Properties

Label 840.2.bj.b.517.37
Level $840$
Weight $2$
Character 840.517
Analytic conductor $6.707$
Analytic rank $0$
Dimension $184$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(13,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.13"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bj (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [184] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(184\)
Relative dimension: \(92\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 517.37
Character \(\chi\) \(=\) 840.517
Dual form 840.2.bj.b.13.37

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.361491 - 1.36723i) q^{2} +(-0.707107 + 0.707107i) q^{3} +(-1.73865 + 0.988485i) q^{4} +(-0.0291073 - 2.23588i) q^{5} +(1.22239 + 0.711166i) q^{6} +(-0.641375 - 2.56683i) q^{7} +(1.97999 + 2.01981i) q^{8} -1.00000i q^{9} +(-3.04644 + 0.848047i) q^{10} -3.14974i q^{11} +(0.530446 - 1.92837i) q^{12} +(-1.67579 + 1.67579i) q^{13} +(-3.27761 + 1.80480i) q^{14} +(1.60159 + 1.56042i) q^{15} +(2.04580 - 3.43725i) q^{16} +(0.426943 - 0.426943i) q^{17} +(-1.36723 + 0.361491i) q^{18} +4.04265i q^{19} +(2.26074 + 3.85863i) q^{20} +(2.26855 + 1.36151i) q^{21} +(-4.30643 + 1.13860i) q^{22} +(4.67491 - 4.67491i) q^{23} +(-2.82829 - 0.0281526i) q^{24} +(-4.99831 + 0.130161i) q^{25} +(2.89698 + 1.68541i) q^{26} +(0.707107 + 0.707107i) q^{27} +(3.65240 + 3.82883i) q^{28} -8.56714 q^{29} +(1.55450 - 2.75382i) q^{30} -3.09047i q^{31} +(-5.43906 - 1.55454i) q^{32} +(2.22720 + 2.22720i) q^{33} +(-0.738066 - 0.429394i) q^{34} +(-5.72046 + 1.50875i) q^{35} +(0.988485 + 1.73865i) q^{36} +(-2.50081 + 2.50081i) q^{37} +(5.52724 - 1.46138i) q^{38} -2.36993i q^{39} +(4.45841 - 4.48582i) q^{40} +11.9718i q^{41} +(1.04144 - 3.59380i) q^{42} +(-7.74027 - 7.74027i) q^{43} +(3.11347 + 5.47629i) q^{44} +(-2.23588 + 0.0291073i) q^{45} +(-8.08163 - 4.70175i) q^{46} +(0.967892 - 0.967892i) q^{47} +(0.983909 + 3.87710i) q^{48} +(-6.17728 + 3.29261i) q^{49} +(1.98480 + 6.78679i) q^{50} +0.603788i q^{51} +(1.25712 - 4.57011i) q^{52} +(-2.85984 - 2.85984i) q^{53} +(0.711166 - 1.22239i) q^{54} +(-7.04243 + 0.0916805i) q^{55} +(3.91459 - 6.37777i) q^{56} +(-2.85859 - 2.85859i) q^{57} +(3.09694 + 11.7133i) q^{58} +14.1712i q^{59} +(-4.32705 - 1.12988i) q^{60} -7.18773 q^{61} +(-4.22539 + 1.11718i) q^{62} +(-2.56683 + 0.641375i) q^{63} +(-0.159247 + 7.99841i) q^{64} +(3.79564 + 3.69809i) q^{65} +(2.23999 - 3.85022i) q^{66} +(-6.73219 + 6.73219i) q^{67} +(-0.320277 + 1.16433i) q^{68} +6.61132i q^{69} +(4.13071 + 7.27580i) q^{70} +10.2152 q^{71} +(2.01981 - 1.97999i) q^{72} +(-4.40775 - 4.40775i) q^{73} +(4.32321 + 2.51517i) q^{74} +(3.44230 - 3.62637i) q^{75} +(-3.99610 - 7.02875i) q^{76} +(-8.08486 + 2.02016i) q^{77} +(-3.24024 + 0.856708i) q^{78} -6.04794i q^{79} +(-7.74483 - 4.47410i) q^{80} -1.00000 q^{81} +(16.3682 - 4.32769i) q^{82} +(2.97764 - 2.97764i) q^{83} +(-5.29003 - 0.124756i) q^{84} +(-0.967019 - 0.942165i) q^{85} +(-7.78471 + 13.3808i) q^{86} +(6.05788 - 6.05788i) q^{87} +(6.36187 - 6.23647i) q^{88} -14.6515 q^{89} +(0.848047 + 3.04644i) q^{90} +(5.37629 + 3.22667i) q^{91} +(-3.50695 + 12.7491i) q^{92} +(2.18529 + 2.18529i) q^{93} +(-1.67322 - 0.973449i) q^{94} +(9.03887 - 0.117671i) q^{95} +(4.94523 - 2.74677i) q^{96} +(10.6973 - 10.6973i) q^{97} +(6.73479 + 7.25553i) q^{98} -3.14974 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184 q + 8 q^{2} + 4 q^{7} + 8 q^{8} - 16 q^{15} + 64 q^{16} + 8 q^{18} + 16 q^{23} - 32 q^{25} - 4 q^{28} + 24 q^{30} - 32 q^{32} - 16 q^{36} - 20 q^{42} - 80 q^{46} + 80 q^{50} + 56 q^{58} - 56 q^{60}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.361491 1.36723i −0.255613 0.966779i
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) −1.73865 + 0.988485i −0.869324 + 0.494242i
\(5\) −0.0291073 2.23588i −0.0130172 0.999915i
\(6\) 1.22239 + 0.711166i 0.499039 + 0.290332i
\(7\) −0.641375 2.56683i −0.242417 0.970172i
\(8\) 1.97999 + 2.01981i 0.700034 + 0.714110i
\(9\) 1.00000i 0.333333i
\(10\) −3.04644 + 0.848047i −0.963370 + 0.268176i
\(11\) 3.14974i 0.949682i −0.880072 0.474841i \(-0.842506\pi\)
0.880072 0.474841i \(-0.157494\pi\)
\(12\) 0.530446 1.92837i 0.153127 0.556674i
\(13\) −1.67579 + 1.67579i −0.464781 + 0.464781i −0.900219 0.435438i \(-0.856594\pi\)
0.435438 + 0.900219i \(0.356594\pi\)
\(14\) −3.27761 + 1.80480i −0.875977 + 0.482352i
\(15\) 1.60159 + 1.56042i 0.413528 + 0.402899i
\(16\) 2.04580 3.43725i 0.511449 0.859314i
\(17\) 0.426943 0.426943i 0.103549 0.103549i −0.653434 0.756983i \(-0.726672\pi\)
0.756983 + 0.653434i \(0.226672\pi\)
\(18\) −1.36723 + 0.361491i −0.322260 + 0.0852043i
\(19\) 4.04265i 0.927447i 0.885980 + 0.463724i \(0.153487\pi\)
−0.885980 + 0.463724i \(0.846513\pi\)
\(20\) 2.26074 + 3.85863i 0.505517 + 0.862817i
\(21\) 2.26855 + 1.36151i 0.495037 + 0.297105i
\(22\) −4.30643 + 1.13860i −0.918133 + 0.242751i
\(23\) 4.67491 4.67491i 0.974786 0.974786i −0.0249038 0.999690i \(-0.507928\pi\)
0.999690 + 0.0249038i \(0.00792794\pi\)
\(24\) −2.82829 0.0281526i −0.577322 0.00574663i
\(25\) −4.99831 + 0.130161i −0.999661 + 0.0260322i
\(26\) 2.89698 + 1.68541i 0.568145 + 0.330537i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 3.65240 + 3.82883i 0.690239 + 0.723581i
\(29\) −8.56714 −1.59088 −0.795439 0.606034i \(-0.792759\pi\)
−0.795439 + 0.606034i \(0.792759\pi\)
\(30\) 1.55450 2.75382i 0.283812 0.502776i
\(31\) 3.09047i 0.555064i −0.960716 0.277532i \(-0.910484\pi\)
0.960716 0.277532i \(-0.0895165\pi\)
\(32\) −5.43906 1.55454i −0.961499 0.274807i
\(33\) 2.22720 + 2.22720i 0.387706 + 0.387706i
\(34\) −0.738066 0.429394i −0.126577 0.0736404i
\(35\) −5.72046 + 1.50875i −0.966934 + 0.255025i
\(36\) 0.988485 + 1.73865i 0.164747 + 0.289775i
\(37\) −2.50081 + 2.50081i −0.411130 + 0.411130i −0.882132 0.471002i \(-0.843893\pi\)
0.471002 + 0.882132i \(0.343893\pi\)
\(38\) 5.52724 1.46138i 0.896637 0.237067i
\(39\) 2.36993i 0.379492i
\(40\) 4.45841 4.48582i 0.704937 0.709270i
\(41\) 11.9718i 1.86968i 0.355072 + 0.934839i \(0.384456\pi\)
−0.355072 + 0.934839i \(0.615544\pi\)
\(42\) 1.04144 3.59380i 0.160697 0.554536i
\(43\) −7.74027 7.74027i −1.18038 1.18038i −0.979646 0.200735i \(-0.935667\pi\)
−0.200735 0.979646i \(-0.564333\pi\)
\(44\) 3.11347 + 5.47629i 0.469373 + 0.825582i
\(45\) −2.23588 + 0.0291073i −0.333305 + 0.00433906i
\(46\) −8.08163 4.70175i −1.19157 0.693235i
\(47\) 0.967892 0.967892i 0.141182 0.141182i −0.632984 0.774165i \(-0.718170\pi\)
0.774165 + 0.632984i \(0.218170\pi\)
\(48\) 0.983909 + 3.87710i 0.142015 + 0.559612i
\(49\) −6.17728 + 3.29261i −0.882468 + 0.470372i
\(50\) 1.98480 + 6.78679i 0.280694 + 0.959797i
\(51\) 0.603788i 0.0845473i
\(52\) 1.25712 4.57011i 0.174331 0.633760i
\(53\) −2.85984 2.85984i −0.392829 0.392829i 0.482866 0.875695i \(-0.339596\pi\)
−0.875695 + 0.482866i \(0.839596\pi\)
\(54\) 0.711166 1.22239i 0.0967775 0.166346i
\(55\) −7.04243 + 0.0916805i −0.949602 + 0.0123622i
\(56\) 3.91459 6.37777i 0.523110 0.852265i
\(57\) −2.85859 2.85859i −0.378629 0.378629i
\(58\) 3.09694 + 11.7133i 0.406649 + 1.53803i
\(59\) 14.1712i 1.84493i 0.386081 + 0.922465i \(0.373829\pi\)
−0.386081 + 0.922465i \(0.626171\pi\)
\(60\) −4.32705 1.12988i −0.558620 0.145867i
\(61\) −7.18773 −0.920294 −0.460147 0.887843i \(-0.652203\pi\)
−0.460147 + 0.887843i \(0.652203\pi\)
\(62\) −4.22539 + 1.11718i −0.536625 + 0.141882i
\(63\) −2.56683 + 0.641375i −0.323391 + 0.0808056i
\(64\) −0.159247 + 7.99841i −0.0199059 + 0.999802i
\(65\) 3.79564 + 3.69809i 0.470792 + 0.458692i
\(66\) 2.23999 3.85022i 0.275724 0.473929i
