Properties

Label 840.2.bj.b.13.19
Level $840$
Weight $2$
Character 840.13
Analytic conductor $6.707$
Analytic rank $0$
Dimension $184$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(13,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.13"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bj (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [184] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(184\)
Relative dimension: \(92\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.19
Character \(\chi\) \(=\) 840.13
Dual form 840.2.bj.b.517.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.08726 - 0.904365i) q^{2} +(-0.707107 - 0.707107i) q^{3} +(0.364249 + 1.96655i) q^{4} +(-0.998967 - 2.00052i) q^{5} +(0.129323 + 1.40829i) q^{6} +(-2.62852 + 0.301481i) q^{7} +(1.38245 - 2.46756i) q^{8} +1.00000i q^{9} +(-0.723063 + 3.07850i) q^{10} +2.31287i q^{11} +(1.13300 - 1.64812i) q^{12} +(-3.26599 - 3.26599i) q^{13} +(3.13052 + 2.04935i) q^{14} +(-0.708202 + 2.12095i) q^{15} +(-3.73464 + 1.43263i) q^{16} +(2.54214 + 2.54214i) q^{17} +(0.904365 - 1.08726i) q^{18} +2.46154i q^{19} +(3.57024 - 2.69321i) q^{20} +(2.07182 + 1.64546i) q^{21} +(2.09168 - 2.51468i) q^{22} +(-2.20000 - 2.20000i) q^{23} +(-2.72236 + 0.767289i) q^{24} +(-3.00413 + 3.99690i) q^{25} +(0.597320 + 6.50462i) q^{26} +(0.707107 - 0.707107i) q^{27} +(-1.55031 - 5.05930i) q^{28} +5.31262 q^{29} +(2.68811 - 1.66555i) q^{30} +0.162657i q^{31} +(5.35613 + 1.81985i) q^{32} +(1.63544 - 1.63544i) q^{33} +(-0.464934 - 5.06298i) q^{34} +(3.22892 + 4.95722i) q^{35} +(-1.96655 + 0.364249i) q^{36} +(-0.503633 - 0.503633i) q^{37} +(2.22613 - 2.67632i) q^{38} +4.61881i q^{39} +(-6.31741 - 0.300598i) q^{40} +0.552208i q^{41} +(-0.764501 - 3.66272i) q^{42} +(-5.38505 + 5.38505i) q^{43} +(-4.54837 + 0.842460i) q^{44} +(2.00052 - 0.998967i) q^{45} +(0.402359 + 4.38156i) q^{46} +(9.44984 + 9.44984i) q^{47} +(3.65381 + 1.62777i) q^{48} +(6.81822 - 1.58490i) q^{49} +(6.88091 - 1.62882i) q^{50} -3.59513i q^{51} +(5.23311 - 7.61238i) q^{52} +(2.25295 - 2.25295i) q^{53} +(-1.40829 + 0.129323i) q^{54} +(4.62693 - 2.31048i) q^{55} +(-2.88987 + 6.90280i) q^{56} +(1.74057 - 1.74057i) q^{57} +(-5.77617 - 4.80454i) q^{58} +0.0510421i q^{59} +(-4.42893 - 0.620159i) q^{60} -4.19768 q^{61} +(0.147101 - 0.176850i) q^{62} +(-0.301481 - 2.62852i) q^{63} +(-4.17768 - 6.82254i) q^{64} +(-3.27105 + 9.79629i) q^{65} +(-3.25718 + 0.299108i) q^{66} +(5.01239 + 5.01239i) q^{67} +(-4.07327 + 5.92522i) q^{68} +3.11126i q^{69} +(0.972475 - 8.30989i) q^{70} +14.1513 q^{71} +(2.46756 + 1.38245i) q^{72} +(7.08619 - 7.08619i) q^{73} +(0.0921099 + 1.00305i) q^{74} +(4.95047 - 0.701995i) q^{75} +(-4.84074 + 0.896614i) q^{76} +(-0.697286 - 6.07941i) q^{77} +(4.17709 - 5.02183i) q^{78} +16.6322i q^{79} +(6.59679 + 6.04007i) q^{80} -1.00000 q^{81} +(0.499398 - 0.600392i) q^{82} +(0.691321 + 0.691321i) q^{83} +(-2.48123 + 4.67370i) q^{84} +(2.54608 - 7.62511i) q^{85} +(10.7250 - 0.984876i) q^{86} +(-3.75659 - 3.75659i) q^{87} +(5.70713 + 3.19742i) q^{88} -12.0195 q^{89} +(-3.07850 - 0.723063i) q^{90} +(9.56936 + 7.60009i) q^{91} +(3.52506 - 5.12775i) q^{92} +(0.115016 - 0.115016i) q^{93} +(-1.72829 - 18.8205i) q^{94} +(4.92435 - 2.45900i) q^{95} +(-2.50053 - 5.07418i) q^{96} +(-1.80373 - 1.80373i) q^{97} +(-8.84647 - 4.44297i) q^{98} -2.31287 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184 q + 8 q^{2} + 4 q^{7} + 8 q^{8} - 16 q^{15} + 64 q^{16} + 8 q^{18} + 16 q^{23} - 32 q^{25} - 4 q^{28} + 24 q^{30} - 32 q^{32} - 16 q^{36} - 20 q^{42} - 80 q^{46} + 80 q^{50} + 56 q^{58} - 56 q^{60}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.08726 0.904365i −0.768806 0.639482i
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0.364249 + 1.96655i 0.182125 + 0.983275i
\(5\) −0.998967 2.00052i −0.446752 0.894658i
\(6\) 0.129323 + 1.40829i 0.0527961 + 0.574931i
\(7\) −2.62852 + 0.301481i −0.993487 + 0.113949i
\(8\) 1.38245 2.46756i 0.488769 0.872413i
\(9\) 1.00000i 0.333333i
\(10\) −0.723063 + 3.07850i −0.228653 + 0.973508i
\(11\) 2.31287i 0.697356i 0.937243 + 0.348678i \(0.113369\pi\)
−0.937243 + 0.348678i \(0.886631\pi\)
\(12\) 1.13300 1.64812i 0.327068 0.475773i
\(13\) −3.26599 3.26599i −0.905823 0.905823i 0.0901086 0.995932i \(-0.471279\pi\)
−0.995932 + 0.0901086i \(0.971279\pi\)
\(14\) 3.13052 + 2.04935i 0.836667 + 0.547712i
\(15\) −0.708202 + 2.12095i −0.182857 + 0.547628i
\(16\) −3.73464 + 1.43263i −0.933661 + 0.358157i
\(17\) 2.54214 + 2.54214i 0.616559 + 0.616559i 0.944647 0.328088i \(-0.106404\pi\)
−0.328088 + 0.944647i \(0.606404\pi\)
\(18\) 0.904365 1.08726i 0.213161 0.256269i
\(19\) 2.46154i 0.564716i 0.959309 + 0.282358i \(0.0911166\pi\)
−0.959309 + 0.282358i \(0.908883\pi\)
\(20\) 3.57024 2.69321i 0.798331 0.602219i
\(21\) 2.07182 + 1.64546i 0.452109 + 0.359070i
\(22\) 2.09168 2.51468i 0.445947 0.536131i
\(23\) −2.20000 2.20000i −0.458731 0.458731i 0.439508 0.898239i \(-0.355153\pi\)
−0.898239 + 0.439508i \(0.855153\pi\)
\(24\) −2.72236 + 0.767289i −0.555700 + 0.156622i
\(25\) −3.00413 + 3.99690i −0.600826 + 0.799380i
\(26\) 0.597320 + 6.50462i 0.117144 + 1.27566i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) −1.55031 5.05930i −0.292982 0.956118i
\(29\) 5.31262 0.986528 0.493264 0.869880i \(-0.335804\pi\)
0.493264 + 0.869880i \(0.335804\pi\)
\(30\) 2.68811 1.66555i 0.490780 0.304086i
\(31\) 0.162657i 0.0292140i 0.999893 + 0.0146070i \(0.00464972\pi\)
−0.999893 + 0.0146070i \(0.995350\pi\)
\(32\) 5.35613 + 1.81985i 0.946839 + 0.321706i
\(33\) 1.63544 1.63544i 0.284694 0.284694i
\(34\) −0.464934 5.06298i −0.0797356 0.868293i
\(35\) 3.22892 + 4.95722i 0.545787 + 0.837924i
\(36\) −1.96655 + 0.364249i −0.327758 + 0.0607082i
\(37\) −0.503633 0.503633i −0.0827967 0.0827967i 0.664496 0.747292i \(-0.268646\pi\)
−0.747292 + 0.664496i \(0.768646\pi\)
\(38\) 2.22613 2.67632i 0.361126 0.434157i
\(39\) 4.61881i 0.739602i
\(40\) −6.31741 0.300598i −0.998870 0.0475288i
\(41\) 0.552208i 0.0862405i 0.999070 + 0.0431202i \(0.0137299\pi\)
−0.999070 + 0.0431202i \(0.986270\pi\)
\(42\) −0.764501 3.66272i −0.117965 0.565170i
\(43\) −5.38505 + 5.38505i −0.821212 + 0.821212i −0.986282 0.165070i \(-0.947215\pi\)
0.165070 + 0.986282i \(0.447215\pi\)
\(44\) −4.54837 + 0.842460i −0.685693 + 0.127006i
\(45\) 2.00052 0.998967i 0.298219 0.148917i
\(46\) 0.402359 + 4.38156i 0.0593246 + 0.646025i
\(47\) 9.44984 + 9.44984i 1.37840 + 1.37840i 0.847322 + 0.531079i \(0.178213\pi\)
0.531079 + 0.847322i \(0.321787\pi\)
\(48\) 3.65381 + 1.62777i 0.527383 + 0.234948i
\(49\) 6.81822 1.58490i 0.974031 0.226414i
\(50\) 6.88091 1.62882i 0.973108 0.230350i
\(51\) 3.59513i 0.503419i
\(52\) 5.23311 7.61238i 0.725701 1.05565i
\(53\) 2.25295 2.25295i 0.309467 0.309467i −0.535236 0.844703i \(-0.679777\pi\)
0.844703 + 0.535236i \(0.179777\pi\)
\(54\) −1.40829 + 0.129323i −0.191644 + 0.0175987i
\(55\) 4.62693 2.31048i 0.623895 0.311545i
\(56\) −2.88987 + 6.90280i −0.386175 + 0.922426i
\(57\) 1.74057 1.74057i 0.230544 0.230544i
\(58\) −5.77617 4.80454i −0.758449 0.630868i
\(59\) 0.0510421i 0.00664511i 0.999994 + 0.00332256i \(0.00105760\pi\)
−0.999994 + 0.00332256i \(0.998942\pi\)
\(60\) −4.42893 0.620159i −0.571772 0.0800622i
\(61\) −4.19768 −0.537458 −0.268729 0.963216i \(-0.586604\pi\)
−0.268729 + 0.963216i \(0.586604\pi\)
\(62\) 0.147101 0.176850i 0.0186819 0.0224599i
\(63\) −0.301481 2.62852i −0.0379830 0.331162i
\(64\) −4.17768 6.82254i −0.522210 0.852817i
\(65\) −3.27105 + 9.79629i −0.405724 + 1.21508i
\(66\) −3.25718 + 0.299108i −0.400932 + 0.0368176i
\(67\) 5.01239 + 5.01239i 0.612361 + 0.612361i 0.943561 0.331199i \(-0.107453\pi\)
