
\(613\) −7.32133 7.32133i −0.295706 0.295706i 0.543624 0.839329i \(-0.317052\pi\)
−0.839329 + 0.543624i \(0.817052\pi\)
\(614\) 0 0
\(615\) 0.0567843 2.21812i 0.00228976 0.0894434i
\(616\) 0 0
\(617\) 19.2296 19.2296i 0.774156 0.774156i −0.204675 0.978830i \(-0.565614\pi\)
0.978830 + 0.204675i \(0.0656136\pi\)
\(618\) 0 0
\(619\) −42.1535 −1.69429 −0.847146 0.531360i \(-0.821681\pi\)
−0.847146 + 0.531360i \(0.821681\pi\)
\(620\) 0 0
\(621\) 7.12989i 0.286113i
\(622\) 0 0
\(623\) 15.4750 7.44741i 0.619992 0.298374i
\(624\) 0 0
\(625\) −24.8691 2.55499i −0.994764 0.102199i
\(626\) 0 0
\(627\) 18.7803 18.7803i 0.750011 0.750011i
\(628\) 0 0
\(629\) 8.84050 0.352494
\(630\) 0 0
\(631\) 12.6561 0.503831 0.251916 0.967749i \(-0.418939\pi\)
0.251916 + 0.967749i \(0.418939\pi\)
\(632\) 0 0
\(633\) −8.47585 + 8.47585i −0.336885 + 0.336885i
\(634\) 0 0
\(635\) −31.5372 0.807357i −1.25152 0.0320390i
\(636\) 0 0
\(637\) 3.08996 + 27.5526i 0.122429 + 1.09167i
\(638\) 0 0
\(639\) 8.33595i 0.329765i
\(640\) 0 0
\(641\) −38.5669 −1.52330 −0.761650 0.647989i \(-0.775610\pi\)
−0.761650 + 0.647989i \(0.775610\pi\)
\(642\) 0 0
\(643\) 22.6442 22.6442i 0.893001 0.893001i −0.101804 0.994804i \(-0.532461\pi\)
0.994804 + 0.101804i \(0.0324614\pi\)
\(644\) 0 0
\(645\) 15.9744 + 16.8137i 0.628990 + 0.662040i
\(646\) 0 0
\(647\) −13.4030 13.4030i −0.526925 0.526925i 0.392729 0.919654i \(-0.371531\pi\)
−0.919654 + 0.392729i \(0.871531\pi\)
\(648\) 0 0
\(649\) −9.15730 −0.359456
\(650\) 0 0
\(651\) 12.5105 + 4.38125i 0.490324 + 0.171715i
\(652\) 0 0
\(653\) −20.0493 20.0493i −0.784591 0.784591i 0.196010 0.980602i \(-0.437201\pi\)
−0.980602 + 0.196010i \(0.937201\pi\)
\(654\) 0 0
\(655\) −11.3221 + 10.7568i −0.442389 + 0.420304i
\(656\) 0 0
\(657\) 0.0150660 + 0.0150660i 0.000587782 + 0.000587782i
\(658\) 0 0
\(659\) 8.92589i 0.347703i −0.984772 0.173852i \(-0.944379\pi\)
0.984772 0.173852i \(-0.0556213\pi\)
\(660\) 0 0
\(661\) 35.9123i 1.39683i −0.715695 0.698413i \(-0.753890\pi\)
0.715695 0.698413i \(-0.246110\pi\)
\(662\) 0 0
\(663\) 3.67424 3.67424i 0.142696 0.142696i
\(664\) 0 0
\(665\) −44.4322 16.8490i −1.72301 0.653375i
\(666\) 0 0
\(667\) −22.1257 + 22.1257i −0.856710 + 0.856710i
\(668\) 0 0
\(669\) 7.86183i 0.303956i
\(670\) 0 0
\(671\) 1.36217i 0.0525861i
\(672\) 0 0
\(673\) −6.02633 6.02633i −0.232298 0.232298i 0.581353 0.813651i \(-0.302523\pi\)
−0.813651 + 0.581353i \(0.802523\pi\)
\(674\) 0 0
\(675\) 3.71180 3.35000i 0.142867 0.128942i
\(676\) 0 0