\(67\) −6.73219 + 6.73219i −0.822468 + 0.822468i −0.986461 0.163993i \(-0.947562\pi\)
0.163993 + 0.986461i \(0.447562\pi\)
\(68\) −0.320277 + 1.16433i −0.0388393 + 0.141196i
\(69\) 6.61132i 0.795910i
\(70\) 4.13071 + 7.27580i 0.493714 + 0.869624i
\(71\) 10.2152 1.21232 0.606159 0.795343i \(-0.292709\pi\)
0.606159 + 0.795343i \(0.292709\pi\)
\(72\) 2.01981 1.97999i 0.238037 0.233345i
\(73\) −4.40775 4.40775i −0.515888 0.515888i 0.400437 0.916324i \(-0.368858\pi\)
−0.916324 + 0.400437i \(0.868858\pi\)
\(74\) 4.32321 + 2.51517i 0.502562 + 0.292382i
\(75\) 3.44230 3.62637i 0.397482 0.418738i
\(76\) −3.99610 7.02875i −0.458384 0.806253i
\(77\) −8.08486 + 2.02016i −0.921355 + 0.230219i
\(78\) −3.24024 + 0.856708i −0.366885 + 0.0970031i
\(79\) 6.04794i 0.680447i −0.940345 0.340223i \(-0.889497\pi\)
0.940345 0.340223i \(-0.110503\pi\)
\(80\) −7.74483 4.47410i −0.865898 0.500220i
\(81\) −1.00000 −0.111111
\(82\) 16.3682 4.32769i 1.80757 0.477914i
\(83\) 2.97764 2.97764i 0.326838 0.326838i −0.524545 0.851383i \(-0.675764\pi\)
0.851383 + 0.524545i \(0.175764\pi\)
\(84\) −5.29003 0.124756i −0.577190 0.0136120i
\(85\) −0.967019 0.942165i −0.104888 0.102192i
\(86\) −7.78471 + 13.3808i −0.839447 + 1.44289i
\(87\) 6.05788 6.05788i 0.649473 0.649473i
\(88\) 6.36187 6.23647i 0.678177 0.664809i
\(89\) −14.6515 −1.55306 −0.776529 0.630082i \(-0.783021\pi\)
−0.776529 + 0.630082i \(0.783021\pi\)
\(90\) 0.848047 + 3.04644i 0.0893920 + 0.321123i
\(91\) 5.37629 + 3.22667i 0.563588 + 0.338247i
\(92\) −3.50695 + 12.7491i −0.365625 + 1.32919i
\(93\) 2.18529 + 2.18529i 0.226604 + 0.226604i
\(94\) −1.67322 0.973449i −0.172579 0.100404i
\(95\) 9.03887 0.117671i 0.927369 0.0120728i
\(96\) 4.94523 2.74677i 0.504720 0.280341i
\(97\) 10.6973 10.6973i 1.08615 1.08615i 0.0902239 0.995922i \(-0.471242\pi\)
0.995922 0.0902239i \(-0.0287583\pi\)
\(98\) 6.73479 + 7.25553i 0.680316 + 0.732919i
\(99\) −3.14974 −0.316561
\(100\) 8.56163 5.16705i 0.856163 0.516705i
\(101\) 9.80142 0.975278 0.487639 0.873045i \(-0.337858\pi\)
0.487639 + 0.873045i \(0.337858\pi\)
\(102\) 0.825519 0.218264i 0.0817385 0.0216114i
\(103\) −6.35740 6.35740i −0.626413 0.626413i 0.320750 0.947164i \(-0.396065\pi\)
−0.947164 + 0.320750i \(0.896065\pi\)
\(104\) −6.70284 0.0667196i −0.657267 0.00654240i
\(105\) 2.97813 5.11182i 0.290636 0.498863i
\(106\) −2.87626 + 4.94387i −0.279367 + 0.480191i
\(107\) 11.6251 11.6251i 1.12384 1.12384i 0.132679 0.991159i \(-0.457642\pi\)
0.991159 0.132679i \(-0.0423581\pi\)
\(108\) −1.92837 0.530446i −0.185558 0.0510422i
\(109\) −2.83769 −0.271802 −0.135901 0.990722i \(-0.543393\pi\)
−0.135901 + 0.990722i \(0.543393\pi\)
\(110\) 2.67113 + 9.59550i 0.254682 + 0.914895i
\(111\) 3.53668i 0.335687i
\(112\) −10.1350 3.04665i −0.957666 0.287882i
\(113\) −2.36881 + 2.36881i −0.222839 + 0.222839i −0.809693 0.586854i \(-0.800366\pi\)
0.586854 + 0.809693i \(0.300366\pi\)
\(114\) −2.87500 + 4.94170i −0.269268 + 0.462833i
\(115\) −10.5886 10.3165i −0.987392 0.962015i
\(116\) 14.8952 8.46848i 1.38299 0.786279i
\(117\) 1.67579 + 1.67579i 0.154927 + 0.154927i
\(118\) 19.3753 5.12275i 1.78364 0.471588i
\(119\) −1.36972 0.822061i −0.125562 0.0753582i
\(120\) 0.0193781 + 6.32453i 0.00176897 + 0.577348i
\(121\) 1.07914 0.0981037
\(122\) 2.59830 + 9.82730i 0.235239 + 0.889722i
\(123\) −8.46533 8.46533i −0.763293 0.763293i
\(124\) 3.05488 + 5.37323i 0.274336 + 0.482531i
\(125\) 0.436511 + 11.1718i 0.0390428 + 0.999238i
\(126\) 1.80480 + 3.27761i 0.160784 + 0.291992i
\(127\) 7.88082 + 7.88082i 0.699310 + 0.699310i 0.964262 0.264952i \(-0.0853560\pi\)
−0.264952 + 0.964262i \(0.585356\pi\)
\(128\) 10.9933 2.67363i 0.971676 0.236318i
\(129\) 10.9464 0.963777
\(130\) 3.68406 6.52635i 0.323113 0.572399i
\(131\) −11.4551 −1.00084 −0.500420 0.865783i \(-0.666821\pi\)
−0.500420 + 0.865783i \(0.666821\pi\)
\(132\) −6.07388 1.67077i −0.528663 0.145422i
\(133\) 10.3768 2.59285i 0.899784 0.224829i
\(134\) 11.6381 + 6.77084i 1.00538 + 0.584912i
\(135\) 1.56042 1.60159i 0.134300 0.137843i
\(136\) 1.70769 + 0.0169982i 0.146433 + 0.00145758i
\(137\) −8.35810 8.35810i −0.714080 0.714080i 0.253306 0.967386i \(-0.418482\pi\)
−0.967386 + 0.253306i \(0.918482\pi\)
\(138\) 9.03921 2.38993i 0.769469 0.203445i
\(139\) 11.9838i 1.01645i −0.861223 0.508227i \(-0.830301\pi\)
0.861223 0.508227i \(-0.169699\pi\)
\(140\) 8.45449 8.27777i 0.714535 0.699599i
\(141\) 1.36881i 0.115274i
\(142\) −3.69270 13.9665i −0.309884 1.17204i
\(143\) 5.27831 + 5.27831i 0.441394 + 0.441394i
\(144\) −3.43725 2.04580i −0.286438 0.170483i
\(145\) 0.249366 + 19.1551i 0.0207088 + 1.59074i
\(146\) −4.43305 + 7.61977i −0.366882 + 0.630617i
\(147\) 2.03977 6.69622i 0.168237 0.552295i
\(148\) 1.87602 6.82004i 0.154208 0.560604i
\(149\) 11.6260 0.952439 0.476220 0.879326i \(-0.342007\pi\)
0.476220 + 0.879326i \(0.342007\pi\)
\(150\) −6.20245 3.39552i −0.506428 0.277243i
\(151\) −2.85178 −0.232075 −0.116037 0.993245i \(-0.537019\pi\)
−0.116037 + 0.993245i \(0.537019\pi\)
\(152\) −8.16538 + 8.00442i −0.662299 + 0.649244i
\(153\) −0.426943 0.426943i −0.0345163 0.0345163i
\(154\) 5.68464 + 10.3236i 0.458081 + 0.831900i
\(155\) −6.90991 + 0.0899552i −0.555017 + 0.00722538i
\(156\) 2.34264 + 4.12047i 0.187561 + 0.329902i
\(157\) 8.00296 + 8.00296i 0.638706 + 0.638706i 0.950236 0.311530i \(-0.100842\pi\)
−0.311530 + 0.950236i \(0.600842\pi\)
\(158\) −8.26894 + 2.18628i −0.657842 + 0.173931i
\(159\) 4.04442 0.320744
\(160\) −3.31745 + 12.2063i −0.262267 + 0.964995i
\(161\) −14.9981 9.00135i −1.18201 0.709406i
\(162\) 0.361491 + 1.36723i 0.0284014 + 0.107420i
\(163\) −2.97555 2.97555i −0.233063 0.233063i 0.580907 0.813970i \(-0.302698\pi\)
−0.813970 + 0.580907i \(0.802698\pi\)
\(164\) −11.8339 20.8147i −0.924074 1.62536i
\(165\) 4.91493 5.04458i 0.382626 0.392720i
\(166\) −5.14751 2.99473i −0.399524 0.232436i
\(167\) 10.5871 10.5871i 0.819255 0.819255i −0.166745 0.986000i \(-0.553326\pi\)
0.986000 + 0.166745i \(0.0533257\pi\)
\(168\) 1.74173 + 7.27780i 0.134377 + 0.561495i
\(169\) 7.38344i 0.567957i
\(170\) −0.938589 + 1.66272i −0.0719865 + 0.127525i
\(171\) 4.04265 0.309149
\(172\) 21.1088 + 5.80647i 1.60953 + 0.442739i
\(173\) 7.17872 7.17872i 0.545788 0.545788i −0.379432 0.925220i \(-0.623880\pi\)
0.925220 + 0.379432i \(0.123880\pi\)
\(174\) −10.4724 6.09266i −0.793911 0.461883i
\(175\) 3.53989 + 12.7463i 0.267590 + 0.963533i
\(176\) −10.8265 6.44373i −0.816075 0.485714i
\(177\) −10.0205 10.0205i −0.753189 0.753189i
\(178\) 5.29639 + 20.0320i 0.396981 + 1.50146i
\(179\) 1.20525 0.0900845 0.0450422 0.998985i \(-0.485658\pi\)
0.0450422 + 0.998985i \(0.485658\pi\)
\(180\) 3.85863 2.26074i 0.287606 0.168506i
\(181\) −6.00674 −0.446477 −0.223239 0.974764i \(-0.571663\pi\)
−0.223239 + 0.974764i \(0.571663\pi\)
\(182\) 2.46813 8.51705i 0.182950 0.631326i
\(183\) 5.08249 5.08249i 0.375709 0.375709i
\(184\) 18.6987 + 0.186126i 1.37849 + 0.0137214i
\(185\) 5.66430 + 5.51871i 0.416447 + 0.405744i
\(186\) 2.19784 3.77776i 0.161153 0.276999i
\(187\) −1.34476 1.34476i −0.0983385 0.0983385i
\(188\) −0.726078 + 2.63957i −0.0529547 + 0.192511i
\(189\) 1.36151 2.26855i 0.0990350 0.165012i
\(190\) −3.42836 12.3157i −0.248719 0.893475i
\(191\) −6.92005 −0.500717 −0.250359 0.968153i \(-0.580549\pi\)
−0.250359 + 0.968153i \(0.580549\pi\)
\(192\) −5.54313 5.76834i −0.400041 0.416294i
\(193\) 0.257652 0.257652i 0.0185462 0.0185462i −0.697773 0.716319i \(-0.745826\pi\)
0.716319 + 0.697773i \(0.245826\pi\)
\(194\) −18.4927 10.7587i −1.32770 0.772430i
\(195\) −5.29887 + 0.0689823i −0.379460 + 0.00493992i
\(196\) 7.48542 11.8308i 0.534673 0.845059i