−0.331199 + 0.943561i \(0.607453\pi\)
\(68\) −4.07327 + 5.92522i −0.493957 + 0.718538i
\(69\) 3.11126i 0.374552i
\(70\) 0.972475 8.30989i 0.116233 0.993222i
\(71\) 14.1513 1.67945 0.839723 0.543015i \(-0.182717\pi\)
0.839723 + 0.543015i \(0.182717\pi\)
\(72\) 2.46756 + 1.38245i 0.290804 + 0.162923i
\(73\) 7.08619 7.08619i 0.829376 0.829376i −0.158054 0.987430i \(-0.550522\pi\)
0.987430 + 0.158054i \(0.0505220\pi\)
\(74\) 0.0921099 + 1.00305i 0.0107076 + 0.116602i
\(75\) 4.95047 0.701995i 0.571632 0.0810594i
\(76\) −4.84074 + 0.896614i −0.555271 + 0.102849i
\(77\) −0.697286 6.07941i −0.0794631 0.692814i
\(78\) 4.17709 5.02183i 0.472962 0.568610i
\(79\) 16.6322i 1.87127i 0.352974 + 0.935633i \(0.385170\pi\)
−0.352974 + 0.935633i \(0.614830\pi\)
\(80\) 6.59679 + 6.04007i 0.737543 + 0.675300i
\(81\) −1.00000 −0.111111
\(82\) 0.499398 0.600392i 0.0551493 0.0663022i
\(83\) 0.691321 + 0.691321i 0.0758823 + 0.0758823i 0.744029 0.668147i \(-0.232912\pi\)
−0.668147 + 0.744029i \(0.732912\pi\)
\(84\) −2.48123 + 4.67370i −0.270724 + 0.509943i
\(85\) 2.54608 7.62511i 0.276161 0.827059i
\(86\) 10.7250 0.984876i 1.15650 0.106202i
\(87\) −3.75659 3.75659i −0.402749 0.402749i
\(88\) 5.70713 + 3.19742i 0.608382 + 0.340846i
\(89\) −12.0195 −1.27407 −0.637034 0.770835i \(-0.719839\pi\)
−0.637034 + 0.770835i \(0.719839\pi\)
\(90\) −3.07850 0.723063i −0.324503 0.0762176i
\(91\) 9.56936 + 7.60009i 1.00314 + 0.796706i
\(92\) 3.52506 5.12775i 0.367513 0.534605i
\(93\) 0.115016 0.115016i 0.0119266 0.0119266i
\(94\) −1.72829 18.8205i −0.178260 1.94119i
\(95\) 4.92435 2.45900i 0.505227 0.252288i
\(96\) −2.50053 5.07418i −0.255209 0.517882i
\(97\) −1.80373 1.80373i −0.183141 0.183141i 0.609582 0.792723i \(-0.291337\pi\)
−0.792723 + 0.609582i \(0.791337\pi\)
\(98\) −8.84647 4.44297i −0.893628 0.448807i
\(99\) −2.31287 −0.232452
\(100\) −8.95436 4.45190i −0.895436 0.445190i
\(101\) −7.38166 −0.734502 −0.367251 0.930122i \(-0.619701\pi\)
−0.367251 + 0.930122i \(0.619701\pi\)
\(102\) −3.25131 + 3.90882i −0.321927 + 0.387031i
\(103\) −0.579644 + 0.579644i −0.0571140 + 0.0571140i −0.735087 0.677973i \(-0.762859\pi\)
0.677973 + 0.735087i \(0.262859\pi\)
\(104\) −12.5741 + 3.54396i −1.23299 + 0.347514i
\(105\) 1.22209 5.78848i 0.119264 0.564898i
\(106\) −4.48703 + 0.412045i −0.435819 + 0.0400213i
\(107\) −8.13173 8.13173i −0.786124 0.786124i 0.194732 0.980856i \(-0.437616\pi\)
−0.980856 + 0.194732i \(0.937616\pi\)
\(108\) 1.64812 + 1.13300i 0.158591 + 0.109023i
\(109\) 17.0197 1.63020 0.815098 0.579323i \(-0.196683\pi\)
0.815098 + 0.579323i \(0.196683\pi\)
\(110\) −7.12017 1.67235i −0.678881 0.159452i
\(111\) 0.712244i 0.0676032i
\(112\) 9.38467 4.89162i 0.886768 0.462214i
\(113\) 11.0513 + 11.0513i 1.03962 + 1.03962i 0.999182 + 0.0404416i \(0.0128765\pi\)
0.0404416 + 0.999182i \(0.487124\pi\)
\(114\) −3.46656 + 0.318335i −0.324673 + 0.0298148i
\(115\) −2.20340 + 6.59885i −0.205468 + 0.615346i
\(116\) 1.93512 + 10.4475i 0.179671 + 0.970029i
\(117\) 3.26599 3.26599i 0.301941 0.301941i
\(118\) 0.0461607 0.0554958i 0.00424943 0.00510880i
\(119\) −7.44847 5.91565i −0.682800 0.542287i
\(120\) 4.25453 + 4.67964i 0.388383 + 0.427190i
\(121\) 5.65064 0.513695
\(122\) 4.56395 + 3.79623i 0.413201 + 0.343695i
\(123\) 0.390470 0.390470i 0.0352075 0.0352075i
\(124\) −0.319873 + 0.0592477i −0.0287254 + 0.00532060i
\(125\) 10.9969 + 2.01704i 0.983592 + 0.180409i
\(126\) −2.04935 + 3.13052i −0.182571 + 0.278889i
\(127\) 0.514788 0.514788i 0.0456800 0.0456800i −0.683898 0.729578i \(-0.739717\pi\)
0.729578 + 0.683898i \(0.239717\pi\)
\(128\) −1.62785 + 11.1960i −0.143883 + 0.989595i
\(129\) 7.61561 0.670517
\(130\) 12.4159 7.69285i 1.08895 0.674707i
\(131\) 1.94528 0.169960 0.0849800 0.996383i \(-0.472917\pi\)
0.0849800 + 0.996383i \(0.472917\pi\)
\(132\) 3.81189 + 2.62048i 0.331783 + 0.228083i
\(133\) −0.742107 6.47020i −0.0643489 0.561038i
\(134\) −0.916721 9.98278i −0.0791926 0.862381i
\(135\) −2.12095 0.708202i −0.182543 0.0609523i
\(136\) 9.78725 2.75850i 0.839250 0.236540i
\(137\) −4.28204 + 4.28204i −0.365839 + 0.365839i −0.865957 0.500118i \(-0.833290\pi\)
0.500118 + 0.865957i \(0.333290\pi\)
\(138\) 2.81372 3.38274i 0.239520 0.287958i
\(139\) 11.7747i 0.998718i 0.866395 + 0.499359i \(0.166431\pi\)
−0.866395 + 0.499359i \(0.833569\pi\)
\(140\) −8.57250 + 8.15550i −0.724509 + 0.689266i
\(141\) 13.3641i 1.12546i
\(142\) −15.3860 12.7979i −1.29117 1.07398i
\(143\) 7.55381 7.55381i 0.631681 0.631681i
\(144\) −1.43263 3.73464i −0.119386 0.311220i
\(145\) −5.30713 10.6280i −0.440733 0.882606i
\(146\) −14.1130 + 1.29600i −1.16800 + 0.107258i
\(147\) −5.94190 3.70052i −0.490080 0.305213i
\(148\) 0.806972 1.17387i 0.0663327 0.0964913i
\(149\) −14.1744 −1.16121 −0.580607 0.814184i \(-0.697185\pi\)
−0.580607 + 0.814184i \(0.697185\pi\)
\(150\) −6.01729 3.71379i −0.491310 0.303229i
\(151\) −10.0615 −0.818795 −0.409397 0.912356i \(-0.634261\pi\)
−0.409397 + 0.912356i \(0.634261\pi\)
\(152\) 6.07399 + 3.40295i 0.492666 + 0.276015i
\(153\) −2.54214 + 2.54214i −0.205520 + 0.205520i
\(154\) −4.73988 + 7.24048i −0.381950 + 0.583454i
\(155\) 0.325398 0.162489i 0.0261366 0.0130514i
\(156\) −9.08313 + 1.68240i −0.727232 + 0.134700i
\(157\) −16.2573 + 16.2573i −1.29747 + 1.29747i −0.367420 + 0.930055i \(0.619759\pi\)
−0.930055 + 0.367420i \(0.880241\pi\)
\(158\) 15.0416 18.0834i 1.19664 1.43864i
\(159\) −3.18616 −0.252679
\(160\) −1.70997 12.5330i −0.135185 0.990820i
\(161\) 6.44599 + 5.11947i 0.508015 + 0.403471i
\(162\) 1.08726 + 0.904365i 0.0854229 + 0.0710536i
\(163\) −15.5575 + 15.5575i −1.21856 + 1.21856i −0.250424 + 0.968136i \(0.580570\pi\)
−0.968136 + 0.250424i \(0.919430\pi\)
\(164\) −1.08595 + 0.201141i −0.0847981 + 0.0157065i
\(165\) −4.90549 1.63798i −0.381892 0.127516i
\(166\) −0.126436 1.37685i −0.00981336 0.106864i
\(167\) 10.2946 + 10.2946i 0.796620 + 0.796620i 0.982561 0.185941i \(-0.0595334\pi\)
−0.185941 + 0.982561i \(0.559533\pi\)
\(168\) 6.92446 2.83757i 0.534234 0.218924i
\(169\) 8.33342i 0.641032i
\(170\) −9.66411 + 5.98786i −0.741204 + 0.459248i
\(171\) −2.46154 −0.188239
\(172\) −12.5515 8.62847i −0.957041 0.657915i
\(173\) −7.39614 7.39614i −0.562318 0.562318i 0.367647 0.929965i \(-0.380163\pi\)
−0.929965 + 0.367647i \(0.880163\pi\)
\(174\) 0.687046 + 7.48170i 0.0520848 + 0.567186i
\(175\) 6.69142 11.4116i 0.505824 0.862637i
\(176\) −3.31348 8.63774i −0.249763 0.651094i
\(177\) 0.0360922 0.0360922i 0.00271286 0.00271286i
\(178\) 13.0683 + 10.8700i 0.979511 + 0.814744i
\(179\) 0.300643 0.0224711 0.0112356 0.999937i \(-0.496424\pi\)
0.0112356 + 0.999937i \(0.496424\pi\)
\(180\) 2.69321 + 3.57024i 0.200740 + 0.266110i
\(181\) −14.2273 −1.05751 −0.528754 0.848775i \(-0.677341\pi\)
−0.528754 + 0.848775i \(0.677341\pi\)
\(182\) −3.53109 16.9174i −0.261742 1.25400i
\(183\) 2.96821 + 2.96821i 0.219416 + 0.219416i
\(184\) −8.47000 + 2.38724i −0.624416 + 0.175990i
\(185\) −0.504413 + 1.51064i −0.0370852 + 0.111064i
\(186\) −0.229068 + 0.0210353i −0.0167961 + 0.00154239i
\(187\) −5.87963 + 5.87963i −0.429961 + 0.429961i
\(188\) −15.1415 + 22.0257i −1.10431 + 1.60639i
\(189\) −1.64546 + 2.07182i −0.119690 + 0.150703i
\(190\) −7.57785 1.77985i −0.549755 0.129124i
\(191\) −8.69992 −0.629504 −0.314752 0.949174i \(-0.601921\pi\)
−0.314752 + 0.949174i \(0.601921\pi\)
\(192\) −1.87019 + 7.77833i −0.134970 + 0.561352i
\(193\) −15.6265 15.6265i −1.12482 1.12482i −0.991007 0.133811i \(-0.957279\pi\)
−0.133811 0.991007i \(-0.542721\pi\)
\(194\) 0.329886 + 3.59235i 0.0236844 + 0.257916i
\(195\) 9.24001 4.61404i 0.661691 0.330418i
\(196\) 5.60031 + 12.8311i 0.400022 + 0.916505i