\(677\) 13.6480 + 13.6480i 0.524536 + 0.524536i 0.918938 0.394402i \(-0.129048\pi\)
−0.394402 + 0.918938i \(0.629048\pi\)
\(678\) 0 0
\(679\) −15.6768 5.49011i −0.601621 0.210691i
\(680\) 0 0
\(681\) −12.9770 −0.497278
\(682\) 0 0
\(683\) −6.98283 6.98283i −0.267190 0.267190i 0.560777 0.827967i \(-0.310503\pi\)
−0.827967 + 0.560777i \(0.810503\pi\)
\(684\) 0 0
\(685\) −7.54659 0.193194i −0.288340 0.00738155i
\(686\) 0 0
\(687\) 6.38494 6.38494i 0.243601 0.243601i
\(688\) 0 0
\(689\) −17.3953 −0.662708
\(690\) 0 0
\(691\) 19.2720i 0.733140i −0.930390 0.366570i \(-0.880532\pi\)
0.930390 0.366570i \(-0.119468\pi\)
\(692\) 0 0
\(693\) 3.79373 + 7.88299i 0.144112 + 0.299450i
\(694\) 0 0
\(695\) −7.53628 7.93228i −0.285867 0.300888i
\(696\) 0 0
\(697\) −0.920517 + 0.920517i −0.0348671 + 0.0348671i
\(698\) 0 0
\(699\) −22.8705 −0.865043
\(700\) 0 0
\(701\) −22.4067 −0.846288 −0.423144 0.906062i \(-0.639074\pi\)
−0.423144 + 0.906062i \(0.639074\pi\)
\(702\) 0 0
\(703\) −38.2734 + 38.2734i −1.44351 + 1.44351i
\(704\) 0 0
\(705\) −17.6291 18.5555i −0.663951 0.698839i
\(706\) 0 0
\(707\) 14.0431 + 29.1801i 0.528144 + 1.09743i
\(708\) 0 0
\(709\) 38.7214i 1.45421i −0.686524 0.727107i \(-0.740864\pi\)
0.686524 0.727107i \(-0.259136\pi\)
\(710\) 0 0
\(711\) −3.28466 −0.123185
\(712\) 0 0
\(713\) 25.2589 25.2589i 0.945953 0.945953i
\(714\) 0 0
\(715\) −29.2751 0.749448i −1.09483 0.0280278i
\(716\) 0 0
\(717\) 6.87077 + 6.87077i 0.256593 + 0.256593i
\(718\) 0 0
\(719\) −22.0846 −0.823616 −0.411808 0.911271i \(-0.635103\pi\)
−0.411808 + 0.911271i \(0.635103\pi\)
\(720\) 0 0
\(721\) −17.1857 + 49.0732i −0.640030 + 1.82758i
\(722\) 0 0
\(723\) 4.35152 + 4.35152i 0.161835 + 0.161835i
\(724\) 0 0
\(725\) −21.9144 1.12276i −0.813880 0.0416982i
\(726\) 0 0
\(727\) −15.0229 15.0229i −0.557167 0.557167i 0.371333 0.928500i \(-0.378901\pi\)
−0.928500 + 0.371333i \(0.878901\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 13.6070i 0.503273i
\(732\) 0 0
\(733\) 25.0894 25.0894i 0.926697 0.926697i −0.0707944 0.997491i \(-0.522553\pi\)
0.997491 + 0.0707944i \(0.0225534\pi\)
\(734\) 0 0
\(735\) 10.0754 11.9786i 0.371635 0.441838i
\(736\) 0 0
\(737\) 31.4619 31.4619i 1.15891 1.15891i
\(738\) 0 0
\(739\) 14.4902i 0.533032i 0.963830 + 0.266516i \(0.0858726\pi\)
−0.963830 + 0.266516i \(0.914127\pi\)
\(740\) 0 0
\(741\) 31.8139i 1.16871i
\(742\) 0 0
\(743\) 4.39593 + 4.39593i 0.161271 + 0.161271i 0.783130 0.621859i \(-0.213622\pi\)
−0.621859 + 0.783130i \(0.713622\pi\)
\(744\) 0 0