\(197\) 6.99522 6.99522i 0.498389 0.498389i −0.412547 0.910936i \(-0.635361\pi\)
0.910936 + 0.412547i \(0.135361\pi\)
\(198\) 1.13860 + 4.30643i 0.0809170 + 0.306044i
\(199\) −13.1934 −0.935254 −0.467627 0.883926i \(-0.654891\pi\)
−0.467627 + 0.883926i \(0.654891\pi\)
\(200\) −10.1595 9.83790i −0.718386 0.695644i
\(201\) 9.52076i 0.671542i
\(202\) −3.54313 13.4008i −0.249293 0.942878i
\(203\) 5.49474 + 21.9904i 0.385655 + 1.54342i
\(204\) −0.596835 1.04978i −0.0417868 0.0734990i
\(205\) 26.7674 0.348467i 1.86952 0.0243380i
\(206\) −6.39390 + 10.9902i −0.445484 + 0.765723i
\(207\) −4.67491 4.67491i −0.324929 0.324929i
\(208\) 2.33179 + 9.18845i 0.161681 + 0.637105i
\(209\) 12.7333 0.880780
\(210\) −8.06562 2.22392i −0.556581 0.153465i
\(211\) 24.3710i 1.67777i −0.544310 0.838884i \(-0.683209\pi\)
0.544310 0.838884i \(-0.316791\pi\)
\(212\) 7.79916 + 2.14535i 0.535648 + 0.147343i
\(213\) −7.22322 + 7.22322i −0.494927 + 0.494927i
\(214\) −20.0965 11.6918i −1.37377 0.799236i
\(215\) −17.0810 + 17.5316i −1.16492 + 1.19565i
\(216\) −0.0281526 + 2.82829i −0.00191554 + 0.192441i
\(217\) −7.93272 + 1.98215i −0.538508 + 0.134557i
\(218\) 1.02580 + 3.87978i 0.0694759 + 0.262772i
\(219\) 6.23349 0.421220
\(220\) 12.1537 7.12074i 0.819402 0.480080i
\(221\) 1.43093i 0.0962551i
\(222\) −4.83546 + 1.27848i −0.324535 + 0.0858058i
\(223\) −10.5418 10.5418i −0.705931 0.705931i 0.259746 0.965677i \(-0.416361\pi\)
−0.965677 + 0.259746i \(0.916361\pi\)
\(224\) −0.501775 + 14.9582i −0.0335262 + 0.999438i
\(225\) 0.130161 + 4.99831i 0.00867739 + 0.333220i
\(226\) 4.09501 + 2.38241i 0.272396 + 0.158475i
\(227\) −11.0334 11.0334i −0.732312 0.732312i 0.238766 0.971077i \(-0.423257\pi\)
−0.971077 + 0.238766i \(0.923257\pi\)
\(228\) 7.79574 + 2.14441i 0.516286 + 0.142017i
\(229\) 14.1494i 0.935017i −0.883989 0.467509i \(-0.845152\pi\)
0.883989 0.467509i \(-0.154848\pi\)
\(230\) −10.2773 + 18.2064i −0.677665 + 1.20049i
\(231\) 4.28839 7.14533i 0.282155 0.470128i
\(232\) −16.9629 17.3040i −1.11367 1.13606i
\(233\) −5.57671 + 5.57671i −0.365342 + 0.365342i −0.865775 0.500433i \(-0.833174\pi\)
0.500433 + 0.865775i \(0.333174\pi\)
\(234\) 1.68541 2.89698i 0.110179 0.189382i
\(235\) −2.19226 2.13592i −0.143007 0.139332i
\(236\) −14.0080 24.6387i −0.911842 1.60384i
\(237\) 4.27654 + 4.27654i 0.277791 + 0.277791i
\(238\) −0.628806 + 2.16990i −0.0407595 + 0.140653i
\(239\) 16.6027i 1.07394i −0.843602 0.536969i \(-0.819569\pi\)
0.843602 0.536969i \(-0.180431\pi\)
\(240\) 8.64009 2.31275i 0.557715 0.149288i
\(241\) 14.1668i 0.912562i 0.889836 + 0.456281i \(0.150819\pi\)
−0.889836 + 0.456281i \(0.849181\pi\)
\(242\) −0.390100 1.47544i −0.0250766 0.0948447i
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 12.4969 7.10496i 0.800034 0.454848i
\(245\) 7.54167 + 13.7158i 0.481820 + 0.876270i
\(246\) −8.51393 + 14.6342i −0.542828 + 0.933043i
\(247\) −6.77464 6.77464i −0.431060 0.431060i
\(248\) 6.24215 6.11911i 0.396377 0.388564i
\(249\) 4.21101i 0.266862i
\(250\) 15.1167 4.63532i 0.956062 0.293164i
\(251\) 12.3831 0.781613 0.390807 0.920473i \(-0.372196\pi\)
0.390807 + 0.920473i \(0.372196\pi\)
\(252\) 3.82883 3.65240i 0.241194 0.230080i
\(253\) −14.7247 14.7247i −0.925737 0.925737i
\(254\) 7.92607 13.6238i 0.497326 0.854831i
\(255\) 1.35000 0.0175747i 0.0845401 0.00110057i
\(256\) −7.62944 14.0638i −0.476840 0.878990i
\(257\) −3.19011 + 3.19011i −0.198993 + 0.198993i −0.799568 0.600575i \(-0.794938\pi\)
0.600575 + 0.799568i \(0.294938\pi\)
\(258\) −3.95703 14.9663i −0.246354 0.931759i
\(259\) 8.02312 + 4.81521i 0.498532 + 0.299202i
\(260\) −10.2548 2.67774i −0.635975 0.166066i
\(261\) 8.56714i 0.530292i
\(262\) 4.14093 + 15.6618i 0.255828 + 0.967592i
\(263\) 0.748111 0.748111i 0.0461305 0.0461305i −0.683665 0.729796i \(-0.739615\pi\)
0.729796 + 0.683665i \(0.239615\pi\)
\(264\) −0.0886734 + 8.90837i −0.00545747 + 0.548272i
\(265\) −6.31101 + 6.47749i −0.387682 + 0.397909i
\(266\) −7.29616 13.2502i −0.447356 0.812423i
\(267\) 10.3602 10.3602i 0.634033 0.634033i
\(268\) 5.05025 18.3596i 0.308493 1.12149i
\(269\) 16.9512i 1.03353i −0.856126 0.516767i \(-0.827135\pi\)
0.856126 0.516767i \(-0.172865\pi\)
\(270\) −2.75382 1.55450i −0.167592 0.0946039i
\(271\) 4.28643i 0.260382i −0.991489 0.130191i \(-0.958441\pi\)
0.991489 0.130191i \(-0.0415591\pi\)
\(272\) −0.594073 2.34095i −0.0360210 0.141941i
\(273\) −6.08321 + 1.52001i −0.368173 + 0.0919953i
\(274\) −8.40608 + 14.4488i −0.507830 + 0.872886i
\(275\) 0.409973 + 15.7434i 0.0247223 + 0.949360i
\(276\) −6.53519 11.4948i −0.393372 0.691903i
\(277\) −8.88967 + 8.88967i −0.534128 + 0.534128i −0.921798 0.387670i \(-0.873280\pi\)
0.387670 + 0.921798i \(0.373280\pi\)
\(278\) −16.3846 + 4.33204i −0.982686 + 0.259818i
\(279\) −3.09047 −0.185021
\(280\) −14.3739 8.56692i −0.859003 0.511971i
\(281\) −6.48286 −0.386735 −0.193368 0.981126i \(-0.561941\pi\)
−0.193368 + 0.981126i \(0.561941\pi\)
\(282\) 1.87148 0.494811i 0.111445 0.0294656i
\(283\) 2.08317 2.08317i 0.123832 0.123832i −0.642475 0.766307i \(-0.722092\pi\)
0.766307 + 0.642475i \(0.222092\pi\)
\(284\) −17.7606 + 10.0975i −1.05390 + 0.599179i
\(285\) −6.30824 + 6.47465i −0.373668 + 0.383525i
\(286\) 5.30861 9.12473i 0.313905 0.539557i
\(287\) 30.7296 7.67840i 1.81391 0.453241i
\(288\) −1.55454 + 5.43906i −0.0916023 + 0.320500i
\(289\) 16.6354i 0.978555i
\(290\) 26.0993 7.26533i 1.53260 0.426635i
\(291\) 15.1283i 0.886834i
\(292\) 12.0205 + 3.30653i 0.703447 + 0.193500i
\(293\) 17.2751 17.2751i 1.00922 1.00922i 0.00926472 0.999957i \(-0.497051\pi\)
0.999957 0.00926472i \(-0.00294909\pi\)
\(294\) −9.89264 0.368218i −0.576951 0.0214749i
\(295\) 31.6850 0.412485i 1.84477 0.0240158i
\(296\) −10.0027 0.0995667i −0.581397 0.00578719i
\(297\) 2.22720 2.22720i 0.129235 0.129235i
\(298\) −4.20270 15.8955i −0.243456 0.920799i
\(299\) 15.6684i 0.906124i
\(300\) −2.40033 + 9.70765i −0.138583 + 0.560471i
\(301\) −14.9036 + 24.8324i −0.859028 + 1.43132i
\(302\) 1.03089 + 3.89905i 0.0593213 + 0.224365i
\(303\) −6.93065 + 6.93065i −0.398155 + 0.398155i
\(304\) 13.8956 + 8.27044i 0.796968 + 0.474342i
\(305\) 0.209216 + 16.0709i 0.0119797 + 0.920217i
\(306\) −0.429394 + 0.738066i −0.0245468 + 0.0421924i
\(307\) −3.11129 3.11129i −0.177570 0.177570i 0.612725 0.790296i \(-0.290073\pi\)
−0.790296 + 0.612725i \(0.790073\pi\)
\(308\) 12.0598 11.5041i 0.687172 0.655508i
\(309\) 8.99072 0.511464
\(310\) 2.62086 + 9.41493i 0.148855 + 0.534732i
\(311\) 7.70349i 0.436825i 0.975857 + 0.218412i \(0.0700878\pi\)
−0.975857 + 0.218412i \(0.929912\pi\)
\(312\) 4.78680 4.69244i 0.270999 0.265657i
\(313\) 7.57505 + 7.57505i 0.428167 + 0.428167i 0.888004 0.459837i \(-0.152092\pi\)
−0.459837 + 0.888004i \(0.652092\pi\)
\(314\) 8.04891 13.8349i 0.454226 0.780749i
\(315\) 1.50875 + 5.72046i 0.0850084 + 0.322311i
\(316\) 5.97830 + 10.5152i 0.336306 + 0.591529i
\(317\) 19.0557 19.0557i 1.07028 1.07028i 0.0729409 0.997336i \(-0.476762\pi\)
0.997336 0.0729409i \(-0.0232385\pi\)
\(318\) −1.46202 5.52966i −0.0819862 0.310088i
\(319\) 26.9842i 1.51083i
\(320\) 17.8881 + 0.123245i 0.999976 + 0.00688961i
\(321\) 16.4403i 0.917610i
\(322\) −6.88526 + 23.7598i −0.383701 + 1.32408i
\(323\) 1.72598 + 1.72598i 0.0960361 + 0.0960361i
\(324\) 1.73865 0.988485i 0.0965916 0.0549158i
\(325\) 8.15800 8.59424i 0.452524 0.476723i
\(326\) −2.99263 + 5.14390i −0.165747 + 0.284894i
\(327\) 2.00655 2.00655i 0.110962 0.110962i
\(328\) −24.1807 + 23.7041i −1.33516 + 1.30884i
\(329\) −3.10520 1.86364i −0.171195 0.102746i
\(330\) −8.67382 4.89627i −0.477478 0.269531i
\(331\) 15.3548i 0.843977i 0.906601 + 0.421988i \(0.138668\pi\)