\(197\) 4.85702 + 4.85702i 0.346048 + 0.346048i 0.858635 0.512587i \(-0.171313\pi\)
−0.512587 + 0.858635i \(0.671313\pi\)
\(198\) 2.51468 + 2.09168i 0.178710 + 0.148649i
\(199\) −26.5795 −1.88417 −0.942086 0.335370i \(-0.891139\pi\)
−0.942086 + 0.335370i \(0.891139\pi\)
\(200\) 5.70953 + 12.9384i 0.403725 + 0.914880i
\(201\) 7.08859i 0.499991i
\(202\) 8.02575 + 6.67571i 0.564690 + 0.469701i
\(203\) −13.9643 + 1.60165i −0.980103 + 0.112414i
\(204\) 7.07000 1.30952i 0.494999 0.0916849i
\(205\) 1.10470 0.551638i 0.0771557 0.0385281i
\(206\) 1.15443 0.106012i 0.0804330 0.00738618i
\(207\) 2.20000 2.20000i 0.152910 0.152910i
\(208\) 16.8763 + 7.51837i 1.17016 + 0.521305i
\(209\) −5.69321 −0.393808
\(210\) −6.56362 + 5.18834i −0.452933 + 0.358029i
\(211\) 21.8210i 1.50222i 0.660179 + 0.751108i \(0.270480\pi\)
−0.660179 + 0.751108i \(0.729520\pi\)
\(212\) 5.25119 + 3.60991i 0.360653 + 0.247930i
\(213\) −10.0065 10.0065i −0.685631 0.685631i
\(214\) 1.48722 + 16.1953i 0.101664 + 1.10709i
\(215\) 16.1524 + 5.39339i 1.10158 + 0.367826i
\(216\) −0.767289 2.72236i −0.0522074 0.185233i
\(217\) −0.0490380 0.427547i −0.00332891 0.0290238i
\(218\) −18.5048 15.3921i −1.25330 1.04248i
\(219\) −10.0214 −0.677183
\(220\) 6.22903 + 8.25750i 0.419961 + 0.556721i
\(221\) 16.6052i 1.11699i
\(222\) 0.644129 0.774392i 0.0432311 0.0519738i
\(223\) −8.64542 + 8.64542i −0.578940 + 0.578940i −0.934611 0.355671i \(-0.884252\pi\)
0.355671 + 0.934611i \(0.384252\pi\)
\(224\) −14.6273 3.16873i −0.977330 0.211720i
\(225\) −3.99690 3.00413i −0.266460 0.200275i
\(226\) −2.02119 22.0101i −0.134448 1.46409i
\(227\) −8.50479 + 8.50479i −0.564483 + 0.564483i −0.930578 0.366095i \(-0.880695\pi\)
0.366095 + 0.930578i \(0.380695\pi\)
\(228\) 4.05692 + 2.78892i 0.268676 + 0.184701i
\(229\) 5.12037i 0.338364i 0.985585 + 0.169182i \(0.0541125\pi\)
−0.985585 + 0.169182i \(0.945887\pi\)
\(230\) 8.36343 5.18196i 0.551468 0.341688i
\(231\) −3.80574 + 4.79185i −0.250399 + 0.315281i
\(232\) 7.34441 13.1092i 0.482184 0.860661i
\(233\) −6.17616 6.17616i −0.404614 0.404614i 0.475241 0.879855i \(-0.342361\pi\)
−0.879855 + 0.475241i \(0.842361\pi\)
\(234\) −6.50462 + 0.597320i −0.425220 + 0.0390481i
\(235\) 9.46448 28.3446i 0.617394 1.84900i
\(236\) −0.100377 + 0.0185920i −0.00653398 + 0.00121024i
\(237\) 11.7607 11.7607i 0.763941 0.763941i
\(238\) 2.74848 + 13.1680i 0.178157 + 0.853552i
\(239\) 7.51408i 0.486046i 0.970021 + 0.243023i \(0.0781390\pi\)
−0.970021 + 0.243023i \(0.921861\pi\)
\(240\) −0.393660 8.93560i −0.0254106 0.576791i
\(241\) 24.2934i 1.56488i 0.622728 + 0.782438i \(0.286024\pi\)
−0.622728 + 0.782438i \(0.713976\pi\)
\(242\) −6.14369 5.11024i −0.394932 0.328499i
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) −1.52900 8.25495i −0.0978843 0.528469i
\(245\) −9.98179 12.0567i −0.637713 0.770274i
\(246\) −0.777669 + 0.0714135i −0.0495823 + 0.00455316i
\(247\) 8.03937 8.03937i 0.511533 0.511533i
\(248\) 0.401365 + 0.224865i 0.0254867 + 0.0142789i
\(249\) 0.977675i 0.0619577i
\(250\) −10.1323 12.1382i −0.640822 0.767689i
\(251\) 21.2390 1.34059 0.670296 0.742094i \(-0.266167\pi\)
0.670296 + 0.742094i \(0.266167\pi\)
\(252\) 5.05930 1.55031i 0.318706 0.0976606i
\(253\) 5.08830 5.08830i 0.319899 0.319899i
\(254\) −1.02526 + 0.0941500i −0.0643307 + 0.00590750i
\(255\) −7.19211 + 3.59142i −0.450388 + 0.224903i
\(256\) 11.8951 10.7007i 0.743447 0.668795i
\(257\) 12.3818 + 12.3818i 0.772356 + 0.772356i 0.978518 0.206162i \(-0.0660974\pi\)
−0.206162 + 0.978518i \(0.566097\pi\)
\(258\) −8.28011 6.88729i −0.515497 0.428784i
\(259\) 1.47564 + 1.17197i 0.0916921 + 0.0728228i
\(260\) −20.4564 2.86440i −1.26865 0.177642i
\(261\) 5.31262i 0.328843i
\(262\) −2.11502 1.75924i −0.130666 0.108686i
\(263\) −13.1541 13.1541i −0.811114 0.811114i 0.173687 0.984801i \(-0.444432\pi\)
−0.984801 + 0.173687i \(0.944432\pi\)
\(264\) −1.77464 6.29647i −0.109221 0.387521i
\(265\) −6.75770 2.25644i −0.415122 0.138612i
\(266\) −5.04456 + 7.70590i −0.309302 + 0.472479i
\(267\) 8.49910 + 8.49910i 0.520136 + 0.520136i
\(268\) −8.03137 + 11.6829i −0.490594 + 0.713646i
\(269\) 12.3724i 0.754355i −0.926141 0.377178i \(-0.876895\pi\)
0.926141 0.377178i \(-0.123105\pi\)
\(270\) 1.66555 + 2.68811i 0.101362 + 0.163593i
\(271\) 16.3605i 0.993827i −0.867800 0.496913i \(-0.834467\pi\)
0.867800 0.496913i \(-0.165533\pi\)
\(272\) −13.1359 5.85205i −0.796483 0.354832i
\(273\) −1.39248 12.1406i −0.0842770 0.734784i
\(274\) 8.52820 0.783146i 0.515207 0.0473116i
\(275\) −9.24430 6.94815i −0.557452 0.418989i
\(276\) −6.11846 + 1.13328i −0.368288 + 0.0682152i
\(277\) 11.7509 + 11.7509i 0.706043 + 0.706043i 0.965701 0.259657i \(-0.0836096\pi\)
−0.259657 + 0.965701i \(0.583610\pi\)
\(278\) 10.6486 12.8021i 0.638662 0.767820i
\(279\) −0.162657 −0.00973801
\(280\) 16.6960 1.11445i 0.997780 0.0666012i
\(281\) 22.4586 1.33977 0.669885 0.742465i \(-0.266344\pi\)
0.669885 + 0.742465i \(0.266344\pi\)
\(282\) −12.0860 + 14.5302i −0.719712 + 0.865260i
\(283\) 13.2506 + 13.2506i 0.787663 + 0.787663i 0.981111 0.193447i \(-0.0619668\pi\)
−0.193447 + 0.981111i \(0.561967\pi\)
\(284\) 5.15459 + 27.8292i 0.305869 + 1.65136i
\(285\) −5.22081 1.74327i −0.309254 0.103262i
\(286\) −15.0443 + 1.38152i −0.889589 + 0.0816912i
\(287\) −0.166480 1.45149i −0.00982703 0.0856787i
\(288\) −1.81985 + 5.35613i −0.107235 + 0.315613i
\(289\) 4.07505i 0.239709i
\(290\) −3.84136 + 16.3549i −0.225572 + 0.960393i
\(291\) 2.55086i 0.149534i
\(292\) 16.5165 + 11.3542i 0.966555 + 0.664456i
\(293\) −16.2062 16.2062i −0.946775 0.946775i 0.0518781 0.998653i \(-0.483479\pi\)
−0.998653 + 0.0518781i \(0.983479\pi\)
\(294\) 3.11375 + 9.39705i 0.181597 + 0.548047i
\(295\) 0.102111 0.0509894i 0.00594510 0.00296872i
\(296\) −1.93899 + 0.546497i −0.112701 + 0.0317645i
\(297\) 1.63544 + 1.63544i 0.0948981 + 0.0948981i
\(298\) 15.4112 + 12.8189i 0.892749 + 0.742576i
\(299\) 14.3703i 0.831058i
\(300\) 3.18372 + 9.47966i 0.183812 + 0.547308i
\(301\) 12.5312 15.7782i 0.722287 0.909440i
\(302\) 10.9394 + 9.09928i 0.629494 + 0.523605i
\(303\) 5.21962 + 5.21962i 0.299859 + 0.299859i
\(304\) −3.52647 9.19297i −0.202257 0.527253i
\(305\) 4.19334 + 8.39753i 0.240110 + 0.480841i
\(306\) 5.06298 0.464934i 0.289431 0.0265785i
\(307\) −13.8124 + 13.8124i −0.788316 + 0.788316i −0.981218 0.192902i \(-0.938210\pi\)
0.192902 + 0.981218i \(0.438210\pi\)
\(308\) 11.7015 3.58567i 0.666754 0.204313i
\(309\) 0.819740 0.0466334
\(310\) −0.500740 0.117611i −0.0284401 0.00667987i
\(311\) 22.6395i 1.28377i −0.766803 0.641883i \(-0.778154\pi\)
0.766803 0.641883i \(-0.221846\pi\)
\(312\) 11.3972 + 6.38526i 0.645238 + 0.361494i
\(313\) 2.43152 2.43152i 0.137437 0.137437i −0.635041 0.772478i \(-0.719017\pi\)
0.772478 + 0.635041i \(0.219017\pi\)
\(314\) 32.3784 2.97332i 1.82722 0.167794i
\(315\) −4.95722 + 3.22892i −0.279308 + 0.181929i
\(316\) −32.7080 + 6.05826i −1.83997 + 0.340804i
\(317\) 22.2671 + 22.2671i 1.25065 + 1.25065i 0.955431 + 0.295216i \(0.0953915\pi\)
0.295216 + 0.955431i \(0.404608\pi\)
\(318\) 3.46417 + 2.88145i 0.194261 + 0.161584i
\(319\) 12.2874i 0.687961i
\(320\) −9.47523 + 15.1730i −0.529681 + 0.848197i
\(321\) 11.5000i 0.641868i
\(322\) −2.37857 11.3957i −0.132552 0.635057i
\(323\) −6.25758 + 6.25758i −0.348181 + 0.348181i
\(324\) −0.364249 1.96655i −0.0202361 0.109253i
\(325\) 22.8653 3.24238i 1.26834 0.179855i
\(326\) 30.9847 2.84533i 1.71608 0.157588i
\(327\) −12.0348 12.0348i −0.665525 0.665525i
\(328\) 1.36261 + 0.763399i 0.0752373 + 0.0421517i
\(329\) −27.6880 21.9901i −1.52649 1.21236i
\(330\) 3.85219 + 6.21725i 0.212056 + 0.342248i