\(745\) 16.5855 15.7575i 0.607646 0.577311i
\(746\) 0 0
\(747\) 1.33325 + 1.33325i 0.0487809 + 0.0487809i
\(748\) 0 0
\(749\) −1.36394 + 3.89469i −0.0498374 + 0.142309i
\(750\) 0 0
\(751\) 42.5913 1.55418 0.777089 0.629390i \(-0.216695\pi\)
0.777089 + 0.629390i \(0.216695\pi\)
\(752\) 0 0
\(753\) −4.74533 4.74533i −0.172929 0.172929i
\(754\) 0 0
\(755\) 31.5872 + 33.2470i 1.14958 + 1.20998i
\(756\) 0 0
\(757\) −1.49575 + 1.49575i −0.0543639 + 0.0543639i −0.733766 0.679402i \(-0.762239\pi\)
0.679402 + 0.733766i \(0.262239\pi\)
\(758\) 0 0
\(759\) 23.5755 0.855736
\(760\) 0 0
\(761\) 39.8014i 1.44280i 0.692519 + 0.721400i \(0.256501\pi\)
−0.692519 + 0.721400i \(0.743499\pi\)
\(762\) 0 0
\(763\) 11.1612 + 23.1920i 0.404064 + 0.839605i
\(764\) 0 0
\(765\) −2.93256 0.0750738i −0.106027 0.00271430i
\(766\) 0 0
\(767\) 7.75628 7.75628i 0.280063 0.280063i
\(768\) 0 0
\(769\) −16.3914 −0.591087 −0.295544 0.955329i \(-0.595501\pi\)
−0.295544 + 0.955329i \(0.595501\pi\)
\(770\) 0 0
\(771\) −16.6192 −0.598528
\(772\) 0 0
\(773\) −29.4949 + 29.4949i −1.06086 + 1.06086i −0.0628341 + 0.998024i \(0.520014\pi\)
−0.998024 + 0.0628341i \(0.979986\pi\)
\(774\) 0 0
\(775\) 25.0177 + 1.28175i 0.898661 + 0.0460419i
\(776\) 0 0
\(777\) −7.73146 16.0652i −0.277365 0.576336i
\(778\) 0 0
\(779\) 7.97043i 0.285570i
\(780\) 0 0
\(781\) −27.5634 −0.986297
\(782\) 0 0
\(783\) 3.10323 3.10323i 0.110900 0.110900i
\(784\) 0 0
\(785\) 0.517598 20.2186i 0.0184739 0.721632i
\(786\) 0 0
\(787\) 29.8578 + 29.8578i 1.06432 + 1.06432i 0.997784 + 0.0665308i \(0.0211931\pi\)
0.0665308 + 0.997784i \(0.478807\pi\)
\(788\) 0 0
\(789\) 8.99745 0.320318
\(790\) 0 0
\(791\) 6.78027 + 2.37449i 0.241079 + 0.0844273i
\(792\) 0 0
\(793\) −1.15377 1.15377i −0.0409715 0.0409715i
\(794\) 0 0
\(795\) 6.76422 + 7.11965i 0.239902 + 0.252508i
\(796\) 0 0
\(797\) −7.34863 7.34863i −0.260302 0.260302i 0.564875 0.825177i \(-0.308924\pi\)
−0.825177 + 0.564875i \(0.808924\pi\)
\(798\) 0 0
\(799\) 15.0165i 0.531247i
\(800\) 0 0
\(801\) 6.49108i 0.229351i
\(802\) 0 0
\(803\) −0.0498169 + 0.0498169i −0.00175800 + 0.00175800i
\(804\) 0 0
\(805\) −17.3131 38.4642i −0.610207 1.35569i
\(806\) 0 0
\(807\) 10.0530 10.0530i 0.353881 0.353881i
\(808\) 0 0
\(809\) 26.2729i 0.923705i 0.886957 + 0.461852i \(0.152815\pi\)
−0.886957 + 0.461852i \(0.847185\pi\)
\(810\) 0 0
\(811\) 37.7025i 1.32391i 0.749541 + 0.661957i \(0.230274\pi\)
−0.749541 + 0.661957i \(0.769726\pi\)
\(812\) 0 0
\(813\) 6.87319 + 6.87319i 0.241053 + 0.241053i