−0.906601 + 0.421988i \(0.861332\pi\)
\(332\) −2.23371 + 8.12041i −0.122591 + 0.445665i
\(333\) 2.50081 + 2.50081i 0.137043 + 0.137043i
\(334\) −18.3022 10.6479i −1.00145 0.582626i
\(335\) 15.2483 + 14.8564i 0.833105 + 0.811692i
\(336\) 9.32082 5.01221i 0.508493 0.273438i
\(337\) −15.3814 15.3814i −0.837877 0.837877i 0.150703 0.988579i \(-0.451846\pi\)
−0.988579 + 0.150703i \(0.951846\pi\)
\(338\) 10.0949 2.66905i 0.549089 0.145177i
\(339\) 3.35000i 0.181947i
\(340\) 2.61262 + 0.682210i 0.141689 + 0.0369980i
\(341\) −9.73416 −0.527135
\(342\) −1.46138 5.52724i −0.0790225 0.298879i
\(343\) 12.4135 + 13.7443i 0.670267 + 0.742120i
\(344\) 0.308170 30.9596i 0.0166154 1.66923i
\(345\) 14.7821 0.192438i 0.795842 0.0103605i
\(346\) −12.4100 7.21994i −0.667167 0.388146i
\(347\) −2.60251 + 2.60251i −0.139710 + 0.139710i −0.773503 0.633793i \(-0.781497\pi\)
0.633793 + 0.773503i \(0.281497\pi\)
\(348\) −4.54440 + 16.5206i −0.243606 + 0.885600i
\(349\) 4.01988i 0.215179i 0.994195 + 0.107590i \(0.0343133\pi\)
−0.994195 + 0.107590i \(0.965687\pi\)
\(350\) 16.1476 9.44754i 0.863124 0.504992i
\(351\) −2.36993 −0.126497
\(352\) −4.89640 + 17.1316i −0.260979 + 0.913119i
\(353\) −10.3871 10.3871i −0.552850 0.552850i 0.374412 0.927262i \(-0.377844\pi\)
−0.927262 + 0.374412i \(0.877844\pi\)
\(354\) −10.0781 + 17.3227i −0.535643 + 0.920693i
\(355\) −0.297337 22.8399i −0.0157810 1.21222i
\(356\) 25.4738 14.4828i 1.35011 0.767587i
\(357\) 1.54982 0.387254i 0.0820254 0.0204957i
\(358\) −0.435687 1.64785i −0.0230268 0.0870918i
\(359\) 8.85420i 0.467307i −0.972320 0.233653i \(-0.924932\pi\)
0.972320 0.233653i \(-0.0750681\pi\)
\(360\) −4.48582 4.45841i −0.236423 0.234979i
\(361\) 2.65698 0.139841
\(362\) 2.17138 + 8.21261i 0.114125 + 0.431645i
\(363\) −0.763068 + 0.763068i −0.0400507 + 0.0400507i
\(364\) −12.5370 0.295663i −0.657117 0.0154970i
\(365\) −9.72689 + 9.98348i −0.509128 + 0.522559i
\(366\) −8.78622 5.11167i −0.459263 0.267191i
\(367\) −18.1267 + 18.1267i −0.946204 + 0.946204i −0.998625 0.0524208i \(-0.983306\pi\)
0.0524208 + 0.998625i \(0.483306\pi\)
\(368\) −6.50494 25.6328i −0.339093 1.33620i
\(369\) 11.9718 0.623226
\(370\) 5.49777 9.73937i 0.285815 0.506326i
\(371\) −5.50650 + 9.17496i −0.285883 + 0.476340i
\(372\) −5.95958 1.63933i −0.308990 0.0849951i
\(373\) −12.4629 12.4629i −0.645305 0.645305i 0.306550 0.951855i \(-0.400825\pi\)
−0.951855 + 0.306550i \(0.900825\pi\)
\(374\) −1.35248 + 2.32472i −0.0699350 + 0.120208i
\(375\) −8.20833 7.59101i −0.423876 0.391998i
\(376\) 3.87138 + 0.0385355i 0.199651 + 0.00198731i
\(377\) 14.3567 14.3567i 0.739410 0.739410i
\(378\) −3.59380 1.04144i −0.184845 0.0535656i
\(379\) 5.54879 0.285022 0.142511 0.989793i \(-0.454482\pi\)
0.142511 + 0.989793i \(0.454482\pi\)
\(380\) −15.5991 + 9.13938i −0.800217 + 0.468840i
\(381\) −11.1452 −0.570984
\(382\) 2.50154 + 9.46132i 0.127990 + 0.484083i
\(383\) 5.77404 + 5.77404i 0.295040 + 0.295040i 0.839067 0.544028i \(-0.183101\pi\)
−0.544028 + 0.839067i \(0.683101\pi\)
\(384\) −5.88287 + 9.66395i −0.300209 + 0.493161i
\(385\) 4.75217 + 18.0180i 0.242193 + 0.918280i
\(386\) −0.445410 0.259132i −0.0226708 0.0131895i
\(387\) −7.74027 + 7.74027i −0.393460 + 0.393460i
\(388\) −8.02472 + 29.1729i −0.407393 + 1.48103i
\(389\) −20.8524 −1.05726 −0.528629 0.848853i \(-0.677294\pi\)
−0.528629 + 0.848853i \(0.677294\pi\)
\(390\) 2.00981 + 7.21985i 0.101771 + 0.365591i
\(391\) 3.99184i 0.201876i
\(392\) −18.8814 5.95757i −0.953655 0.300903i
\(393\) 8.10001 8.10001i 0.408591 0.408591i
\(394\) −12.0928 7.03538i −0.609227 0.354437i
\(395\) −13.5225 + 0.176039i −0.680389 + 0.00885751i
\(396\) 5.47629 3.11347i 0.275194 0.156458i
\(397\) 12.8380 + 12.8380i 0.644320 + 0.644320i 0.951614 0.307295i \(-0.0994238\pi\)
−0.307295 + 0.951614i \(0.599424\pi\)
\(398\) 4.76929 + 18.0384i 0.239063 + 0.904184i
\(399\) −5.50409 + 9.17094i −0.275549 + 0.459121i
\(400\) −9.77812 + 17.4467i −0.488906 + 0.872337i
\(401\) 32.9376 1.64483 0.822414 0.568890i \(-0.192627\pi\)
0.822414 + 0.568890i \(0.192627\pi\)
\(402\) −13.0171 + 3.44167i −0.649233 + 0.171655i
\(403\) 5.17898 + 5.17898i 0.257983 + 0.257983i
\(404\) −17.0412 + 9.68855i −0.847833 + 0.482024i
\(405\) 0.0291073 + 2.23588i 0.00144635 + 0.111102i
\(406\) 28.0797 15.4619i 1.39357 0.767363i
\(407\) 7.87689 + 7.87689i 0.390443 + 0.390443i
\(408\) −1.21954 + 1.19550i −0.0603760 + 0.0591859i
\(409\) −12.5472 −0.620422 −0.310211 0.950668i \(-0.600400\pi\)
−0.310211 + 0.950668i \(0.600400\pi\)
\(410\) −10.1526 36.4714i −0.501403 1.80119i
\(411\) 11.8201 0.583044
\(412\) 17.3375 + 4.76909i 0.854156 + 0.234956i
\(413\) 36.3751 9.08903i 1.78990 0.447242i
\(414\) −4.70175 + 8.08163i −0.231078 + 0.397190i
\(415\) −6.74430 6.57096i −0.331065 0.322556i
\(416\) 11.7198 6.50965i 0.574612 0.319162i
\(417\) 8.47383 + 8.47383i 0.414965 + 0.414965i
\(418\) −4.60297 17.4094i −0.225139 0.851520i
\(419\) 18.0734i 0.882943i 0.897275 + 0.441472i \(0.145543\pi\)
−0.897275 + 0.441472i \(0.854457\pi\)
\(420\) −0.124961 + 11.8315i −0.00609748 + 0.577318i
\(421\) 2.50726i 0.122196i −0.998132 0.0610982i \(-0.980540\pi\)
0.998132 0.0610982i \(-0.0194603\pi\)
\(422\) −33.3208 + 8.80989i −1.62203 + 0.428859i
\(423\) −0.967892 0.967892i −0.0470605 0.0470605i
\(424\) 0.113861 11.4388i 0.00552958 0.555517i
\(425\) −2.07842 + 2.18956i −0.100818 + 0.106209i
\(426\) 12.4870 + 7.26469i 0.604995 + 0.351975i
\(427\) 4.61003 + 18.4497i 0.223095 + 0.892844i
\(428\) −8.72071 + 31.7031i −0.421531 + 1.53243i
\(429\) −7.46465 −0.360397
\(430\) 30.1444 + 17.0162i 1.45369 + 0.820593i
\(431\) −29.0477 −1.39918 −0.699588 0.714546i \(-0.746633\pi\)
−0.699588 + 0.714546i \(0.746633\pi\)
\(432\) 3.87710 0.983909i 0.186537 0.0473384i
\(433\) −28.2701 28.2701i −1.35857 1.35857i −0.875678 0.482895i \(-0.839585\pi\)
−0.482895 0.875678i \(-0.660415\pi\)
\(434\) 5.57766 + 10.1293i 0.267736 + 0.486224i
\(435\) −13.7210 13.3684i −0.657872 0.640964i
\(436\) 4.93375 2.80501i 0.236284 0.134336i
\(437\) 18.8990 + 18.8990i 0.904063 + 0.904063i
\(438\) −2.25335 8.52263i −0.107669 0.407227i
\(439\) 32.1011 1.53210 0.766052 0.642779i \(-0.222219\pi\)
0.766052 + 0.642779i \(0.222219\pi\)
\(440\) −14.1292 14.0428i −0.673581 0.669466i
\(441\) 3.29261 + 6.17728i 0.156791 + 0.294156i
\(442\) 1.95642 0.517270i 0.0930574 0.0246040i
\(443\) 16.1970 + 16.1970i 0.769544 + 0.769544i 0.978026 0.208482i \(-0.0668523\pi\)
−0.208482 + 0.978026i \(0.566852\pi\)
\(444\) 3.49595 + 6.14904i 0.165910 + 0.291820i
\(445\) 0.426466 + 32.7590i 0.0202164 + 1.55293i
\(446\) −10.6023 + 18.2238i −0.502034 + 0.862924i
\(447\) −8.22083 + 8.22083i −0.388832 + 0.388832i
\(448\) 20.6327 4.72122i 0.974805 0.223057i
\(449\) 16.7065i 0.788428i −0.919019 0.394214i \(-0.871017\pi\)
0.919019 0.394214i \(-0.128983\pi\)
\(450\) 6.78679 1.98480i 0.319932 0.0935645i
\(451\) 37.7080 1.77560
\(452\) 1.77699 6.46005i 0.0835828 0.303855i
\(453\) 2.01651 2.01651i 0.0947441 0.0947441i
\(454\) −11.0967 + 19.0737i −0.520795 + 0.895172i
\(455\) 7.05795 12.1147i 0.330882 0.567944i
\(456\) 0.113811 11.4338i 0.00532969 0.535436i
\(457\) 22.1542 + 22.1542i 1.03633 + 1.03633i 0.999315 + 0.0370143i \(0.0117847\pi\)
0.0370143 + 0.999315i \(0.488215\pi\)
\(458\) −19.3455 + 5.11487i −0.903955 + 0.239002i
\(459\) 0.603788 0.0281824
\(460\) 28.6075 + 7.47002i 1.33383 + 0.348291i
\(461\) −30.4640 −1.41885 −0.709425 0.704781i \(-0.751045\pi\)
−0.709425 + 0.704781i \(0.751045\pi\)
\(462\) −11.3195 3.28025i −0.526633 0.152611i
\(463\) −23.0766 + 23.0766i −1.07246 + 1.07246i −0.0752994 + 0.997161i \(0.523991\pi\)