\(331\) 20.5985i 1.13220i −0.824338 0.566099i \(-0.808452\pi\)
0.824338 0.566099i \(-0.191548\pi\)
\(332\) −1.10770 + 1.61133i −0.0607932 + 0.0884333i
\(333\) 0.503633 0.503633i 0.0275989 0.0275989i
\(334\) −1.88279 20.5029i −0.103022 1.12187i
\(335\) 5.02016 15.0346i 0.274280 0.821427i
\(336\) −10.0949 3.17707i −0.550720 0.173323i
\(337\) 10.8982 10.8982i 0.593665 0.593665i −0.344954 0.938620i \(-0.612106\pi\)
0.938620 + 0.344954i \(0.112106\pi\)
\(338\) 7.53645 9.06055i 0.409929 0.492829i
\(339\) 15.6290i 0.848849i
\(340\) 15.9226 + 2.22955i 0.863522 + 0.120914i
\(341\) −0.376204 −0.0203726
\(342\) 2.67632 + 2.22613i 0.144719 + 0.120375i
\(343\) −17.4440 + 6.22149i −0.941887 + 0.335929i
\(344\) 5.84337 + 20.7325i 0.315053 + 1.11782i
\(345\) 6.22413 3.10805i 0.335096 0.167332i
\(346\) 1.35269 + 14.7303i 0.0727209 + 0.791906i
\(347\) 13.2150 + 13.2150i 0.709421 + 0.709421i 0.966413 0.256992i \(-0.0827315\pi\)
−0.256992 + 0.966413i \(0.582732\pi\)
\(348\) 6.01919 8.75586i 0.322662 0.469363i
\(349\) 10.1105i 0.541204i 0.962691 + 0.270602i \(0.0872227\pi\)
−0.962691 + 0.270602i \(0.912777\pi\)
\(350\) −17.5955 + 6.35586i −0.940521 + 0.339735i
\(351\) −4.61881 −0.246534
\(352\) −4.20906 + 12.3880i −0.224344 + 0.660284i
\(353\) 0.0721014 0.0721014i 0.00383757 0.00383757i −0.705185 0.709023i \(-0.749136\pi\)
0.709023 + 0.705185i \(0.249136\pi\)
\(354\) −0.0718820 + 0.00660094i −0.00382048 + 0.000350836i
\(355\) −14.1367 28.3098i −0.750296 1.50253i
\(356\) −4.37811 23.6370i −0.232039 1.25276i
\(357\) 1.08386 + 9.44986i 0.0573641 + 0.500140i
\(358\) −0.326876 0.271891i −0.0172759 0.0143699i
\(359\) 27.6009i 1.45672i −0.685195 0.728359i \(-0.740283\pi\)
0.685195 0.728359i \(-0.259717\pi\)
\(360\) 0.300598 6.31741i 0.0158429 0.332957i
\(361\) 12.9408 0.681096
\(362\) 15.4687 + 12.8667i 0.813019 + 0.676258i
\(363\) −3.99561 3.99561i −0.209715 0.209715i
\(364\) −11.4603 + 21.5870i −0.600684 + 1.13146i
\(365\) −21.2549 7.09717i −1.11253 0.371483i
\(366\) −0.542858 5.91154i −0.0283757 0.309001i
\(367\) −7.73673 7.73673i −0.403854 0.403854i 0.475735 0.879589i \(-0.342182\pi\)
−0.879589 + 0.475735i \(0.842182\pi\)
\(368\) 11.3680 + 5.06443i 0.592597 + 0.264001i
\(369\) −0.552208 −0.0287468
\(370\) 1.91459 1.18628i 0.0995350 0.0616716i
\(371\) −5.24271 + 6.60116i −0.272188 + 0.342715i
\(372\) 0.268079 + 0.184290i 0.0138992 + 0.00955499i
\(373\) −10.9013 + 10.9013i −0.564446 + 0.564446i −0.930567 0.366121i \(-0.880686\pi\)
0.366121 + 0.930567i \(0.380686\pi\)
\(374\) 11.7100 1.07533i 0.605509 0.0556041i
\(375\) −6.34972 9.20223i −0.327898 0.475201i
\(376\) 36.3819 10.2541i 1.87626 0.528816i
\(377\) −17.3510 17.3510i −0.893621 0.893621i
\(378\) 3.66272 0.764501i 0.188390 0.0393217i
\(379\) 22.6624 1.16409 0.582043 0.813158i \(-0.302253\pi\)
0.582043 + 0.813158i \(0.302253\pi\)
\(380\) 6.62943 + 8.78829i 0.340083 + 0.450830i
\(381\) −0.728020 −0.0372976
\(382\) 9.45904 + 7.86790i 0.483966 + 0.402557i
\(383\) −1.18684 + 1.18684i −0.0606449 + 0.0606449i −0.736779 0.676134i \(-0.763654\pi\)
0.676134 + 0.736779i \(0.263654\pi\)
\(384\) 9.06782 6.76569i 0.462740 0.345260i
\(385\) −11.4654 + 7.46807i −0.584331 + 0.380608i
\(386\) 2.85794 + 31.1220i 0.145465 + 1.58407i
\(387\) −5.38505 5.38505i −0.273737 0.273737i
\(388\) 2.89012 4.20414i 0.146724 0.213433i
\(389\) 25.1866 1.27701 0.638506 0.769617i \(-0.279553\pi\)
0.638506 + 0.769617i \(0.279553\pi\)
\(390\) −14.2190 3.33969i −0.720008 0.169112i
\(391\) 11.1854i 0.565670i
\(392\) 5.51500 19.0154i 0.278550 0.960422i
\(393\) −1.37552 1.37552i −0.0693859 0.0693859i
\(394\) −0.888304 9.67333i −0.0447521 0.487336i
\(395\) 33.2729 16.6150i 1.67414 0.835991i
\(396\) −0.842460 4.54837i −0.0423352 0.228564i
\(397\) −3.05179 + 3.05179i −0.153165 + 0.153165i −0.779530 0.626365i \(-0.784542\pi\)
0.626365 + 0.779530i \(0.284542\pi\)
\(398\) 28.8987 + 24.0376i 1.44856 + 1.20490i
\(399\) −4.05037 + 5.09987i −0.202772 + 0.255313i
\(400\) 5.49328 19.2308i 0.274664 0.961540i
\(401\) 0.131175 0.00655057 0.00327529 0.999995i \(-0.498957\pi\)
0.00327529 + 0.999995i \(0.498957\pi\)
\(402\) −6.41067 + 7.70711i −0.319735 + 0.384396i
\(403\) 0.531236 0.531236i 0.0264628 0.0264628i
\(404\) −2.68876 14.5164i −0.133771 0.722218i
\(405\) 0.998967 + 2.00052i 0.0496391 + 0.0994064i
\(406\) 16.6313 + 10.8874i 0.825395 + 0.540334i
\(407\) 1.16484 1.16484i 0.0577388 0.0577388i
\(408\) −8.87119 4.97007i −0.439189 0.246055i
\(409\) 24.7028 1.22148 0.610738 0.791833i \(-0.290873\pi\)
0.610738 + 0.791833i \(0.290873\pi\)
\(410\) −1.69998 0.399282i −0.0839558 0.0197191i
\(411\) 6.05572 0.298707
\(412\) −1.35103 0.928764i −0.0665607 0.0457569i
\(413\) −0.0153882 0.134165i −0.000757205 0.00660183i
\(414\) −4.38156 + 0.402359i −0.215342 + 0.0197749i
\(415\) 0.692392 2.07361i 0.0339882 0.101789i
\(416\) −11.5495 23.4367i −0.566260 1.14908i
\(417\) 8.32598 8.32598i 0.407725 0.407725i
\(418\) 6.18998 + 5.14874i 0.302762 + 0.251833i
\(419\) 27.2210i 1.32983i −0.746917 0.664917i \(-0.768467\pi\)
0.746917 0.664917i \(-0.231533\pi\)
\(420\) 11.8285 + 0.294861i 0.577171 + 0.0143878i
\(421\) 14.2584i 0.694911i 0.937697 + 0.347455i \(0.112954\pi\)
−0.937697 + 0.347455i \(0.887046\pi\)
\(422\) 19.7341 23.7250i 0.960641 1.15491i
\(423\) −9.44984 + 9.44984i −0.459467 + 0.459467i
\(424\) −2.44470 8.67389i −0.118725 0.421241i
\(425\) −17.7976 + 2.52376i −0.863310 + 0.122420i
\(426\) 1.83009 + 19.9291i 0.0886681 + 0.965566i
\(427\) 11.0337 1.26552i 0.533957 0.0612429i
\(428\) 13.0295 18.9534i 0.629804 0.916149i
\(429\) −10.6827 −0.515766
\(430\) −12.6842 20.4716i −0.611684 0.987229i
\(431\) −30.6115 −1.47450 −0.737252 0.675618i \(-0.763877\pi\)
−0.737252 + 0.675618i \(0.763877\pi\)
\(432\) −1.62777 + 3.65381i −0.0783162 + 0.175794i
\(433\) −0.411449 + 0.411449i −0.0197730 + 0.0197730i −0.716924 0.697151i \(-0.754451\pi\)
0.697151 + 0.716924i \(0.254451\pi\)
\(434\) −0.333341 + 0.509201i −0.0160009 + 0.0244424i
\(435\) −3.76241 + 11.2678i −0.180394 + 0.540251i
\(436\) 6.19943 + 33.4702i 0.296899 + 1.60293i
\(437\) 5.41538 5.41538i 0.259053 0.259053i
\(438\) 10.8958 + 9.06299i 0.520622 + 0.433047i
\(439\) −19.5289 −0.932063 −0.466031 0.884768i \(-0.654317\pi\)
−0.466031 + 0.884768i \(0.654317\pi\)
\(440\) 0.695244 14.6113i 0.0331445 0.696568i
\(441\) 1.58490 + 6.81822i 0.0754713 + 0.324677i
\(442\) −15.0172 + 18.0541i −0.714294 + 0.858747i
\(443\) 6.17122 6.17122i 0.293204 0.293204i −0.545141 0.838344i \(-0.683524\pi\)
0.838344 + 0.545141i \(0.183524\pi\)
\(444\) −1.40066 + 0.259434i −0.0664726 + 0.0123122i
\(445\) 12.0071 + 24.0453i 0.569192 + 1.13986i
\(446\) 17.2184 1.58117i 0.815315 0.0748705i
\(447\) 10.0228 + 10.0228i 0.474064 + 0.474064i
\(448\) 13.0380 + 16.6737i 0.615986 + 0.787757i
\(449\) 12.9112i 0.609317i 0.952462 + 0.304659i \(0.0985424\pi\)
−0.952462 + 0.304659i \(0.901458\pi\)
\(450\) 1.62882 + 6.88091i 0.0767835 + 0.324369i
\(451\) −1.27718 −0.0601403
\(452\) −17.7076 + 25.7585i −0.832895 + 1.21158i
\(453\) 7.11457 + 7.11457i 0.334271 + 0.334271i
\(454\) 16.9383 1.55545i 0.794955 0.0730009i
\(455\) 5.64462 26.7359i 0.264624 1.25340i
\(456\) −1.88871 6.70121i −0.0884470 0.313813i
\(457\) −3.16432 + 3.16432i −0.148021 + 0.148021i −0.777233 0.629213i \(-0.783377\pi\)
0.629213 + 0.777233i \(0.283377\pi\)
\(458\) 4.63068 5.56715i 0.216378 0.260136i
\(459\) 3.59513 0.167806
\(460\) −13.7796 1.92948i −0.642476 0.0899624i
\(461\) 35.7469 1.66490 0.832449 0.554102i \(-0.186938\pi\)
0.832449 + 0.554102i \(0.186938\pi\)
\(462\) 8.47139 1.76819i 0.394125 0.0822636i
\(463\) 28.0663 + 28.0663i 1.30435 + 1.30435i 0.925428 + 0.378925i \(0.123706\pi\)