\(814\) 0 0
\(815\) 1.41160 55.1403i 0.0494461 1.93148i
\(816\) 0 0
\(817\) 58.9091 + 58.9091i 2.06097 + 2.06097i
\(818\) 0 0
\(819\) −9.89023 3.46362i −0.345593 0.121029i
\(820\) 0 0
\(821\) 34.9203 1.21873 0.609364 0.792891i \(-0.291425\pi\)
0.609364 + 0.792891i \(0.291425\pi\)
\(822\) 0 0
\(823\) −25.5459 25.5459i −0.890474 0.890474i 0.104093 0.994568i \(-0.466806\pi\)
−0.994568 + 0.104093i \(0.966806\pi\)
\(824\) 0 0
\(825\) 11.0770 + 12.2733i 0.385652 + 0.427303i
\(826\) 0 0
\(827\) 24.9245 24.9245i 0.866711 0.866711i −0.125396 0.992107i \(-0.540020\pi\)
0.992107 + 0.125396i \(0.0400201\pi\)
\(828\) 0 0
\(829\) −12.4782 −0.433384 −0.216692 0.976240i \(-0.569527\pi\)
−0.216692 + 0.976240i \(0.569527\pi\)
\(830\) 0 0
\(831\) 19.9294i 0.691345i
\(832\) 0 0
\(833\) −9.12615 + 1.02348i −0.316202 + 0.0354614i
\(834\) 0 0
\(835\) 0.878455 34.3145i 0.0304002 1.18750i
\(836\) 0 0
\(837\) −3.54267 + 3.54267i −0.122453 + 0.122453i
\(838\) 0 0
\(839\) −27.5888 −0.952470 −0.476235 0.879318i \(-0.657999\pi\)
−0.476235 + 0.879318i \(0.657999\pi\)
\(840\) 0 0
\(841\) 9.73996 0.335861
\(842\) 0 0
\(843\) 21.8002 21.8002i 0.750837 0.750837i
\(844\) 0 0
\(845\) 4.35687 4.13936i 0.149881 0.142398i
\(846\) 0 0
\(847\) 0.158758 0.0764032i 0.00545500 0.00262525i
\(848\) 0 0
\(849\) 18.2068i 0.624855i
\(850\) 0 0
\(851\) −48.0459 −1.64699
\(852\) 0 0
\(853\) 10.1266 10.1266i 0.346728 0.346728i −0.512161 0.858889i \(-0.671155\pi\)
0.858889 + 0.512161i \(0.171155\pi\)
\(854\) 0 0
\(855\) 13.0210 12.3710i 0.445309 0.423078i
\(856\) 0 0
\(857\) −5.64323 5.64323i −0.192769 0.192769i 0.604122 0.796892i \(-0.293524\pi\)
−0.796892 + 0.604122i \(0.793524\pi\)
\(858\) 0 0
\(859\) −47.0785 −1.60630 −0.803149 0.595778i \(-0.796844\pi\)
−0.803149 + 0.595778i \(0.796844\pi\)
\(860\) 0 0
\(861\) 2.47783 + 0.867751i 0.0844442 + 0.0295729i
\(862\) 0 0
\(863\) 27.2163 + 27.2163i 0.926454 + 0.926454i 0.997475 0.0710211i \(-0.0226258\pi\)
−0.0710211 + 0.997475i \(0.522626\pi\)
\(864\) 0 0
\(865\) −57.3766 1.46885i −1.95086 0.0499424i
\(866\) 0 0
\(867\) −10.8038 10.8038i −0.366917 0.366917i
\(868\) 0 0
\(869\) 10.8610i 0.368433i
\(870\) 0 0
\(871\) 53.2967i 1.80589i
\(872\) 0 0
\(873\) 4.43930 4.43930i 0.150248 0.150248i
\(874\) 0 0
\(875\) 11.8898 27.0857i 0.401947 0.915663i
\(876\) 0 0
\(877\) −18.8569 + 18.8569i −0.636753 + 0.636753i −0.949753 0.313000i \(-0.898666\pi\)
0.313000 + 0.949753i \(0.398666\pi\)
\(878\) 0 0
\(879\) 25.2106i 0.850332i
\(880\) 0 0