−0.997161 + 0.0752994i \(0.976009\pi\)
\(464\) −17.5266 + 29.4474i −0.813653 + 1.36706i
\(465\) 4.82243 4.94965i 0.223635 0.229535i
\(466\) 9.64059 + 5.60873i 0.446592 + 0.259819i
\(467\) 15.6460 + 15.6460i 0.724010 + 0.724010i 0.969420 0.245409i \(-0.0789224\pi\)
−0.245409 + 0.969420i \(0.578922\pi\)
\(468\) −4.57011 1.25712i −0.211253 0.0581103i
\(469\) 21.5983 + 12.9626i 0.997316 + 0.598556i
\(470\) −2.12781 + 3.76945i −0.0981486 + 0.173872i
\(471\) −11.3179 −0.521501
\(472\) −28.6231 + 28.0588i −1.31748 + 1.29151i
\(473\) −24.3798 + 24.3798i −1.12099 + 1.12099i
\(474\) 4.30109 7.39296i 0.197556 0.339570i
\(475\) −0.526195 20.2064i −0.0241435 0.927133i
\(476\) 3.19406 + 0.0753264i 0.146399 + 0.00345258i
\(477\) −2.85984 + 2.85984i −0.130943 + 0.130943i
\(478\) −22.6997 + 6.00172i −1.03826 + 0.274512i
\(479\) 32.2323 1.47273 0.736366 0.676583i \(-0.236540\pi\)
0.736366 + 0.676583i \(0.236540\pi\)
\(480\) −6.28539 10.9770i −0.286887 0.501028i
\(481\) 8.38167i 0.382171i
\(482\) 19.3693 5.12116i 0.882246 0.233263i
\(483\) 16.9702 4.24033i 0.772169 0.192942i
\(484\) −1.87625 + 1.06671i −0.0852840 + 0.0484870i
\(485\) −24.2292 23.6065i −1.10019 1.07191i
\(486\) −1.22239 0.711166i −0.0554488 0.0322592i
\(487\) −12.3205 12.3205i −0.558294 0.558294i 0.370527 0.928822i \(-0.379177\pi\)
−0.928822 + 0.370527i \(0.879177\pi\)
\(488\) −14.2317 14.5178i −0.644237 0.657191i
\(489\) 4.20806 0.190295
\(490\) 16.0264 15.2694i 0.724001 0.689799i
\(491\) 40.1506i 1.81197i −0.423307 0.905986i \(-0.639131\pi\)
0.423307 0.905986i \(-0.360869\pi\)
\(492\) 23.0861 + 6.35038i 1.04080 + 0.286297i
\(493\) −3.65768 + 3.65768i −0.164733 + 0.164733i
\(494\) −6.81353 + 11.7115i −0.306555 + 0.526924i
\(495\) 0.0916805 + 7.04243i 0.00412073 + 0.316534i
\(496\) −10.6227 6.32247i −0.476974 0.283887i
\(497\) −6.55176 26.2207i −0.293886 1.17616i
\(498\) 5.75743 1.52224i 0.257997 0.0682134i
\(499\) −4.38696 −0.196387 −0.0981937 0.995167i \(-0.531306\pi\)
−0.0981937 + 0.995167i \(0.531306\pi\)
\(500\) −11.8021 18.9924i −0.527806 0.849365i
\(501\) 14.9724i 0.668919i
\(502\) −4.47637 16.9306i −0.199790 0.755647i
\(503\) −25.5699 25.5699i −1.14010 1.14010i −0.988431 0.151674i \(-0.951533\pi\)
−0.151674 0.988431i \(-0.548467\pi\)
\(504\) −6.37777 3.91459i −0.284088 0.174370i
\(505\) −0.285293 21.9148i −0.0126954 0.975195i
\(506\) −14.8093 + 25.4550i −0.658353 + 1.13161i
\(507\) −5.22088 5.22088i −0.231868 0.231868i
\(508\) −21.4920 5.91191i −0.953555 0.262298i
\(509\) 0.00249713i 0.000110683i −1.00000 5.53417e-5i \(-0.999982\pi\)
1.00000 5.53417e-5i \(-1.76158e-5\pi\)
\(510\) −0.512041 1.83941i −0.0226735 0.0814503i
\(511\) −8.48694 + 14.1410i −0.375440 + 0.625560i
\(512\) −16.4706 + 15.5152i −0.727903 + 0.685680i
\(513\) −2.85859 + 2.85859i −0.126210 + 0.126210i
\(514\) 5.51481 + 3.20842i 0.243248 + 0.141517i
\(515\) −14.0293 + 14.3994i −0.618206 + 0.634515i
\(516\) −19.0319 + 10.8203i −0.837834 + 0.476339i
\(517\) −3.04861 3.04861i −0.134078 0.134078i
\(518\) 3.68322 12.7101i 0.161831 0.558450i
\(519\) 10.1522i 0.445634i
\(520\) 0.0459247 + 14.9887i 0.00201393 + 0.657297i
\(521\) 18.2393i 0.799080i −0.916716 0.399540i \(-0.869170\pi\)
0.916716 0.399540i \(-0.130830\pi\)
\(522\) 11.7133 3.09694i 0.512676 0.135550i
\(523\) −13.3588 + 13.3588i −0.584139 + 0.584139i −0.936038 0.351899i \(-0.885536\pi\)
0.351899 + 0.936038i \(0.385536\pi\)
\(524\) 19.9165 11.3232i 0.870055 0.494658i
\(525\) −11.5161 6.50994i −0.502604 0.284117i
\(526\) −1.29328 0.752406i −0.0563896 0.0328065i
\(527\) −1.31945 1.31945i −0.0574762 0.0574762i
\(528\) 12.2119 3.09906i 0.531453 0.134869i
\(529\) 20.7096i 0.900416i
\(530\) 11.1376 + 6.28706i 0.483787 + 0.273092i
\(531\) 14.1712 0.614977
\(532\) −15.4786 + 14.7654i −0.671084 + 0.640160i
\(533\) −20.0622 20.0622i −0.868991 0.868991i
\(534\) −17.9099 10.4197i −0.775037 0.450903i
\(535\) −26.3306 25.6539i −1.13837 1.10911i
\(536\) −26.9274 0.268034i −1.16309 0.0115773i
\(537\) −0.852239 + 0.852239i −0.0367768 + 0.0367768i
\(538\) −23.1763 + 6.12772i −0.999199 + 0.264185i
\(539\) 10.3708 + 19.4568i 0.446704 + 0.838064i
\(540\) −1.12988 + 4.32705i −0.0486224 + 0.186207i
\(541\) 6.62287i 0.284739i 0.989814 + 0.142370i \(0.0454722\pi\)
−0.989814 + 0.142370i \(0.954528\pi\)
\(542\) −5.86054 + 1.54951i −0.251732 + 0.0665570i
\(543\) 4.24741 4.24741i 0.182274 0.182274i
\(544\) −2.98587 + 1.65847i −0.128018 + 0.0711062i
\(545\) 0.0825976 + 6.34473i 0.00353809 + 0.271778i
\(546\) 4.27724 + 7.76769i 0.183049 + 0.332427i
\(547\) 7.91721 7.91721i 0.338516 0.338516i −0.517293 0.855808i \(-0.673060\pi\)
0.855808 + 0.517293i \(0.173060\pi\)
\(548\) 22.7936 + 6.26994i 0.973696 + 0.267839i
\(549\) 7.18773i 0.306765i
\(550\) 21.3766 6.25161i 0.911503 0.266570i
\(551\) 34.6339i 1.47546i
\(552\) −13.3536 + 13.0904i −0.568367 + 0.557163i
\(553\) −15.5241 + 3.87900i −0.660151 + 0.164952i
\(554\) 15.3678 + 8.94070i 0.652914 + 0.379854i
\(555\) −7.90758 + 0.102943i −0.335658 + 0.00436970i
\(556\) 11.8458 + 20.8356i 0.502374 + 0.883627i
\(557\) 1.18911 1.18911i 0.0503840 0.0503840i −0.681466 0.731850i \(-0.738657\pi\)
0.731850 + 0.681466i \(0.238657\pi\)
\(558\) 1.11718 + 4.22539i 0.0472938 + 0.178875i
\(559\) 25.9422 1.09724
\(560\) −6.51694 + 22.7493i −0.275391 + 0.961332i
\(561\) 1.90178 0.0802930
\(562\) 2.34350 + 8.86358i 0.0988545 + 0.373887i
\(563\) −9.59824 + 9.59824i −0.404517 + 0.404517i −0.879822 0.475304i \(-0.842338\pi\)
0.475304 + 0.879822i \(0.342338\pi\)
\(564\) −1.35304 2.37987i −0.0569734 0.100211i
\(565\) 5.36532 + 5.22742i 0.225721 + 0.219919i
\(566\) −3.60123 2.09513i −0.151371 0.0880649i
\(567\) 0.641375 + 2.56683i 0.0269352 + 0.107797i
\(568\) 20.2260 + 20.6327i 0.848664 + 0.865729i
\(569\) 1.12649i 0.0472248i −0.999721 0.0236124i \(-0.992483\pi\)
0.999721 0.0236124i \(-0.00751675\pi\)
\(570\) 11.1327 + 6.28430i 0.466299 + 0.263221i
\(571\) 17.5232i 0.733321i −0.930355 0.366661i \(-0.880501\pi\)
0.930355 0.366661i \(-0.119499\pi\)
\(572\) −14.3946 3.95960i −0.601870 0.165559i
\(573\) 4.89322 4.89322i 0.204417 0.204417i
\(574\) −21.6066 39.2388i −0.901843 1.63780i
\(575\) −22.7581 + 23.9751i −0.949080 + 0.999832i
\(576\) 7.99841 + 0.159247i 0.333267 + 0.00663530i
\(577\) −11.7714 + 11.7714i −0.490048 + 0.490048i −0.908321 0.418273i \(-0.862635\pi\)
0.418273 + 0.908321i \(0.362635\pi\)
\(578\) 22.7445 6.01356i 0.946047 0.250131i
\(579\) 0.364376i 0.0151429i
\(580\) −19.3681 33.0574i −0.804215 1.37264i
\(581\) −9.55288 5.73332i −0.396320 0.237858i
\(582\) 20.6838 5.46873i 0.857373 0.226686i
\(583\) −9.00775 + 9.00775i −0.373063 + 0.373063i
\(584\) 0.175489 17.6301i 0.00726179 0.729539i
\(585\) 3.69809 3.79564i 0.152897 0.156931i
\(586\) −29.8639 17.3743i −1.23366 0.717725i
\(587\) −1.08650 1.08650i −0.0448446 0.0448446i 0.684329 0.729173i \(-0.260095\pi\)
−0.729173 + 0.684329i \(0.760095\pi\)
\(588\) 3.07266 + 13.6587i 0.126715 + 0.563273i
\(589\) 12.4937 0.514793
\(590\) −12.0178 43.1717i −0.494766 1.77735i
\(591\) 9.89274i 0.406933i
\(592\) 3.47977 + 13.7121i 0.143018 + 0.563562i
\(593\) −32.0658 32.0658i −1.31678 1.31678i −0.916307 0.400477i \(-0.868844\pi\)
−0.400477 0.916307i \(-0.631156\pi\)
\(594\) −3.85022 2.23999i −0.157976 0.0919079i
\(595\) −1.79816 + 3.08646i −0.0737174 + 0.126532i
\(596\) −20.2135 + 11.4921i −0.827979 + 0.470736i
\(597\) 9.32913 9.32913i 0.381816 0.381816i
\(598\) 21.4223 5.66397i 0.876022 0.231617i
\(599\) 30.2406i 1.23560i −0.786336 0.617800i \(-0.788024\pi\)
0.786336 0.617800i \(-0.211976\pi\)
\(600\) 14.1403 0.227417i 0.577276 0.00928426i
\(601\) 18.8997i 0.770937i 0.922721 + 0.385468i \(0.125960\pi\)