0.378925 + 0.925428i \(0.376294\pi\)
\(464\) −19.8407 + 7.61101i −0.921083 + 0.353332i
\(465\) −0.344988 0.115194i −0.0159984 0.00534199i
\(466\) 1.12956 + 12.3006i 0.0523261 + 0.569813i
\(467\) −2.71591 + 2.71591i −0.125677 + 0.125677i −0.767148 0.641471i \(-0.778325\pi\)
0.641471 + 0.767148i \(0.278325\pi\)
\(468\) 7.61238 + 5.23311i 0.351882 + 0.241900i
\(469\) −14.6863 11.6640i −0.678151 0.538595i
\(470\) −35.9242 + 22.2585i −1.65706 + 1.02671i
\(471\) 22.9913 1.05938
\(472\) 0.125949 + 0.0705630i 0.00579729 + 0.00324792i
\(473\) −12.4549 12.4549i −0.572677 0.572677i
\(474\) −23.4229 + 2.15093i −1.07585 + 0.0987955i
\(475\) −9.83852 7.39478i −0.451422 0.339296i
\(476\) 8.92034 16.8026i 0.408863 0.770144i
\(477\) 2.25295 + 2.25295i 0.103156 + 0.103156i
\(478\) 6.79547 8.16973i 0.310818 0.373675i
\(479\) 1.09107 0.0498525 0.0249262 0.999689i \(-0.492065\pi\)
0.0249262 + 0.999689i \(0.492065\pi\)
\(480\) −7.65304 + 10.0713i −0.349312 + 0.459690i
\(481\) 3.28972i 0.149998i
\(482\) 21.9701 26.4132i 1.00071 1.20309i
\(483\) −0.937987 8.17802i −0.0426799 0.372113i
\(484\) 2.05824 + 11.1123i 0.0935565 + 0.505104i
\(485\) −1.80653 + 5.41026i −0.0820301 + 0.245667i
\(486\) −0.129323 1.40829i −0.00586623 0.0638812i
\(487\) 12.7356 12.7356i 0.577106 0.577106i −0.356999 0.934105i \(-0.616200\pi\)
0.934105 + 0.356999i \(0.116200\pi\)
\(488\) −5.80307 + 10.3580i −0.262693 + 0.468885i
\(489\) 22.0017 0.994950
\(490\) −0.0508929 + 22.1359i −0.00229911 + 0.999997i
\(491\) 9.01506i 0.406844i 0.979091 + 0.203422i \(0.0652063\pi\)
−0.979091 + 0.203422i \(0.934794\pi\)
\(492\) 0.910108 + 0.625651i 0.0410308 + 0.0282065i
\(493\) 13.5054 + 13.5054i 0.608253 + 0.608253i
\(494\) −16.0114 + 1.47033i −0.720385 + 0.0661532i
\(495\) 2.31048 + 4.62693i 0.103848 + 0.207965i
\(496\) −0.233027 0.607466i −0.0104632 0.0272760i
\(497\) −37.1969 + 4.26634i −1.66851 + 0.191371i
\(498\) −0.884175 + 1.06298i −0.0396208 + 0.0476334i
\(499\) 34.2778 1.53448 0.767242 0.641358i \(-0.221629\pi\)
0.767242 + 0.641358i \(0.221629\pi\)
\(500\) 0.0390054 + 22.3606i 0.00174437 + 0.999998i
\(501\) 14.5588i 0.650437i
\(502\) −23.0922 19.2078i −1.03065 0.857285i
\(503\) −15.8199 + 15.8199i −0.705374 + 0.705374i −0.965559 0.260185i \(-0.916216\pi\)
0.260185 + 0.965559i \(0.416216\pi\)
\(504\) −6.90280 2.88987i −0.307475 0.128725i
\(505\) 7.37403 + 14.7671i 0.328140 + 0.657128i
\(506\) −10.1340 + 0.930604i −0.450509 + 0.0413704i
\(507\) 5.89261 5.89261i 0.261700 0.261700i
\(508\) 1.19987 + 0.824846i 0.0532355 + 0.0365966i
\(509\) 35.5921i 1.57759i 0.614654 + 0.788797i \(0.289296\pi\)
−0.614654 + 0.788797i \(0.710704\pi\)
\(510\) 11.0676 + 2.59951i 0.490082 + 0.115108i
\(511\) −16.4898 + 20.7625i −0.729468 + 0.918481i
\(512\) −22.6104 + 0.876872i −0.999249 + 0.0387526i
\(513\) 1.74057 + 1.74057i 0.0768481 + 0.0768481i
\(514\) −2.26452 24.6599i −0.0998837 1.08770i
\(515\) 1.73863 + 0.580541i 0.0766133 + 0.0255817i
\(516\) 2.77398 + 14.9765i 0.122118 + 0.659303i
\(517\) −21.8562 + 21.8562i −0.961236 + 0.961236i
\(518\) −0.544512 2.60875i −0.0239245 0.114622i
\(519\) 10.4597i 0.459131i
\(520\) 19.6509 + 21.6144i 0.861747 + 0.947852i
\(521\) 35.8489i 1.57057i 0.619134 + 0.785285i \(0.287484\pi\)
−0.619134 + 0.785285i \(0.712516\pi\)
\(522\) 4.80454 5.77617i 0.210289 0.252816i
\(523\) −12.5603 12.5603i −0.549225 0.549225i 0.376992 0.926217i \(-0.376958\pi\)
−0.926217 + 0.376992i \(0.876958\pi\)
\(524\) 0.708567 + 3.82549i 0.0309539 + 0.167118i
\(525\) −12.8008 + 3.33768i −0.558672 + 0.145668i
\(526\) 2.40576 + 26.1979i 0.104896 + 1.14228i
\(527\) −0.413497 + 0.413497i −0.0180122 + 0.0180122i
\(528\) −3.76482 + 8.45079i −0.163843 + 0.367773i
\(529\) 13.3200i 0.579132i
\(530\) 5.30670 + 8.56476i 0.230508 + 0.372029i
\(531\) −0.0510421 −0.00221504
\(532\) 12.4537 3.81616i 0.539935 0.165451i
\(533\) 1.80351 1.80351i 0.0781186 0.0781186i
\(534\) −1.55441 16.9270i −0.0672658 0.732502i
\(535\) −8.14433 + 24.3910i −0.352110 + 1.05451i
\(536\) 19.2977 5.43900i 0.833535 0.234929i
\(537\) −0.212587 0.212587i −0.00917380 0.00917380i
\(538\) −11.1891 + 13.4519i −0.482397 + 0.579953i
\(539\) 3.66566 + 15.7696i 0.157891 + 0.679246i
\(540\) 0.620159 4.42893i 0.0266874 0.190591i
\(541\) 32.5384i 1.39893i 0.714665 + 0.699467i \(0.246579\pi\)
−0.714665 + 0.699467i \(0.753421\pi\)
\(542\) −14.7958 + 17.7880i −0.635535 + 0.764060i
\(543\) 10.0602 + 10.0602i 0.431726 + 0.431726i
\(544\) 8.98973 + 18.2423i 0.385432 + 0.782134i
\(545\) −17.0022 34.0483i −0.728293 1.45847i
\(546\) −9.46557 + 14.4593i −0.405089 + 0.618800i
\(547\) −0.172929 0.172929i −0.00739389 0.00739389i 0.703400 0.710794i \(-0.251664\pi\)
−0.710794 + 0.703400i \(0.751664\pi\)
\(548\) −9.98058 6.86112i −0.426349 0.293093i
\(549\) 4.19768i 0.179153i
\(550\) 3.76725 + 15.9146i 0.160636 + 0.678602i
\(551\) 13.0772i 0.557108i
\(552\) 7.67722 + 4.30116i 0.326764 + 0.183069i
\(553\) −5.01429 43.7180i −0.213229 1.85908i
\(554\) −2.14913 23.4033i −0.0913079 0.994313i
\(555\) 1.42486 0.711509i 0.0604818 0.0302019i
\(556\) −23.1556 + 4.28893i −0.982015 + 0.181891i
\(557\) −14.5689 14.5689i −0.617302 0.617302i 0.327536 0.944839i \(-0.393782\pi\)
−0.944839 + 0.327536i \(0.893782\pi\)
\(558\) 0.176850 + 0.147101i 0.00748664 + 0.00622729i
\(559\) 35.1751 1.48775
\(560\) −19.1607 13.8876i −0.809689 0.586859i
\(561\) 8.31506 0.351062
\(562\) −24.4183 20.3108i −1.03002 0.856759i
\(563\) −18.2210 18.2210i −0.767924 0.767924i 0.209817 0.977741i \(-0.432713\pi\)
−0.977741 + 0.209817i \(0.932713\pi\)
\(564\) 26.2812 4.86786i 1.10664 0.204974i
\(565\) 11.0685 33.1483i 0.465654 1.39456i
\(566\) −2.42341 26.3901i −0.101863 1.10926i
\(567\) 2.62852 0.301481i 0.110387 0.0126610i
\(568\) 19.5634 34.9191i 0.820861 1.46517i
\(569\) 1.67927i 0.0703986i −0.999380 0.0351993i \(-0.988793\pi\)
0.999380 0.0351993i \(-0.0112066\pi\)
\(570\) 4.09981 + 6.61689i 0.171722 + 0.277151i
\(571\) 27.8353i 1.16487i −0.812877 0.582435i \(-0.802100\pi\)
0.812877 0.582435i \(-0.197900\pi\)
\(572\) 17.6064 + 12.1035i 0.736161 + 0.506072i
\(573\) 6.15177 + 6.15177i 0.256994 + 0.256994i
\(574\) −1.13167 + 1.72870i −0.0472350 + 0.0721545i
\(575\) 15.4022 2.18409i 0.642318 0.0910830i
\(576\) 6.82254 4.17768i 0.284272 0.174070i
\(577\) −26.4367 26.4367i −1.10057 1.10057i −0.994341 0.106233i \(-0.966121\pi\)
−0.106233 0.994341i \(-0.533879\pi\)
\(578\) −3.68533 + 4.43062i −0.153290 + 0.184290i
\(579\) 22.0992i 0.918410i
\(580\) 18.9673 14.3080i 0.787576 0.594106i
\(581\) −2.02557 1.60873i −0.0840348 0.0667413i
\(582\) 2.30691 2.77344i 0.0956245 0.114963i
\(583\) 5.21079 + 5.21079i 0.215809 + 0.215809i
\(584\) −7.68930 27.2819i −0.318186 1.12893i
\(585\) −9.79629 3.27105i −0.405027 0.135241i
\(586\) 2.96396 + 32.2766i 0.122440 + 1.33333i
\(587\) −15.3996 + 15.3996i −0.635608 + 0.635608i −0.949469 0.313861i \(-0.898377\pi\)
0.313861 + 0.949469i \(0.398377\pi\)
\(588\) 5.11292 13.0330i 0.210853 0.537470i
\(589\) −0.400386 −0.0164976
\(590\) −0.157133 0.0369067i −0.00646907 0.00151942i
\(591\) 6.86886i 0.282547i
\(592\) 2.60241 + 1.15937i 0.106958 + 0.0476498i
\(593\) 12.9349 12.9349i 0.531172 0.531172i −0.389749 0.920921i \(-0.627438\pi\)
0.920921 + 0.389749i \(0.127438\pi\)
\(594\) −0.299108 3.25718i −0.0122725 0.133644i
\(595\) −4.39359 + 20.8103i −0.180119 + 0.853140i
\(596\) −5.16303 27.8747i −0.211486 1.14179i
\(597\) 18.7946 + 18.7946i 0.769210 + 0.769210i
\(598\) 12.9960 15.6242i 0.531447 0.638922i
\(599\) 30.7540i 1.25658i −0.777981 0.628288i \(-0.783756\pi\)
0.777981 0.628288i \(-0.216244\pi\)
\(600\) 5.11156 13.1861i 0.208678 0.538318i
\(601\) 13.2033i 0.538574i 0.963060 + 0.269287i \(0.0867881\pi\)