\(881\) 9.31247i 0.313745i 0.987619 + 0.156872i \(0.0501412\pi\)
−0.987619 + 0.156872i \(0.949859\pi\)
\(882\) 0 0
\(883\) −3.39683 3.39683i −0.114313 0.114313i 0.647637 0.761949i \(-0.275757\pi\)
−0.761949 + 0.647637i \(0.775757\pi\)
\(884\) 0 0
\(885\) −6.19060 0.158480i −0.208095 0.00532725i
\(886\) 0 0
\(887\) −35.4671 35.4671i −1.19087 1.19087i −0.976824 0.214046i \(-0.931336\pi\)
−0.214046 0.976824i \(-0.568664\pi\)
\(888\) 0 0
\(889\) 12.3377 35.2297i 0.413792 1.18157i
\(890\) 0 0
\(891\) −3.30657 −0.110774
\(892\) 0 0
\(893\) −65.0114 65.0114i −2.17552 2.17552i
\(894\) 0 0
\(895\) 9.45805 8.98589i 0.316148 0.300365i
\(896\) 0 0
\(897\) −19.9686 + 19.9686i −0.666731 + 0.666731i
\(898\) 0 0
\(899\) 21.9874 0.733322
\(900\) 0 0
\(901\) 5.76178i 0.191953i
\(902\) 0 0
\(903\) −24.7270 + 11.9000i −0.822863 + 0.396007i
\(904\) 0 0
\(905\) 14.4920 13.7685i 0.481730 0.457681i
\(906\) 0 0
\(907\) 25.6491 25.6491i 0.851663 0.851663i −0.138675 0.990338i \(-0.544284\pi\)
0.990338 + 0.138675i \(0.0442842\pi\)
\(908\) 0 0
\(909\) −12.2398 −0.405968
\(910\) 0 0
\(911\) −16.6517 −0.551696 −0.275848 0.961201i \(-0.588959\pi\)
−0.275848 + 0.961201i \(0.588959\pi\)
\(912\) 0 0
\(913\) −4.40847 + 4.40847i −0.145899 + 0.145899i
\(914\) 0 0
\(915\) −0.0235743 + 0.920868i −0.000779343 + 0.0304429i
\(916\) 0 0
\(917\) −8.01324 16.6507i −0.264620 0.549855i
\(918\) 0 0
\(919\) 3.48300i 0.114894i 0.998349 + 0.0574468i \(0.0182959\pi\)
−0.998349 + 0.0574468i \(0.981704\pi\)
\(920\) 0 0
\(921\) −5.73778 −0.189066
\(922\) 0 0
\(923\) 23.3463 23.3463i 0.768454 0.768454i
\(924\) 0 0
\(925\) −22.5745 25.0126i −0.742245 0.822408i
\(926\) 0 0
\(927\) −13.8964 13.8964i −0.456417 0.456417i
\(928\) 0 0
\(929\) −43.7356 −1.43492 −0.717460 0.696600i \(-0.754695\pi\)
−0.717460 + 0.696600i \(0.754695\pi\)
\(930\) 0 0
\(931\) 35.0791 43.9410i 1.14967 1.44011i
\(932\) 0 0
\(933\) 9.79272 + 9.79272i 0.320599 + 0.320599i
\(934\) 0 0
\(935\) 0.248237 9.69671i 0.00811822 0.317116i
\(936\) 0 0
\(937\) 16.3420 + 16.3420i 0.533869 + 0.533869i 0.921722 0.387852i \(-0.126783\pi\)
−0.387852 + 0.921722i \(0.626783\pi\)
\(938\) 0 0
\(939\) 24.2117i 0.790120i
\(940\) 0 0
\(941\) 50.4764i 1.64548i 0.568416 + 0.822741i \(0.307556\pi\)
−0.568416 + 0.822741i \(0.692444\pi\)
\(942\) 0 0
\(943\) 5.00278 5.00278i 0.162913 0.162913i
\(944\) 0 0
\(945\) 2.42824 + 5.39478i 0.0789907 + 0.175492i
\(946\) 0 0
\(947\) −31.3656 + 31.3656i −1.01924 + 1.01924i −0.0194338 + 0.999811i \(0.506186\pi\)
−0.999811 + 0.0194338i \(0.993814\pi\)