−0.922721 + 0.385468i \(0.874040\pi\)
\(602\) 39.3392 + 11.4000i 1.60335 + 0.464628i
\(603\) 6.73219 + 6.73219i 0.274156 + 0.274156i
\(604\) 4.95825 2.81894i 0.201748 0.114701i
\(605\) −0.0314109 2.41283i −0.00127704 0.0980954i
\(606\) 11.9812 + 6.97044i 0.486702 + 0.283155i
\(607\) 8.49695 8.49695i 0.344881 0.344881i −0.513318 0.858198i \(-0.671584\pi\)
0.858198 + 0.513318i \(0.171584\pi\)
\(608\) 6.28447 21.9882i 0.254869 0.891740i
\(609\) −19.4349 11.6642i −0.787544 0.472657i
\(610\) 21.8970 6.09553i 0.886584 0.246801i
\(611\) 3.24397i 0.131237i
\(612\) 1.16433 + 0.320277i 0.0470652 + 0.0129464i
\(613\) −16.4600 16.4600i −0.664812 0.664812i 0.291698 0.956510i \(-0.405780\pi\)
−0.956510 + 0.291698i \(0.905780\pi\)
\(614\) −3.12915 + 5.37855i −0.126282 + 0.217061i
\(615\) −18.6810 + 19.1738i −0.753292 + 0.773164i
\(616\) −20.0883 12.3300i −0.809381 0.496788i
\(617\) 6.09244 + 6.09244i 0.245272 + 0.245272i 0.819027 0.573755i \(-0.194514\pi\)
−0.573755 + 0.819027i \(0.694514\pi\)
\(618\) −3.25007 12.2924i −0.130737 0.494473i
\(619\) 36.7201i 1.47591i −0.674853 0.737953i \(-0.735793\pi\)
0.674853 0.737953i \(-0.264207\pi\)
\(620\) 11.9250 6.98674i 0.478919 0.280594i
\(621\) 6.61132 0.265303
\(622\) 10.5325 2.78474i 0.422313 0.111658i
\(623\) 9.39711 + 37.6080i 0.376487 + 1.50673i
\(624\) −8.14604 4.84839i −0.326103 0.194091i
\(625\) 24.9661 1.30117i 0.998645 0.0520467i
\(626\) 7.61854 13.0952i 0.304498 0.523388i
\(627\) −9.00380 + 9.00380i −0.359577 + 0.359577i
\(628\) −21.8251 6.00353i −0.870918 0.239567i
\(629\) 2.13540i 0.0851441i
\(630\) 7.27580 4.13071i 0.289875 0.164571i
\(631\) 36.9096 1.46935 0.734673 0.678421i \(-0.237336\pi\)
0.734673 + 0.678421i \(0.237336\pi\)
\(632\) 12.2157 11.9749i 0.485914 0.476336i
\(633\) 17.2329 + 17.2329i 0.684946 + 0.684946i
\(634\) −32.9421 19.1651i −1.30830 0.761145i
\(635\) 17.3912 17.8499i 0.690148 0.708354i
\(636\) −7.03183 + 3.99785i −0.278830 + 0.158525i
\(637\) 4.83411 15.8696i 0.191534 0.628775i
\(638\) 36.8937 9.75457i 1.46064 0.386187i
\(639\) 10.2152i 0.404106i
\(640\) −6.29789 24.5018i −0.248946 0.968517i
\(641\) 49.0296 1.93655 0.968277 0.249878i \(-0.0803905\pi\)
0.968277 + 0.249878i \(0.0803905\pi\)
\(642\) 22.4778 5.94304i 0.887126 0.234553i
\(643\) 3.86309 3.86309i 0.152345 0.152345i −0.626819 0.779165i \(-0.715644\pi\)
0.779165 + 0.626819i \(0.215644\pi\)
\(644\) 34.9741 + 0.824804i 1.37817 + 0.0325018i
\(645\) −0.318620 24.4748i −0.0125457 0.963695i
\(646\) 1.73589 2.98374i 0.0682976 0.117394i
\(647\) −20.8703 + 20.8703i −0.820498 + 0.820498i −0.986179 0.165682i \(-0.947018\pi\)
0.165682 + 0.986179i \(0.447018\pi\)
\(648\) −1.97999 2.01981i −0.0777815 0.0793455i
\(649\) 44.6355 1.75210
\(650\) −14.6994 8.04714i −0.576557 0.315635i
\(651\) 4.20769 7.01087i 0.164912 0.274778i
\(652\) 8.11472 + 2.23215i 0.317797 + 0.0874177i
\(653\) −4.22670 4.22670i −0.165404 0.165404i 0.619552 0.784956i \(-0.287314\pi\)
−0.784956 + 0.619552i \(0.787314\pi\)
\(654\) −3.46877 2.01807i −0.135640 0.0789128i
\(655\) 0.333429 + 25.6123i 0.0130281 + 1.00076i
\(656\) 41.1501 + 24.4918i 1.60664 + 0.956245i
\(657\) −4.40775 + 4.40775i −0.171963 + 0.171963i
\(658\) −1.42552 + 4.91922i −0.0555727 + 0.191771i
\(659\) 27.5321 1.07250 0.536249 0.844060i \(-0.319841\pi\)
0.536249 + 0.844060i \(0.319841\pi\)
\(660\) −3.55884 + 13.6291i −0.138528 + 0.530511i
\(661\) −38.0353 −1.47940 −0.739701 0.672936i \(-0.765033\pi\)
−0.739701 + 0.672936i \(0.765033\pi\)
\(662\) 20.9936 5.55063i 0.815939 0.215731i
\(663\) −1.01182 1.01182i −0.0392960 0.0392960i
\(664\) 11.9100 + 0.118551i 0.462196 + 0.00460067i
\(665\) −6.09935 23.1258i −0.236522 0.896781i
\(666\) 2.51517 4.32321i 0.0974607 0.167521i
\(667\) −40.0506 + 40.0506i −1.55077 + 1.55077i
\(668\) −7.94206 + 28.8724i −0.307288 + 1.11711i
\(669\) 14.9083 0.576390
\(670\) 14.8000 26.2185i 0.571775 1.01291i
\(671\) 22.6395i 0.873987i
\(672\) −10.2222 10.9319i −0.394332 0.421706i
\(673\) 8.31772 8.31772i 0.320625 0.320625i −0.528382 0.849007i \(-0.677201\pi\)
0.849007 + 0.528382i \(0.177201\pi\)
\(674\) −15.4697 + 26.5901i −0.595870 + 1.02421i
\(675\) −3.62637 3.44230i −0.139579 0.132494i
\(676\) −7.29842 12.8372i −0.280708 0.493739i
\(677\) −22.3917 22.3917i −0.860585 0.860585i 0.130821 0.991406i \(-0.458239\pi\)
−0.991406 + 0.130821i \(0.958239\pi\)
\(678\) −4.58023 + 1.21100i −0.175903 + 0.0465080i
\(679\) −34.3191 20.5972i −1.31705 0.790448i
\(680\) −0.0117003 3.81867i −0.000448684 0.146439i
\(681\) 15.6036 0.597930
\(682\) 3.51881 + 13.3089i 0.134742 + 0.509623i
\(683\) 21.8152 + 21.8152i 0.834737 + 0.834737i 0.988161 0.153423i \(-0.0490298\pi\)
−0.153423 + 0.988161i \(0.549030\pi\)
\(684\) −7.02875 + 3.99610i −0.268751 + 0.152795i
\(685\) −18.4444 + 18.9310i −0.704725 + 0.723315i
\(686\) 14.3042 21.9406i 0.546137 0.837696i
\(687\) 10.0051 + 10.0051i 0.381719 + 0.381719i
\(688\) −42.4403 + 10.7703i −1.61802 + 0.410612i
\(689\) 9.58499 0.365159
\(690\) −5.60671 20.1410i −0.213444 0.766755i
\(691\) −0.0391809 −0.00149051 −0.000745256 1.00000i \(-0.500237\pi\)
−0.000745256 1.00000i \(0.500237\pi\)
\(692\) −5.38522 + 19.5773i −0.204715 + 0.744219i
\(693\) 2.02016 + 8.08486i 0.0767397 + 0.307118i
\(694\) 4.49903 + 2.61746i 0.170781 + 0.0993573i
\(695\) −26.7943 + 0.348817i −1.01637 + 0.0132314i
\(696\) 24.2303 + 0.241187i 0.918448 + 0.00914218i
\(697\) 5.11126 + 5.11126i 0.193603 + 0.193603i
\(698\) 5.49612 1.45315i 0.208031 0.0550026i
\(699\) 7.88666i 0.298301i
\(700\) −18.7542 18.6623i −0.708841 0.705368i
\(701\) 25.0705i 0.946899i −0.880821 0.473450i \(-0.843009\pi\)
0.880821 0.473450i \(-0.156991\pi\)
\(702\) 0.856708 + 3.24024i 0.0323344 + 0.122295i
\(703\) −10.1099 10.1099i −0.381302 0.381302i
\(704\) 25.1929 + 0.501587i 0.949494 + 0.0189043i
\(705\) 3.06049 0.0398423i 0.115265 0.00150055i
\(706\) −10.4467 + 17.9564i −0.393168 + 0.675799i
\(707\) −6.28638 25.1586i −0.236424 0.946187i
\(708\) 27.3273 + 7.51704i 1.02702 + 0.282508i
\(709\) 15.5764 0.584985 0.292493 0.956268i \(-0.405515\pi\)
0.292493 + 0.956268i \(0.405515\pi\)
\(710\) −31.1200 + 8.66295i −1.16791 + 0.325115i
\(711\) −6.04794 −0.226816
\(712\) −29.0099 29.5932i −1.08719 1.10905i
\(713\) −14.4477 14.4477i −0.541069 0.541069i
\(714\) −1.08971 1.97898i −0.0407815 0.0740615i
\(715\) 11.6480 11.9553i 0.435611 0.447103i
\(716\) −2.09550 + 1.19137i −0.0783126 + 0.0445236i
\(717\) 11.7399 + 11.7399i 0.438433 + 0.438433i
\(718\) −12.1057 + 3.20071i −0.451782 + 0.119450i
\(719\) −7.05434 −0.263082 −0.131541 0.991311i \(-0.541993\pi\)
−0.131541 + 0.991311i \(0.541993\pi\)
\(720\) −4.47410 + 7.74483i −0.166740 + 0.288633i
\(721\) −12.2409 + 20.3959i −0.455876 + 0.759582i
\(722\) −0.960475 3.63271i −0.0357452 0.135196i
\(723\) −10.0174 10.0174i −0.372552 0.372552i
\(724\) 10.4436 5.93757i 0.388134 0.220668i
\(725\) 42.8212 1.11511i 1.59034 0.0414140i
\(726\) 1.31913 + 0.767449i 0.0489576 + 0.0284827i
\(727\) −19.6404 + 19.6404i −0.728420 + 0.728420i −0.970305 0.241885i \(-0.922234\pi\)
0.241885 + 0.970305i \(0.422234\pi\)
\(728\) 4.12777 + 17.2479i 0.152985 + 0.639248i
\(729\) 1.00000i 0.0370370i
\(730\) 17.1659 + 9.68997i 0.635339 + 0.358642i
\(731\) −6.60931 −0.244454
\(732\) −3.81270 + 13.8606i −0.140922 + 0.512304i
\(733\) −16.4484 + 16.4484i −0.607534 + 0.607534i −0.942301 0.334767i \(-0.891342\pi\)
0.334767 + 0.942301i \(0.391342\pi\)
\(734\) 31.3360 + 18.2307i 1.15663 + 0.672909i
\(735\) −15.0313 4.36577i −0.554438 0.161034i
\(736\) −32.6945 + 18.1598i −1.20513 + 0.669378i
\(737\) 21.2047 + 21.2047i 0.781083 + 0.781083i