−0.963060 + 0.269287i \(0.913212\pi\)
\(602\) −27.8939 + 5.82214i −1.13687 + 0.237293i
\(603\) −5.01239 + 5.01239i −0.204120 + 0.204120i
\(604\) −3.66490 19.7865i −0.149123 0.805101i
\(605\) −5.64481 11.3042i −0.229494 0.459581i
\(606\) −0.954621 10.3955i −0.0387788 0.422288i
\(607\) 18.1850 + 18.1850i 0.738105 + 0.738105i 0.972211 0.234106i \(-0.0752164\pi\)
−0.234106 + 0.972211i \(0.575216\pi\)
\(608\) −4.47962 + 13.1843i −0.181673 + 0.534695i
\(609\) 11.0068 + 8.74172i 0.446018 + 0.354232i
\(610\) 3.03519 12.9226i 0.122891 0.523220i
\(611\) 61.7262i 2.49718i
\(612\) −5.92522 4.07327i −0.239513 0.164652i
\(613\) −12.7804 + 12.7804i −0.516195 + 0.516195i −0.916418 0.400223i \(-0.868933\pi\)
0.400223 + 0.916418i \(0.368933\pi\)
\(614\) 27.5091 2.52616i 1.11018 0.101948i
\(615\) −1.17121 0.391075i −0.0472277 0.0157697i
\(616\) −15.9653 6.68388i −0.643259 0.269301i
\(617\) −32.5397 + 32.5397i −1.31000 + 1.31000i −0.388588 + 0.921412i \(0.627037\pi\)
−0.921412 + 0.388588i \(0.872963\pi\)
\(618\) −0.891267 0.741344i −0.0358520 0.0298212i
\(619\) 4.66489i 0.187498i −0.995596 0.0937488i \(-0.970115\pi\)
0.995596 0.0937488i \(-0.0298851\pi\)
\(620\) 0.438069 + 0.580725i 0.0175933 + 0.0233225i
\(621\) −3.11126 −0.124851
\(622\) −20.4743 + 24.6149i −0.820946 + 0.986967i
\(623\) 31.5936 3.62366i 1.26577 0.145179i
\(624\) −6.61704 17.2496i −0.264894 0.690537i
\(625\) −6.95042 24.0144i −0.278017 0.960576i
\(626\) −4.84265 + 0.444702i −0.193551 + 0.0177739i
\(627\) 4.02571 + 4.02571i 0.160771 + 0.160771i
\(628\) −37.8926 26.0491i −1.51208 1.03947i
\(629\) 2.56061i 0.102098i
\(630\) 8.30989 + 0.972475i 0.331074 + 0.0387443i
\(631\) −12.9180 −0.514258 −0.257129 0.966377i \(-0.582777\pi\)
−0.257129 + 0.966377i \(0.582777\pi\)
\(632\) 41.0409 + 22.9931i 1.63252 + 0.914617i
\(633\) 15.4297 15.4297i 0.613277 0.613277i
\(634\) −4.07246 44.3477i −0.161738 1.76127i
\(635\) −1.54410 0.515585i −0.0612757 0.0204604i
\(636\) −1.16056 6.26574i −0.0460190 0.248453i
\(637\) −27.4445 17.0920i −1.08739 0.677209i
\(638\) 11.1123 13.3595i 0.439939 0.528909i
\(639\) 14.1513i 0.559815i
\(640\) 24.0239 7.92788i 0.949629 0.313377i
\(641\) −25.0301 −0.988631 −0.494316 0.869282i \(-0.664581\pi\)
−0.494316 + 0.869282i \(0.664581\pi\)
\(642\) 10.4002 12.5034i 0.410463 0.493472i
\(643\) −5.60693 5.60693i −0.221116 0.221116i 0.587852 0.808968i \(-0.299974\pi\)
−0.808968 + 0.587852i \(0.799974\pi\)
\(644\) −7.71976 + 14.5411i −0.304201 + 0.573001i
\(645\) −7.60774 15.2351i −0.299555 0.599883i
\(646\) 12.4627 1.14445i 0.490339 0.0450279i
\(647\) 13.6806 + 13.6806i 0.537840 + 0.537840i 0.922894 0.385054i \(-0.125817\pi\)
−0.385054 + 0.922894i \(0.625817\pi\)
\(648\) −1.38245 + 2.46756i −0.0543076 + 0.0969348i
\(649\) −0.118054 −0.00463401
\(650\) −27.7927 17.1533i −1.09012 0.672807i
\(651\) −0.267646 + 0.336996i −0.0104899 + 0.0132079i
\(652\) −36.2615 24.9279i −1.42011 0.976251i
\(653\) −27.3390 + 27.3390i −1.06986 + 1.06986i −0.0724880 + 0.997369i \(0.523094\pi\)
−0.997369 + 0.0724880i \(0.976906\pi\)
\(654\) 2.20105 + 23.9687i 0.0860679 + 0.937251i
\(655\) −1.94327 3.89157i −0.0759299 0.152056i
\(656\) −0.791110 2.06230i −0.0308877 0.0805194i
\(657\) 7.08619 + 7.08619i 0.276459 + 0.276459i
\(658\) 10.2169 + 48.9490i 0.398295 + 1.90823i
\(659\) 10.1015 0.393499 0.196749 0.980454i \(-0.436961\pi\)
0.196749 + 0.980454i \(0.436961\pi\)
\(660\) 1.43435 10.2435i 0.0558318 0.398729i
\(661\) 24.0594 0.935801 0.467901 0.883781i \(-0.345010\pi\)
0.467901 + 0.883781i \(0.345010\pi\)
\(662\) −18.6286 + 22.3959i −0.724020 + 0.870440i
\(663\) −11.7417 + 11.7417i −0.456008 + 0.456008i
\(664\) 2.66159 0.750160i 0.103290 0.0291118i
\(665\) −12.2024 + 7.94812i −0.473189 + 0.308215i
\(666\) −1.00305 + 0.0921099i −0.0388672 + 0.00356919i
\(667\) −11.6877 11.6877i −0.452551 0.452551i
\(668\) −16.4950 + 23.9946i −0.638213 + 0.928381i
\(669\) 12.2265 0.472703
\(670\) −19.0549 + 11.8064i −0.736157 + 0.456121i
\(671\) 9.70868i 0.374799i
\(672\) 8.10246 + 12.5837i 0.312559 + 0.485428i
\(673\) 12.9529 + 12.9529i 0.499298 + 0.499298i 0.911219 0.411922i \(-0.135142\pi\)
−0.411922 + 0.911219i \(0.635142\pi\)
\(674\) −21.7052 + 1.99319i −0.836052 + 0.0767748i
\(675\) 0.701995 + 4.95047i 0.0270198 + 0.190544i
\(676\) −16.3881 + 3.03544i −0.630311 + 0.116748i
\(677\) 0.136604 0.136604i 0.00525011 0.00525011i −0.704477 0.709727i \(-0.748818\pi\)
0.709727 + 0.704477i \(0.248818\pi\)
\(678\) −14.1343 + 16.9927i −0.542824 + 0.652600i
\(679\) 5.28493 + 4.19735i 0.202817 + 0.161080i
\(680\) −15.2956 16.8239i −0.586558 0.645167i
\(681\) 12.0276 0.460898
\(682\) 0.409030 + 0.340225i 0.0156626 + 0.0130279i
\(683\) 28.1468 28.1468i 1.07701 1.07701i 0.0802303 0.996776i \(-0.474434\pi\)
0.996776 0.0802303i \(-0.0255656\pi\)
\(684\) −0.896614 4.84074i −0.0342829 0.185090i
\(685\) 12.8439 + 4.28867i 0.490740 + 0.163862i
\(686\) 24.5926 + 9.01138i 0.938949 + 0.344056i
\(687\) 3.62065 3.62065i 0.138136 0.138136i
\(688\) 12.3965 27.8260i 0.472611 1.06086i
\(689\) −14.7163 −0.560645
\(690\) −9.57804 2.24964i −0.364630 0.0856424i
\(691\) 4.83484 0.183926 0.0919630 0.995762i \(-0.470686\pi\)
0.0919630 + 0.995762i \(0.470686\pi\)
\(692\) 11.8508 17.2389i 0.450502 0.655326i
\(693\) 6.07941 0.697286i 0.230938 0.0264877i
\(694\) −2.41691 26.3194i −0.0917447 0.999069i
\(695\) 23.5555 11.7625i 0.893511 0.446179i
\(696\) −14.4629 + 4.07631i −0.548214 + 0.154512i
\(697\) −1.40379 + 1.40379i −0.0531724 + 0.0531724i
\(698\) 9.14360 10.9927i 0.346090 0.416080i
\(699\) 8.73442i 0.330366i
\(700\) 24.8789 + 9.00234i 0.940333 + 0.340257i
\(701\) 34.1137i 1.28846i −0.764833 0.644229i \(-0.777178\pi\)
0.764833 0.644229i \(-0.222822\pi\)
\(702\) 5.02183 + 4.17709i 0.189537 + 0.157654i
\(703\) 1.23971 1.23971i 0.0467566 0.0467566i
\(704\) 15.7796 9.66242i 0.594717 0.364166i
\(705\) −26.7351 + 13.3503i −1.00690 + 0.502801i
\(706\) −0.143599 + 0.0131867i −0.00540440 + 0.000496287i
\(707\) 19.4028 2.22543i 0.729718 0.0836959i
\(708\) 0.0841237 + 0.0578306i 0.00316156 + 0.00217341i
\(709\) −1.70158 −0.0639041 −0.0319521 0.999489i \(-0.510172\pi\)
−0.0319521 + 0.999489i \(0.510172\pi\)
\(710\) −10.2323 + 43.5647i −0.384010 + 1.63495i
\(711\) −16.6322 −0.623755
\(712\) −16.6164 + 29.6589i −0.622725 + 1.11151i
\(713\) 0.357845 0.357845i 0.0134014 0.0134014i
\(714\) 7.36768 11.2546i 0.275729 0.421194i
\(715\) −22.6575 7.56551i −0.847343 0.282934i
\(716\) 0.109509 + 0.591230i 0.00409254 + 0.0220953i
\(717\) 5.31326 5.31326i 0.198427 0.198427i
\(718\) −24.9613 + 30.0092i −0.931546 + 1.11993i
\(719\) 19.1925 0.715758 0.357879 0.933768i \(-0.383500\pi\)
0.357879 + 0.933768i \(0.383500\pi\)
\(720\) −6.04007 + 6.59679i −0.225100 + 0.245848i
\(721\) 1.34885 1.69836i 0.0502339 0.0632501i
\(722\) −14.0700 11.7032i −0.523631 0.435549i
\(723\) 17.1780 17.1780i 0.638858 0.638858i
\(724\) −5.18229 27.9788i −0.192598 1.03982i
\(725\) −15.9598 + 21.2340i −0.592732 + 0.788611i
\(726\) 0.730761 + 7.95773i 0.0271211 + 0.295339i
\(727\) −22.5433 22.5433i −0.836086 0.836086i 0.152256 0.988341i \(-0.451346\pi\)
−0.988341 + 0.152256i \(0.951346\pi\)
\(728\) 31.9828 13.1062i 1.18536 0.485749i
\(729\) 1.00000i 0.0370370i
\(730\) 16.6911 + 26.9386i 0.617765 + 0.997044i
\(731\) −27.3791 −1.01265
\(732\) −4.75596 + 6.91830i −0.175785 + 0.255708i
\(733\) −7.22303 7.22303i −0.266789 0.266789i 0.561016 0.827805i \(-0.310411\pi\)
−0.827805 + 0.561016i \(0.810411\pi\)
\(734\) 1.41498 + 15.4086i 0.0522278 + 0.568743i
\(735\) −1.46718 + 15.5836i −0.0541177 + 0.574808i
\(736\) −7.77982 15.7871i −0.286768 0.581921i
\(737\) −11.5930 + 11.5930i −0.427034 + 0.427034i