\(948\) 0 0
\(949\) 0.0843902i 0.00273942i
\(950\) 0 0
\(951\) 2.84809i 0.0923558i
\(952\) 0 0
\(953\) 10.5126 + 10.5126i 0.340537 + 0.340537i 0.856569 0.516032i \(-0.172592\pi\)
−0.516032 + 0.856569i \(0.672592\pi\)
\(954\) 0 0
\(955\) −32.0818 33.7675i −1.03814 1.09269i
\(956\) 0 0
\(957\) 10.2610 + 10.2610i 0.331692 + 0.331692i
\(958\) 0 0
\(959\) 2.95229 8.43016i 0.0953345 0.272224i
\(960\) 0 0
\(961\) 5.89893 0.190288
\(962\) 0 0
\(963\) −1.10288 1.10288i −0.0355399 0.0355399i
\(964\) 0 0
\(965\) −0.745473 + 29.1199i −0.0239976 + 0.937402i
\(966\) 0 0
\(967\) 6.63418 6.63418i 0.213341 0.213341i −0.592344 0.805685i \(-0.701797\pi\)
0.805685 + 0.592344i \(0.201797\pi\)
\(968\) 0 0
\(969\) −10.5376 −0.338517
\(970\) 0 0
\(971\) 47.0663i 1.51043i 0.655477 + 0.755215i \(0.272468\pi\)
−0.655477 + 0.755215i \(0.727532\pi\)
\(972\) 0 0
\(973\) 11.6655 5.61410i 0.373980 0.179980i
\(974\) 0 0
\(975\) −19.7779 1.01330i −0.633399 0.0324514i
\(976\) 0 0
\(977\) −7.89292 + 7.89292i −0.252517 + 0.252517i −0.822002 0.569485i \(-0.807143\pi\)
0.569485 + 0.822002i \(0.307143\pi\)
\(978\) 0 0
\(979\) −21.4632 −0.685967
\(980\) 0 0
\(981\) −9.72802 −0.310592
\(982\) 0 0
\(983\) 2.22421 2.22421i 0.0709413 0.0709413i −0.670746 0.741687i \(-0.734026\pi\)
0.741687 + 0.670746i \(0.234026\pi\)
\(984\) 0 0
\(985\) 56.7297 + 1.45229i 1.80756 + 0.0462737i
\(986\) 0 0
\(987\) 27.2885 13.1327i 0.868601 0.418019i
\(988\) 0 0
\(989\) 73.9506i 2.35149i
\(990\) 0 0
\(991\) 36.0131 1.14399 0.571997 0.820256i \(-0.306169\pi\)
0.571997 + 0.820256i \(0.306169\pi\)
\(992\) 0 0
\(993\) 2.06835 2.06835i 0.0656370 0.0656370i
\(994\) 0 0
\(995\) 17.3971 + 18.3112i 0.551525 + 0.580505i
\(996\) 0 0
\(997\) 3.25326 + 3.25326i 0.103032 + 0.103032i 0.756744 0.653712i \(-0.226789\pi\)
−0.653712 + 0.756744i \(0.726789\pi\)
\(998\) 0 0
\(999\) 6.73866 0.213202
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bt.a.433.11 yes 24
4.3 odd 2 1680.2.cz.f.433.2 24
5.2 odd 4 840.2.bt.b.97.2 yes 24
7.6 odd 2 840.2.bt.b.433.2 yes 24
20.7 even 4 1680.2.cz.e.97.11 24
28.27 even 2 1680.2.cz.e.433.11 24
35.27 even 4 inner 840.2.bt.a.97.11 24
140.27 odd 4 1680.2.cz.f.97.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.11 24 35.27 even 4 inner
840.2.bt.a.433.11 yes 24 1.1 even 1 trivial
840.2.bt.b.97.2 yes 24 5.2 odd 4
840.2.bt.b.433.2 yes 24 7.6 odd 2
1680.2.cz.e.97.11 24 20.7 even 4
1680.2.cz.e.433.11 24 28.27 even 2
1680.2.cz.f.97.2 24 140.27 odd 4
1680.2.cz.f.433.2 24 4.3 odd 2