\(738\) −4.32769 16.3682i −0.159305 0.602522i
\(739\) 21.5632 0.793216 0.396608 0.917988i \(-0.370187\pi\)
0.396608 + 0.917988i \(0.370187\pi\)
\(740\) −15.3034 3.99603i −0.562563 0.146897i
\(741\) 9.58079 0.351959
\(742\) 14.5349 + 4.21200i 0.533591 + 0.154628i
\(743\) 35.4825 35.4825i 1.30173 1.30173i 0.374501 0.927226i \(-0.377814\pi\)
0.927226 0.374501i \(-0.122186\pi\)
\(744\) −0.0870047 + 8.74073i −0.00318975 + 0.320451i
\(745\) −0.338402 25.9943i −0.0123981 0.952359i
\(746\) −12.5345 + 21.5449i −0.458919 + 0.788815i
\(747\) −2.97764 2.97764i −0.108946 0.108946i
\(748\) 3.66733 + 1.00879i 0.134091 + 0.0368850i
\(749\) −37.2957 22.3836i −1.36275 0.817879i
\(750\) −7.41143 + 13.9668i −0.270627 + 0.509994i
\(751\) −38.4718 −1.40386 −0.701928 0.712248i \(-0.747677\pi\)
−0.701928 + 0.712248i \(0.747677\pi\)
\(752\) −1.34678 5.30700i −0.0491121 0.193526i
\(753\) −8.75616 + 8.75616i −0.319092 + 0.319092i
\(754\) −24.8188 14.4392i −0.903848 0.525843i
\(755\) 0.0830077 + 6.37624i 0.00302096 + 0.232055i
\(756\) −0.124756 + 5.29003i −0.00453734 + 0.192397i
\(757\) −14.2962 + 14.2962i −0.519605 + 0.519605i −0.917452 0.397847i \(-0.869757\pi\)
0.397847 + 0.917452i \(0.369757\pi\)
\(758\) −2.00584 7.58649i −0.0728554 0.275554i
\(759\) 20.8239 0.755861
\(760\) 18.1346 + 18.0238i 0.657811 + 0.653792i
\(761\) 4.28764i 0.155427i 0.996976 + 0.0777134i \(0.0247619\pi\)
−0.996976 + 0.0777134i \(0.975238\pi\)
\(762\) 4.02888 + 15.2380i 0.145951 + 0.552016i
\(763\) 1.82002 + 7.28388i 0.0658893 + 0.263694i
\(764\) 12.0315 6.84036i 0.435286 0.247476i
\(765\) −0.942165 + 0.967019i −0.0340640 + 0.0349627i
\(766\) 5.80719 9.98172i 0.209822 0.360654i
\(767\) −23.7479 23.7479i −0.857488 0.857488i
\(768\) 15.3395 + 4.54981i 0.553515 + 0.164177i
\(769\) −2.19684 −0.0792201 −0.0396100 0.999215i \(-0.512612\pi\)
−0.0396100 + 0.999215i \(0.512612\pi\)
\(770\) 22.9169 13.0107i 0.825867 0.468871i
\(771\) 4.51149i 0.162477i
\(772\) −0.193282 + 0.702652i −0.00695635 + 0.0252890i
\(773\) 16.5613 16.5613i 0.595667 0.595667i −0.343489 0.939157i \(-0.611609\pi\)
0.939157 + 0.343489i \(0.111609\pi\)
\(774\) 13.3808 + 7.78471i 0.480963 + 0.279816i
\(775\) 0.402258 + 15.4471i 0.0144495 + 0.554876i
\(776\) 42.7870 + 0.425900i 1.53597 + 0.0152889i
\(777\) −9.07806 + 2.26834i −0.325674 + 0.0813761i
\(778\) 7.53796 + 28.5101i 0.270249 + 1.02214i
\(779\) −48.3977 −1.73403
\(780\) 9.14468 5.35779i 0.327432 0.191840i
\(781\) 32.1751i 1.15132i
\(782\) −5.45777 + 1.44301i −0.195169 + 0.0516021i
\(783\) −6.05788 6.05788i −0.216491 0.216491i
\(784\) −1.31993 + 27.9689i −0.0471403 + 0.998888i
\(785\) 17.6607 18.1266i 0.630338 0.646966i
\(786\) −14.0027 8.14651i −0.499459 0.290577i
\(787\) 13.0264 + 13.0264i 0.464340 + 0.464340i 0.900075 0.435735i \(-0.143511\pi\)
−0.435735 + 0.900075i \(0.643511\pi\)
\(788\) −5.24756 + 19.0769i −0.186937 + 0.679586i
\(789\) 1.05799i 0.0376654i
\(790\) 5.12894 + 18.4247i 0.182479 + 0.655522i
\(791\) 7.59963 + 4.56104i 0.270212 + 0.162172i
\(792\) −6.23647 6.36187i −0.221603 0.226059i
\(793\) 12.0451 12.0451i 0.427735 0.427735i
\(794\) 12.9117 22.1933i 0.458218 0.787611i
\(795\) −0.117722 9.04284i −0.00417518 0.320716i
\(796\) 22.9387 13.0415i 0.813039 0.462242i
\(797\) −2.39422 2.39422i −0.0848076 0.0848076i 0.663430 0.748238i \(-0.269100\pi\)
−0.748238 + 0.663430i \(0.769100\pi\)
\(798\) 14.5285 + 4.21016i 0.514303 + 0.149038i
\(799\) 0.826469i 0.0292384i
\(800\) 27.3884 + 7.06212i 0.968327 + 0.249684i
\(801\) 14.6515i 0.517686i
\(802\) −11.9067 45.0334i −0.420439 1.59018i
\(803\) −13.8833 + 13.8833i −0.489929 + 0.489929i
\(804\) 9.41112 + 16.5532i 0.331905 + 0.583788i
\(805\) −19.6894 + 33.7959i −0.693959 + 1.19115i
\(806\) 5.20871 8.95302i 0.183469 0.315357i
\(807\) 11.9863 + 11.9863i 0.421939 + 0.421939i
\(808\) 19.4068 + 19.7970i 0.682727 + 0.696455i
\(809\) 3.72661i 0.131021i 0.997852 + 0.0655104i \(0.0208676\pi\)
−0.997852 + 0.0655104i \(0.979132\pi\)
\(810\) 3.04644 0.848047i 0.107041 0.0297973i
\(811\) −23.5676 −0.827569 −0.413785 0.910375i \(-0.635793\pi\)
−0.413785 + 0.910375i \(0.635793\pi\)
\(812\) −31.2906 32.8021i −1.09809 1.15113i
\(813\) 3.03096 + 3.03096i 0.106301 + 0.106301i
\(814\) 7.92212 13.6170i 0.277670 0.477275i
\(815\) −6.56635 + 6.73957i −0.230009 + 0.236077i
\(816\) 2.07537 + 1.23523i 0.0726526 + 0.0432416i
\(817\) 31.2912 31.2912i 1.09474 1.09474i
\(818\) 4.53572 + 17.1550i 0.158588 + 0.599811i
\(819\) 3.22667 5.37629i 0.112749 0.187863i
\(820\) −46.1947 + 27.0651i −1.61319 + 0.945153i
\(821\) 8.26755i 0.288540i −0.989538 0.144270i \(-0.953917\pi\)
0.989538 0.144270i \(-0.0460833\pi\)
\(822\) −4.27287 16.1609i −0.149034 0.563675i
\(823\) −10.9990 + 10.9990i −0.383402 + 0.383402i −0.872326 0.488924i \(-0.837389\pi\)
0.488924 + 0.872326i \(0.337389\pi\)
\(824\) 0.253112 25.4284i 0.00881758 0.885839i
\(825\) −11.4221 10.8423i −0.397668 0.377482i
\(826\) −25.5761 46.4476i −0.889906 1.61612i
\(827\) 3.99650 3.99650i 0.138972 0.138972i −0.634198 0.773170i \(-0.718670\pi\)
0.773170 + 0.634198i \(0.218670\pi\)
\(828\) 12.7491 + 3.50695i 0.443062 + 0.121875i
\(829\) 26.5322i 0.921500i −0.887530 0.460750i \(-0.847581\pi\)
0.887530 0.460750i \(-0.152419\pi\)
\(830\) −6.54602 + 11.5964i −0.227216 + 0.402516i
\(831\) 12.5719i 0.436114i
\(832\) −13.1368 13.6705i −0.455437 0.473941i
\(833\) −1.23159 + 4.04310i −0.0426721 + 0.140085i
\(834\) 8.52248 14.6489i 0.295109 0.507250i
\(835\) −23.9796 23.3633i −0.829850 0.808521i
\(836\) −22.1387 + 12.5867i −0.765684 + 0.435319i
\(837\) 2.18529 2.18529i 0.0755347 0.0755347i
\(838\) 24.7105 6.53337i 0.853611 0.225692i
\(839\) 53.6879 1.85351 0.926756 0.375663i \(-0.122585\pi\)
0.926756 + 0.375663i \(0.122585\pi\)
\(840\) 16.2216 4.10613i 0.559698 0.141675i
\(841\) 44.3958 1.53089
\(842\) −3.42800 + 0.906352i −0.118137 + 0.0312349i
\(843\) 4.58408 4.58408i 0.157884 0.157884i
\(844\) 24.0903 + 42.3726i 0.829224 + 1.45852i
\(845\) 16.5085 0.214912i 0.567909 0.00739321i
\(846\) −0.973449 + 1.67322i −0.0334679 + 0.0575264i
\(847\) −0.692134 2.76998i −0.0237820 0.0951775i
\(848\) −15.6806 + 3.97935i −0.538475 + 0.136651i
\(849\) 2.94605i 0.101108i
\(850\) 3.74497 + 2.05017i 0.128451 + 0.0703204i
\(851\) 23.3821i 0.801528i
\(852\) 5.41860 19.6987i 0.185638 0.674866i
\(853\) 19.9799 19.9799i 0.684100 0.684100i −0.276821 0.960921i \(-0.589281\pi\)
0.960921 + 0.276821i \(0.0892810\pi\)
\(854\) 23.5586 12.9724i 0.806157 0.443906i
\(855\) −0.117671 9.03887i −0.00402425 0.309123i
\(856\) 46.4980 + 0.462838i 1.58927 + 0.0158195i
\(857\) −11.0856 + 11.0856i −0.378677 + 0.378677i −0.870625 0.491947i \(-0.836285\pi\)
0.491947 + 0.870625i \(0.336285\pi\)
\(858\) 2.69841 + 10.2059i 0.0921221 + 0.348424i
\(859\) 39.4596i 1.34634i 0.739487 + 0.673171i \(0.235068\pi\)
−0.739487 + 0.673171i \(0.764932\pi\)
\(860\) 12.3681 47.3656i 0.421750 1.61515i
\(861\) −16.2996 + 27.1585i −0.555490 + 0.925561i
\(862\) 10.5005 + 39.7149i 0.357648 + 1.35270i
\(863\) −9.22558 + 9.22558i −0.314042 + 0.314042i −0.846473 0.532431i \(-0.821279\pi\)
0.532431 + 0.846473i \(0.321279\pi\)
\(864\) −2.74677 4.94523i −0.0934470 0.168240i
\(865\) −16.2597 15.8418i −0.552847 0.538637i
\(866\) −28.4324 + 48.8711i −0.966172 + 1.66071i
\(867\) −11.7630 11.7630i −0.399494 0.399494i
\(868\) 11.8329 11.2876i 0.401634 0.383127i
\(869\) −19.0494 −0.646208
\(870\) −13.3176 + 23.5924i −0.451510 + 0.799856i
\(871\) 22.5635i 0.764535i
\(872\) −5.61861 5.73159i −0.190270 0.194096i
\(873\) −10.6973 10.6973i −0.362048 0.362048i
\(874\) 19.0075 32.6712i 0.642939 1.10512i
\(875\) 28.3962 8.28577i 0.959968 0.280110i