\(738\) 0.600392 + 0.499398i 0.0221007 + 0.0183831i
\(739\) −37.2974 −1.37201 −0.686004 0.727598i \(-0.740637\pi\)
−0.686004 + 0.727598i \(0.740637\pi\)
\(740\) −3.15448 0.441705i −0.115961 0.0162374i
\(741\) −11.3694 −0.417665
\(742\) 11.6700 2.43582i 0.428420 0.0894218i
\(743\) 9.27408 + 9.27408i 0.340233 + 0.340233i 0.856455 0.516222i \(-0.172662\pi\)
−0.516222 + 0.856455i \(0.672662\pi\)
\(744\) −0.124805 0.442811i −0.00457557 0.0162343i
\(745\) 14.1598 + 28.3562i 0.518775 + 1.03889i
\(746\) 21.7112 1.99374i 0.794903 0.0729961i
\(747\) −0.691321 + 0.691321i −0.0252941 + 0.0252941i
\(748\) −13.7042 9.42094i −0.501077 0.344464i
\(749\) 23.8260 + 18.9228i 0.870582 + 0.691426i
\(750\) −1.41841 + 15.7476i −0.0517931 + 0.575022i
\(751\) 22.2185 0.810765 0.405382 0.914147i \(-0.367138\pi\)
0.405382 + 0.914147i \(0.367138\pi\)
\(752\) −48.8299 21.7537i −1.78064 0.793275i
\(753\) −15.0182 15.0182i −0.547294 0.547294i
\(754\) 3.17334 + 34.5565i 0.115566 + 1.25848i
\(755\) 10.0511 + 20.1282i 0.365798 + 0.732541i
\(756\) −4.67370 2.48123i −0.169981 0.0902414i
\(757\) −32.1590 32.1590i −1.16884 1.16884i −0.982482 0.186355i \(-0.940332\pi\)
−0.186355 0.982482i \(-0.559668\pi\)
\(758\) −24.6398 20.4950i −0.894957 0.744413i
\(759\) −7.19594 −0.261196
\(760\) 0.739935 15.5505i 0.0268402 0.564078i
\(761\) 6.53097i 0.236747i 0.992969 + 0.118374i \(0.0377681\pi\)
−0.992969 + 0.118374i \(0.962232\pi\)
\(762\) 0.791544 + 0.658396i 0.0286746 + 0.0238512i
\(763\) −44.7367 + 5.13113i −1.61958 + 0.185759i
\(764\) −3.16894 17.1088i −0.114648 0.618976i
\(765\) 7.62511 + 2.54608i 0.275686 + 0.0920536i
\(766\) 2.36374 0.217063i 0.0854055 0.00784280i
\(767\) 0.166703 0.166703i 0.00601930 0.00601930i
\(768\) −15.9777 0.844584i −0.576545 0.0304763i
\(769\) 45.0123 1.62319 0.811593 0.584224i \(-0.198601\pi\)
0.811593 + 0.584224i \(0.198601\pi\)
\(770\) 19.2197 + 2.24921i 0.692629 + 0.0810557i
\(771\) 17.5105i 0.630626i
\(772\) 25.0383 36.4222i 0.901149 1.31086i
\(773\) 32.6049 + 32.6049i 1.17272 + 1.17272i 0.981560 + 0.191156i \(0.0612235\pi\)
0.191156 + 0.981560i \(0.438776\pi\)
\(774\) 0.984876 + 10.7250i 0.0354006 + 0.385501i
\(775\) −0.650123 0.488642i −0.0233531 0.0175525i
\(776\) −6.94438 + 1.95725i −0.249289 + 0.0702611i
\(777\) −0.214728 1.87215i −0.00770333 0.0671629i
\(778\) −27.3843 22.7779i −0.981774 0.816626i
\(779\) −1.35928 −0.0487013
\(780\) 12.4394 + 16.4903i 0.445402 + 0.590447i
\(781\) 32.7300i 1.17117i
\(782\) −10.1157 + 12.1614i −0.361736 + 0.434890i
\(783\) 3.75659 3.75659i 0.134250 0.134250i
\(784\) −23.1931 + 15.6870i −0.828323 + 0.560250i
\(785\) 48.7635 + 16.2825i 1.74045 + 0.581147i
\(786\) 0.251570 + 2.73952i 0.00897322 + 0.0977153i
\(787\) −10.7855 + 10.7855i −0.384460 + 0.384460i −0.872706 0.488246i \(-0.837637\pi\)
0.488246 + 0.872706i \(0.337637\pi\)
\(788\) −7.78241 + 11.3207i −0.277237 + 0.403285i
\(789\) 18.6026i 0.662272i
\(790\) −51.2022 12.0261i −1.82169 0.427870i
\(791\) −32.3804 25.7169i −1.15132 0.914388i
\(792\) −3.19742 + 5.70713i −0.113615 + 0.202794i
\(793\) 13.7096 + 13.7096i 0.486842 + 0.486842i
\(794\) 6.07802 0.558146i 0.215701 0.0198078i
\(795\) 3.18287 + 6.37396i 0.112885 + 0.226061i
\(796\) −9.68157 52.2700i −0.343154 1.85266i
\(797\) 10.1693 10.1693i 0.360215 0.360215i −0.503677 0.863892i \(-0.668020\pi\)
0.863892 + 0.503677i \(0.168020\pi\)
\(798\) 9.01593 1.88185i 0.319161 0.0666167i
\(799\) 48.0456i 1.69973i
\(800\) −23.3643 + 15.9409i −0.826051 + 0.563595i
\(801\) 12.0195i 0.424690i
\(802\) −0.142621 0.118630i −0.00503612 0.00418898i
\(803\) 16.3894 + 16.3894i 0.578370 + 0.578370i
\(804\) 13.9401 2.58202i 0.491629 0.0910607i
\(805\) 3.80226 18.0095i 0.134012 0.634751i
\(806\) −1.05802 + 0.0971583i −0.0372672 + 0.00342225i
\(807\) −8.74857 + 8.74857i −0.307964 + 0.307964i
\(808\) −10.2047 + 18.2147i −0.359002 + 0.640790i
\(809\) 4.16194i 0.146326i −0.997320 0.0731630i \(-0.976691\pi\)
0.997320 0.0731630i \(-0.0233093\pi\)
\(810\) 0.723063 3.07850i 0.0254059 0.108168i
\(811\) 15.5083 0.544569 0.272285 0.962217i \(-0.412221\pi\)
0.272285 + 0.962217i \(0.412221\pi\)
\(812\) −8.23623 26.8781i −0.289035 0.943238i
\(813\) −11.5686 + 11.5686i −0.405728 + 0.405728i
\(814\) −2.31991 + 0.213038i −0.0813128 + 0.00746698i
\(815\) 46.6646 + 15.5816i 1.63459 + 0.545801i
\(816\) 5.15049 + 13.4265i 0.180303 + 0.470023i
\(817\) −13.2555 13.2555i −0.463751 0.463751i
\(818\) −26.8583 22.3404i −0.939078 0.781112i
\(819\) −7.60009 + 9.56936i −0.265569 + 0.334380i
\(820\) 1.48721 + 1.97152i 0.0519357 + 0.0688484i
\(821\) 45.0658i 1.57281i 0.617713 + 0.786404i \(0.288060\pi\)
−0.617713 + 0.786404i \(0.711940\pi\)
\(822\) −6.58411 5.47658i −0.229647 0.191018i
\(823\) −9.79135 9.79135i −0.341305 0.341305i 0.515553 0.856858i \(-0.327587\pi\)
−0.856858 + 0.515553i \(0.827587\pi\)
\(824\) 0.628977 + 2.23163i 0.0219115 + 0.0777425i
\(825\) 1.62362 + 11.4498i 0.0565273 + 0.398631i
\(826\) −0.104603 + 0.159788i −0.00363961 + 0.00555975i
\(827\) 5.62483 + 5.62483i 0.195595 + 0.195595i 0.798108 0.602514i \(-0.205834\pi\)
−0.602514 + 0.798108i \(0.705834\pi\)
\(828\) 5.12775 + 3.52506i 0.178202 + 0.122504i
\(829\) 39.0436i 1.35604i 0.735043 + 0.678021i \(0.237162\pi\)
−0.735043 + 0.678021i \(0.762838\pi\)
\(830\) −2.62810 + 1.62836i −0.0912228 + 0.0565214i
\(831\) 16.6183i 0.576482i
\(832\) −8.63808 + 35.9266i −0.299471 + 1.24553i
\(833\) 21.3619 + 13.3038i 0.740146 + 0.460951i
\(834\) −16.5822 + 1.52275i −0.574194 + 0.0527284i
\(835\) 10.3105 30.8785i 0.356811 1.06859i
\(836\) −2.07375 11.1960i −0.0717221 0.387222i
\(837\) 0.115016 + 0.115016i 0.00397553 + 0.00397553i
\(838\) −24.6177 + 29.5962i −0.850406 + 1.02238i
\(839\) −46.3596 −1.60051 −0.800256 0.599659i \(-0.795303\pi\)
−0.800256 + 0.599659i \(0.795303\pi\)
\(840\) −12.5939 11.0179i −0.434532 0.380152i
\(841\) −0.776086 −0.0267616
\(842\) 12.8948 15.5025i 0.444383 0.534251i
\(843\) −15.8806 15.8806i −0.546958 0.546958i
\(844\) −42.9120 + 7.94827i −1.47709 + 0.273591i
\(845\) 16.6711 8.32481i 0.573504 0.286382i
\(846\) 18.8205 1.72829i 0.647062 0.0594198i
\(847\) −14.8528 + 1.70356i −0.510349 + 0.0585351i
\(848\) −5.18634 + 11.6416i −0.178100 + 0.399775i
\(849\) 18.7391i 0.643125i
\(850\) 21.6329 + 13.3515i 0.742004 + 0.457954i
\(851\) 2.21598i 0.0759628i
\(852\) 16.0334 23.3230i 0.549294 0.799035i
\(853\) −18.0092 18.0092i −0.616623 0.616623i 0.328041 0.944664i \(-0.393612\pi\)
−0.944664 + 0.328041i \(0.893612\pi\)
\(854\) −13.1409 8.60252i −0.449673 0.294372i
\(855\) 2.45900 + 4.92435i 0.0840959 + 0.168409i
\(856\) −31.3072 + 8.82383i −1.07006 + 0.301592i
\(857\) −22.3652 22.3652i −0.763980 0.763980i 0.213059 0.977039i \(-0.431657\pi\)
−0.977039 + 0.213059i \(0.931657\pi\)
\(858\) 11.6148 + 9.66105i 0.396524 + 0.329823i
\(859\) 6.28238i 0.214352i −0.994240 0.107176i \(-0.965819\pi\)
0.994240 0.107176i \(-0.0341808\pi\)
\(860\) −4.72289 + 33.7290i −0.161049 + 1.15015i
\(861\) −0.908639 + 1.14408i −0.0309663 + 0.0389901i
\(862\) 33.2825 + 27.6840i 1.13361 + 0.942919i
\(863\) 30.3333 + 30.3333i 1.03256 + 1.03256i 0.999452 + 0.0331053i \(0.0105397\pi\)
0.0331053 + 0.999452i \(0.489460\pi\)
\(864\) 5.07418 2.50053i 0.172627 0.0850698i
\(865\) −7.40759 + 22.1846i −0.251866 + 0.754299i
\(866\) 0.819450 0.0752503i 0.0278460 0.00255711i
\(867\) −2.88150 + 2.88150i −0.0978608 + 0.0978608i
\(868\) 0.822930 0.252169i 0.0279321 0.00855918i
\(869\) −38.4680 −1.30494
\(870\) 14.2809 8.84842i 0.484169 0.299989i
\(871\) 32.7409i 1.10938i
\(872\) 23.5289 41.9972i 0.796789 1.42220i
\(873\) 1.80373 1.80373i 0.0610471 0.0610471i
\(874\) −10.7854 + 0.990423i −0.364821 + 0.0335016i
\(875\) −29.5136 1.98646i −0.997743 0.0671546i
\(876\) −3.65028 19.7076i −0.123332 0.665857i
\(877\) −9.46290 9.46290i −0.319539 0.319539i 0.529051 0.848590i \(-0.322548\pi\)
−0.848590 + 0.529051i \(0.822548\pi\)
\(878\) 21.2329 + 17.6612i 0.716575 + 0.596038i
\(879\) 22.9190i 0.773039i
\(880\) −13.9699 + 15.2575i −0.470924 + 0.514330i
\(881\) 7.77655i 0.261999i 0.991382 + 0.130999i \(0.0418186\pi\)
−0.991382 + 0.130999i \(0.958181\pi\)
\(882\) 4.44297 8.84647i 0.149602 0.297876i
\(883\) 5.40461 5.40461i 0.181880 0.181880i −0.610295 0.792174i \(-0.708949\pi\)
0.792174 + 0.610295i \(0.208949\pi\)
\(884\) 32.6550 6.04844i 1.09831 0.203431i
\(885\) −0.108258 0.0361481i −0.00363905 0.00121511i
\(886\) −12.2907 + 1.12866i −0.412915 + 0.0379181i
\(887\) 10.3564 + 10.3564i 0.347733 + 0.347733i 0.859265 0.511531i \(-0.170922\pi\)
−0.511531 + 0.859265i \(0.670922\pi\)
\(888\) 1.75750 + 0.984640i 0.0589780 + 0.0330424i
\(889\) −1.19793 + 1.50833i −0.0401773 + 0.0505877i
\(890\) 8.69089 37.0022i 0.291319 1.24032i
\(891\) 2.31287i 0.0774840i
\(892\) −20.1507 13.8526i −0.674697 0.463818i
\(893\) −23.2612 + 23.2612i −0.778405 + 0.778405i
\(894\) −1.83309 19.9617i −0.0613076 0.667619i
\(895\) −0.300333 0.601441i −0.0100390 0.0201040i
\(896\) 0.903466 29.9196i 0.0301827 0.999544i
\(897\) 10.1614 10.1614i 0.339278 0.339278i
\(898\) 11.6764 14.0378i 0.389648 0.468447i
\(899\) 0.864134i 0.0288205i
\(900\) 4.45190 8.95436i 0.148397 0.298479i
\(901\) 11.4547 0.381610
\(902\) 1.38863 + 1.15504i 0.0462362 + 0.0384587i
\(903\) −20.0178 + 2.29596i −0.666150 + 0.0764048i
\(904\) 42.5477 11.9919i 1.41512 0.398846i
\(905\) 14.2126 + 28.4620i 0.472444 + 0.946109i
\(906\) −1.30119 14.1695i −0.0432291 0.470751i
\(907\) −9.06746 9.06746i −0.301080 0.301080i 0.540356 0.841436i \(-0.318289\pi\)
−0.841436 + 0.540356i \(0.818289\pi\)
\(908\) −19.8230 13.6272i −0.657849 0.452236i
\(909\) 7.38166i 0.244834i
\(910\) −30.3161 + 23.9639i −1.00497 + 0.794397i
\(911\) −11.0036 −0.364564 −0.182282 0.983246i \(-0.558348\pi\)
−0.182282 + 0.983246i \(0.558348\pi\)
\(912\) −4.00682 + 8.99401i −0.132679 + 0.297821i
\(913\) −1.59893 + 1.59893i −0.0529170 + 0.0529170i
\(914\) 6.30212 0.578725i 0.208456 0.0191425i
\(915\) 2.97280 8.90309i 0.0982779 0.294327i
\(916\) −10.0695 + 1.86509i −0.332705 + 0.0616244i
\(917\) −5.11321 + 0.586466i −0.168853 + 0.0193668i
\(918\) −3.90882 3.25131i −0.129010 0.107309i
\(919\) 9.80357i 0.323390i −0.986841 0.161695i \(-0.948304\pi\)
0.986841 0.161695i \(-0.0516961\pi\)
\(920\) 13.2370 + 14.5596i 0.436410 + 0.480015i
\(921\) 19.5337 0.643657
\(922\) −38.8660 32.3282i −1.27998 1.06467i
\(923\) −46.2179 46.2179i −1.52128 1.52128i
\(924\) −10.8097 5.73875i −0.355612 0.188791i
\(925\) 3.52595 0.499992i 0.115932 0.0164396i
\(926\) −5.13307 55.8974i −0.168683 1.83690i
\(927\) −0.579644 0.579644i −0.0190380 0.0190380i
\(928\) 28.4551 + 9.66815i 0.934084 + 0.317373i
\(929\) 41.4727 1.36068 0.680338 0.732899i \(-0.261833\pi\)
0.680338 + 0.732899i \(0.261833\pi\)
\(930\) 0.270913 + 0.437240i 0.00888358 + 0.0143377i
\(931\) 3.90129 + 16.7833i 0.127859 + 0.550051i
\(932\) 9.89608 14.3954i 0.324157 0.471537i
\(933\) −16.0085 + 16.0085i −0.524095 + 0.524095i
\(934\) 5.40905 0.496715i 0.176990 0.0162530i
\(935\) 17.6359 + 5.88874i 0.576754 + 0.192582i
\(936\) −3.54396 12.5741i −0.115838 0.410997i
\(937\) 31.6887 + 31.6887i 1.03522 + 1.03522i 0.999357 + 0.0358673i \(0.0114194\pi\)
0.0358673 + 0.999357i \(0.488581\pi\)
\(938\) 5.41924 + 25.9636i 0.176944 + 0.847740i
\(939\) −3.43868 −0.112217
\(940\) 59.1886 + 8.28786i 1.93052 + 0.270320i
\(941\) −56.1142 −1.82927 −0.914635 0.404280i \(-0.867522\pi\)
−0.914635 + 0.404280i \(0.867522\pi\)
\(942\) −24.9974 20.7925i −0.814460 0.677457i
\(943\) 1.21486 1.21486i 0.0395612 0.0395612i
\(944\) −0.0731244 0.190624i −0.00238000 0.00620429i
\(945\) 5.78848 + 1.22209i 0.188299 + 0.0397547i
\(946\) 2.27789 + 24.8054i 0.0740605 + 0.806494i
\(947\) −12.3422 12.3422i −0.401068 0.401068i 0.477541 0.878609i \(-0.341528\pi\)
−0.878609 + 0.477541i \(0.841528\pi\)
\(948\) 27.4119 + 18.8442i 0.890297 + 0.612032i
\(949\) −46.2869 −1.50254
\(950\) 4.00941 + 16.9376i 0.130083 + 0.549529i
\(951\) 31.4905i 1.02115i
\(952\) −24.8943 + 10.2014i −0.806830 + 0.330631i
\(953\) −2.79458 2.79458i −0.0905252 0.0905252i 0.660394 0.750919i \(-0.270389\pi\)
−0.750919 + 0.660394i \(0.770389\pi\)
\(954\) −0.412045 4.48703i −0.0133404 0.145273i
\(955\) 8.69093 + 17.4043i 0.281232 + 0.563191i
\(956\) −14.7768 + 2.73700i −0.477917 + 0.0885209i
\(957\) 8.68849 8.68849i 0.280859 0.280859i
\(958\) −1.18628 0.986729i −0.0383269 0.0318798i
\(959\) 9.96447 12.5464i 0.321769 0.405144i
\(960\) 17.4289 4.02894i 0.562516 0.130033i
\(961\) 30.9735 0.999147
\(962\) 2.97511 3.57677i 0.0959213 0.115320i
\(963\) 8.13173 8.13173i 0.262041 0.262041i
\(964\) −47.7743 + 8.84886i −1.53871 + 0.285003i
\(965\) −15.6507 + 46.8713i −0.503813 + 1.50884i
\(966\) −6.37608 + 9.73988i −0.205147 + 0.313375i
\(967\) 17.4876 17.4876i 0.562364 0.562364i −0.367615 0.929978i \(-0.619825\pi\)
0.929978 + 0.367615i \(0.119825\pi\)
\(968\) 7.81172 13.9433i 0.251078 0.448154i
\(969\) 8.84955 0.284288
\(970\) 6.85701 4.24858i 0.220165 0.136414i
\(971\) −36.6445 −1.17598 −0.587989 0.808869i \(-0.700080\pi\)
−0.587989 + 0.808869i \(0.700080\pi\)
\(972\) −1.13300 + 1.64812i −0.0363409 + 0.0528636i
\(973\) −3.54985 30.9500i −0.113803 0.992213i
\(974\) −25.3645 + 2.32923i −0.812731 + 0.0746333i
\(975\) −18.4609 13.8755i −0.591223 0.444372i
\(976\) 15.6768 6.01372i 0.501804 0.192494i
\(977\) 9.57551 9.57551i 0.306348 0.306348i −0.537143 0.843491i \(-0.680497\pi\)
0.843491 + 0.537143i \(0.180497\pi\)
\(978\) −23.9214 19.8975i −0.764924 0.636253i
\(979\) 27.7996i 0.888479i
\(980\) 20.0742 24.0213i 0.641248 0.767333i
\(981\) 17.0197i 0.543399i
\(982\) 8.15290 9.80167i 0.260170 0.312784i
\(983\) 30.6927 30.6927i 0.978946 0.978946i −0.0208366 0.999783i \(-0.506633\pi\)
0.999783 + 0.0208366i \(0.00663298\pi\)
\(984\) −0.423703 1.50331i −0.0135072 0.0479239i
\(985\) 4.86454 14.5685i 0.154997 0.464192i
\(986\) −2.47002 26.8977i −0.0786614 0.856596i
\(987\) 4.02902 + 35.1278i 0.128245 + 1.11813i
\(988\) 18.7382 + 12.8815i 0.596140 + 0.409815i
\(989\) 23.6942 0.753431
\(990\) 1.67235 7.12017i 0.0531508 0.226294i
\(991\) −8.89844 −0.282668 −0.141334 0.989962i \(-0.545139\pi\)
−0.141334 + 0.989962i \(0.545139\pi\)
\(992\) −0.296011 + 0.871212i −0.00939835 + 0.0276610i
\(993\) −14.5654 + 14.5654i −0.462218 + 0.462218i
\(994\) 44.3008 + 29.0009i 1.40514 + 0.919854i
\(995\) 26.5521 + 53.1728i 0.841757 + 1.68569i
\(996\) 1.92265 0.356118i 0.0609214 0.0112840i
\(997\) −4.86884 + 4.86884i −0.154198 + 0.154198i −0.779990 0.625792i \(-0.784776\pi\)
0.625792 + 0.779990i \(0.284776\pi\)
\(998\) −37.2687 30.9996i −1.17972 0.981275i
\(999\) −0.712244 −0.0225344
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bj.b.13.19 184
5.2 odd 4 inner 840.2.bj.b.517.65 yes 184
7.6 odd 2 inner 840.2.bj.b.13.20 yes 184
8.5 even 2 inner 840.2.bj.b.13.66 yes 184
35.27 even 4 inner 840.2.bj.b.517.66 yes 184
40.37 odd 4 inner 840.2.bj.b.517.20 yes 184
56.13 odd 2 inner 840.2.bj.b.13.65 yes 184
280.237 even 4 inner 840.2.bj.b.517.19 yes 184
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bj.b.13.19 184 1.1 even 1 trivial
840.2.bj.b.13.20 yes 184 7.6 odd 2 inner
840.2.bj.b.13.65 yes 184 56.13 odd 2 inner
840.2.bj.b.13.66 yes 184 8.5 even 2 inner
840.2.bj.b.517.19 yes 184 280.237 even 4 inner
840.2.bj.b.517.20 yes 184 40.37 odd 4 inner
840.2.bj.b.517.65 yes 184 5.2 odd 4 inner
840.2.bj.b.517.66 yes 184 35.27 even 4 inner