\(876\) −10.8379 + 6.16171i −0.366177 + 0.208185i
\(877\) 17.5598 17.5598i 0.592954 0.592954i −0.345474 0.938428i \(-0.612282\pi\)
0.938428 + 0.345474i \(0.112282\pi\)
\(878\) −11.6043 43.8897i −0.391625 1.48121i
\(879\) 24.4307i 0.824026i
\(880\) −14.0923 + 24.3942i −0.475050 + 0.822328i
\(881\) 44.0876i 1.48535i 0.669653 + 0.742674i \(0.266443\pi\)
−0.669653 + 0.742674i \(0.733557\pi\)
\(882\) 7.25553 6.73479i 0.244306 0.226772i
\(883\) −0.361877 0.361877i −0.0121781 0.0121781i 0.700992 0.713170i \(-0.252741\pi\)
−0.713170 + 0.700992i \(0.752741\pi\)
\(884\) −1.41446 2.48789i −0.0475733 0.0836768i
\(885\) −22.1130 + 22.6964i −0.743321 + 0.762930i
\(886\) 16.2900 28.0002i 0.547274 0.940684i
\(887\) −12.6903 + 12.6903i −0.426100 + 0.426100i −0.887298 0.461197i \(-0.847420\pi\)
0.461197 + 0.887298i \(0.347420\pi\)
\(888\) 7.14341 7.00260i 0.239717 0.234992i
\(889\) 15.1742 25.2833i 0.508926 0.847975i
\(890\) 44.6350 12.4252i 1.49617 0.416493i
\(891\) 3.14974i 0.105520i
\(892\) 28.7489 + 7.90807i 0.962583 + 0.264782i
\(893\) 3.91285 + 3.91285i 0.130939 + 0.130939i
\(894\) 14.2115 + 8.26802i 0.475305 + 0.276524i
\(895\) −0.0350816 2.69479i −0.00117265 0.0900769i
\(896\) −13.9136 26.5031i −0.464819 0.885406i
\(897\) −11.0792 11.0792i −0.369924 0.369924i
\(898\) −22.8417 + 6.03925i −0.762236 + 0.201532i
\(899\) 26.4764i 0.883039i
\(900\) −5.16705 8.56163i −0.172235 0.285388i
\(901\) −2.44197 −0.0813540
\(902\) −13.6311 51.5556i −0.453866 1.71661i
\(903\) −7.02074 28.0976i −0.233636 0.935029i
\(904\) −9.47476 0.0943112i −0.315126 0.00313674i
\(905\) 0.174840 + 13.4303i 0.00581188 + 0.446440i
\(906\) −3.48600 2.02809i −0.115814 0.0673788i
\(907\) −23.9572 + 23.9572i −0.795485 + 0.795485i −0.982380 0.186895i \(-0.940158\pi\)
0.186895 + 0.982380i \(0.440158\pi\)
\(908\) 30.0895 + 8.27685i 0.998555 + 0.274677i
\(909\) 9.80142i 0.325093i
\(910\) −19.1149 5.27052i −0.633654 0.174716i
\(911\) 23.9927 0.794912 0.397456 0.917621i \(-0.369893\pi\)
0.397456 + 0.917621i \(0.369893\pi\)
\(912\) −15.6738 + 3.97760i −0.519010 + 0.131712i
\(913\) −9.37878 9.37878i −0.310392 0.310392i
\(914\) 22.2814 38.2985i 0.737002 1.26680i
\(915\) −11.5118 11.2159i −0.380567 0.370786i
\(916\) 13.9864 + 24.6008i 0.462125 + 0.812833i
\(917\) 7.34704 + 29.4035i 0.242621 + 0.970988i
\(918\) −0.218264 0.825519i −0.00720379 0.0272462i
\(919\) 58.5349i 1.93089i −0.260611 0.965444i \(-0.583924\pi\)
0.260611 0.965444i \(-0.416076\pi\)
\(920\) −0.128115 41.8135i −0.00422382 1.37855i
\(921\) 4.40002 0.144986
\(922\) 11.0125 + 41.6514i 0.362676 + 1.37172i
\(923\) −17.1185 + 17.1185i −0.563463 + 0.563463i
\(924\) −0.392950 + 16.6622i −0.0129271 + 0.548147i
\(925\) 12.1743 12.8253i 0.400288 0.421694i
\(926\) 39.8931 + 23.2091i 1.31097 + 0.762698i
\(927\) −6.35740 + 6.35740i −0.208804 + 0.208804i
\(928\) 46.5972 + 13.3180i 1.52963 + 0.437184i
\(929\) −44.8190 −1.47046 −0.735232 0.677815i \(-0.762927\pi\)
−0.735232 + 0.677815i \(0.762927\pi\)
\(930\) −8.51059 4.80413i −0.279073 0.157534i
\(931\) −13.3108 24.9726i −0.436245 0.818443i
\(932\) 4.18345 15.2084i 0.137033 0.498169i
\(933\) −5.44719 5.44719i −0.178333 0.178333i
\(934\) 15.7358 27.0476i 0.514892 0.885024i
\(935\) −2.96757 + 3.04586i −0.0970500 + 0.0996102i
\(936\) −0.0667196 + 6.70284i −0.00218080 + 0.219089i
\(937\) 26.1359 26.1359i 0.853823 0.853823i −0.136779 0.990602i \(-0.543675\pi\)
0.990602 + 0.136779i \(0.0436750\pi\)
\(938\) 9.91525 34.2157i 0.323744 1.11718i
\(939\) −10.7127 −0.349597
\(940\) 5.92290 + 1.54659i 0.193184 + 0.0504442i
\(941\) −37.0773 −1.20869 −0.604343 0.796724i \(-0.706564\pi\)
−0.604343 + 0.796724i \(0.706564\pi\)
\(942\) 4.09132 + 15.4742i 0.133302 + 0.504176i
\(943\) 55.9670 + 55.9670i 1.82254 + 1.82254i
\(944\) 48.7099 + 28.9913i 1.58537 + 0.943588i
\(945\) −5.11182 2.97813i −0.166288 0.0968786i
\(946\) 42.1460 + 24.5198i 1.37028 + 0.797208i
\(947\) 28.7081 28.7081i 0.932888 0.932888i −0.0649972 0.997885i \(-0.520704\pi\)
0.997885 + 0.0649972i \(0.0207038\pi\)
\(948\) −11.6627 3.20811i −0.378787 0.104194i
\(949\) 14.7729 0.479550
\(950\) −27.4366 + 8.02386i −0.890162 + 0.260329i
\(951\) 26.9489i 0.873878i
\(952\) −1.05164 4.39425i −0.0340837 0.142418i
\(953\) −6.16298 + 6.16298i −0.199639 + 0.199639i −0.799845 0.600207i \(-0.795085\pi\)
0.600207 + 0.799845i \(0.295085\pi\)
\(954\) 4.94387 + 2.87626i 0.160064 + 0.0931223i
\(955\) 0.201424 + 15.4724i 0.00651793 + 0.500675i
\(956\) 16.4115 + 28.8662i 0.530785 + 0.933600i
\(957\) −19.0807 19.0807i −0.616793 0.616793i
\(958\) −11.6517 44.0691i −0.376449 1.42381i
\(959\) −16.0932 + 26.8145i −0.519676 + 0.865886i
\(960\) −12.7360 + 12.5617i −0.411051 + 0.405426i
\(961\) 21.4490 0.691904
\(962\) −11.4597 + 3.02990i −0.369475 + 0.0976879i
\(963\) −11.6251 11.6251i −0.374613 0.374613i
\(964\) −14.0036 24.6310i −0.451027 0.793313i
\(965\) −0.583579 0.568580i −0.0187861 0.0183032i
\(966\) −11.9321 21.6693i −0.383909 0.697199i
\(967\) −12.1324 12.1324i −0.390153 0.390153i 0.484589 0.874742i \(-0.338969\pi\)
−0.874742 + 0.484589i \(0.838969\pi\)
\(968\) 2.13669 + 2.17966i 0.0686759 + 0.0700569i
\(969\) −2.44090 −0.0784131
\(970\) −23.5169 + 41.6605i −0.755082 + 1.33764i
\(971\) 41.1699 1.32121 0.660603 0.750735i \(-0.270301\pi\)
0.660603 + 0.750735i \(0.270301\pi\)
\(972\) −0.530446 + 1.92837i −0.0170141 + 0.0618526i
\(973\) −30.7604 + 7.68611i −0.986134 + 0.246405i
\(974\) −12.3912 + 21.2987i −0.397040 + 0.682455i
\(975\) 0.308472 + 11.8456i 0.00987901 + 0.379364i
\(976\) −14.7046 + 24.7061i −0.470684 + 0.790822i
\(977\) 11.8932 + 11.8932i 0.380498 + 0.380498i 0.871281 0.490784i \(-0.163289\pi\)
−0.490784 + 0.871281i \(0.663289\pi\)
\(978\) −1.52118 5.75340i −0.0486419 0.183973i
\(979\) 46.1485i 1.47491i
\(980\) −26.6702 16.3921i −0.851947 0.523627i
\(981\) 2.83769i 0.0906005i
\(982\) −54.8952 + 14.5141i −1.75178 + 0.463163i
\(983\) 16.7725 + 16.7725i 0.534959 + 0.534959i 0.922044 0.387085i \(-0.126518\pi\)
−0.387085 + 0.922044i \(0.626518\pi\)
\(984\) 0.337037 33.8596i 0.0107443 1.07941i
\(985\) −15.8441 15.4369i −0.504834 0.491859i
\(986\) 6.32311 + 3.67868i 0.201369 + 0.117153i
\(987\) 3.51350 0.877918i 0.111836 0.0279444i
\(988\) 18.4753 + 5.08209i 0.587779 + 0.161683i
\(989\) −72.3701 −2.30124
\(990\) 9.59550 2.67113i 0.304965 0.0848940i
\(991\) −14.4146 −0.457895 −0.228948 0.973439i \(-0.573528\pi\)
−0.228948 + 0.973439i \(0.573528\pi\)
\(992\) −4.80426 + 16.8092i −0.152535 + 0.533694i
\(993\) −10.8575 10.8575i −0.344552 0.344552i
\(994\) −33.4813 + 18.4363i −1.06196 + 0.584764i
\(995\) 0.384024 + 29.4988i 0.0121744 + 0.935175i
\(996\) −4.16252 7.32147i −0.131895 0.231990i
\(997\) 23.7945 + 23.7945i 0.753580 + 0.753580i 0.975146 0.221565i \(-0.0711166\pi\)
−0.221565 + 0.975146i \(0.571117\pi\)
\(998\) 1.58585 + 5.99800i 0.0501991 + 0.189863i
\(999\) −3.53668 −0.111896
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bj.b.517.37 yes 184
5.3 odd 4 inner 840.2.bj.b.13.9 184
7.6 odd 2 inner 840.2.bj.b.517.38 yes 184
8.5 even 2 inner 840.2.bj.b.517.10 yes 184
35.13 even 4 inner 840.2.bj.b.13.10 yes 184
40.13 odd 4 inner 840.2.bj.b.13.38 yes 184
56.13 odd 2 inner 840.2.bj.b.517.9 yes 184
280.13 even 4 inner 840.2.bj.b.13.37 yes 184
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bj.b.13.9 184 5.3 odd 4 inner
840.2.bj.b.13.10 yes 184 35.13 even 4 inner
840.2.bj.b.13.37 yes 184 280.13 even 4 inner
840.2.bj.b.13.38 yes 184 40.13 odd 4 inner
840.2.bj.b.517.9 yes 184 56.13 odd 2 inner
840.2.bj.b.517.10 yes 184 8.5 even 2 inner
840.2.bj.b.517.37 yes 184 1.1 even 1 trivial
840.2.bj.b.517.38 yes 184 7.6 odd 2 inner