Properties

Label 840.2.bj.b.13.1
Level $840$
Weight $2$
Character 840.13
Analytic conductor $6.707$
Analytic rank $0$
Dimension $184$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(13,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.13"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bj (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [184] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(184\)
Relative dimension: \(92\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.1
Character \(\chi\) \(=\) 840.13
Dual form 840.2.bj.b.517.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40929 + 0.117921i) q^{2} +(-0.707107 - 0.707107i) q^{3} +(1.97219 - 0.332370i) q^{4} +(0.361094 + 2.20672i) q^{5} +(1.07990 + 0.913135i) q^{6} +(2.47159 + 0.944062i) q^{7} +(-2.74019 + 0.700969i) q^{8} +1.00000i q^{9} +(-0.769104 - 3.06732i) q^{10} +3.00292i q^{11} +(-1.62957 - 1.15953i) q^{12} +(2.37833 + 2.37833i) q^{13} +(-3.59451 - 1.03900i) q^{14} +(1.30505 - 1.81572i) q^{15} +(3.77906 - 1.31099i) q^{16} +(-3.17167 - 3.17167i) q^{17} +(-0.117921 - 1.40929i) q^{18} +7.49985i q^{19} +(1.44559 + 4.23205i) q^{20} +(-1.08012 - 2.41523i) q^{21} +(-0.354109 - 4.23199i) q^{22} +(-2.48231 - 2.48231i) q^{23} +(2.43327 + 1.44195i) q^{24} +(-4.73922 + 1.59366i) q^{25} +(-3.63222 - 3.07130i) q^{26} +(0.707107 - 0.707107i) q^{27} +(5.18822 + 1.04039i) q^{28} -2.42536 q^{29} +(-1.62509 + 2.71276i) q^{30} -1.92561i q^{31} +(-5.17119 + 2.29320i) q^{32} +(2.12339 - 2.12339i) q^{33} +(4.84381 + 4.09580i) q^{34} +(-1.19081 + 5.79500i) q^{35} +(0.332370 + 1.97219i) q^{36} +(-7.03701 - 7.03701i) q^{37} +(-0.884392 - 10.5695i) q^{38} -3.36347i q^{39} +(-2.53631 - 5.79372i) q^{40} -2.62677i q^{41} +(1.80701 + 3.27639i) q^{42} +(2.67688 - 2.67688i) q^{43} +(0.998083 + 5.92234i) q^{44} +(-2.20672 + 0.361094i) q^{45} +(3.79102 + 3.20558i) q^{46} +(5.83940 + 5.83940i) q^{47} +(-3.59921 - 1.74519i) q^{48} +(5.21749 + 4.66667i) q^{49} +(6.49101 - 2.80479i) q^{50} +4.48542i q^{51} +(5.48101 + 3.90004i) q^{52} +(-3.92370 + 3.92370i) q^{53} +(-0.913135 + 1.07990i) q^{54} +(-6.62661 + 1.08434i) q^{55} +(-7.43438 - 0.854404i) q^{56} +(5.30319 - 5.30319i) q^{57} +(3.41804 - 0.286002i) q^{58} +12.1091i q^{59} +(1.97032 - 4.01470i) q^{60} -3.11135 q^{61} +(0.227070 + 2.71373i) q^{62} +(-0.944062 + 2.47159i) q^{63} +(7.01729 - 3.84158i) q^{64} +(-4.38952 + 6.10712i) q^{65} +(-2.74207 + 3.24286i) q^{66} +(-5.83002 - 5.83002i) q^{67} +(-7.30931 - 5.20097i) q^{68} +3.51052i q^{69} +(0.994836 - 8.30724i) q^{70} +1.88481 q^{71} +(-0.700969 - 2.74019i) q^{72} +(-1.14816 + 1.14816i) q^{73} +(10.7470 + 9.08736i) q^{74} +(4.47803 + 2.22425i) q^{75} +(2.49273 + 14.7911i) q^{76} +(-2.83495 + 7.42199i) q^{77} +(0.396625 + 4.74010i) q^{78} +14.4613i q^{79} +(4.25759 + 7.86593i) q^{80} -1.00000 q^{81} +(0.309752 + 3.70188i) q^{82} +(8.44650 + 8.44650i) q^{83} +(-2.93296 - 4.40429i) q^{84} +(5.85372 - 8.14426i) q^{85} +(-3.45683 + 4.08815i) q^{86} +(1.71499 + 1.71499i) q^{87} +(-2.10496 - 8.22859i) q^{88} +3.40001 q^{89} +(3.06732 - 0.769104i) q^{90} +(3.63297 + 8.12356i) q^{91} +(-5.72064 - 4.07055i) q^{92} +(-1.36161 + 1.36161i) q^{93} +(-8.91799 - 7.54081i) q^{94} +(-16.5501 + 2.70815i) q^{95} +(5.27812 + 2.03505i) q^{96} +(-0.895923 - 0.895923i) q^{97} +(-7.90325 - 5.96143i) q^{98} -3.00292 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184 q + 8 q^{2} + 4 q^{7} + 8 q^{8} - 16 q^{15} + 64 q^{16} + 8 q^{18} + 16 q^{23} - 32 q^{25} - 4 q^{28} + 24 q^{30} - 32 q^{32} - 16 q^{36} - 20 q^{42} - 80 q^{46} + 80 q^{50} + 56 q^{58} - 56 q^{60}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40929 + 0.117921i −0.996518 + 0.0833830i
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 1.97219 0.332370i 0.986095 0.166185i
\(5\) 0.361094 + 2.20672i 0.161486 + 0.986875i
\(6\) 1.07990 + 0.913135i 0.440868 + 0.372786i
\(7\) 2.47159 + 0.944062i 0.934172 + 0.356822i
\(8\) −2.74019 + 0.700969i −0.968804 + 0.247830i
\(9\) 1.00000i 0.333333i
\(10\) −0.769104 3.06732i −0.243212 0.969973i
\(11\) 3.00292i 0.905416i 0.891659 + 0.452708i \(0.149542\pi\)
−0.891659 + 0.452708i \(0.850458\pi\)
\(12\) −1.62957 1.15953i −0.470416 0.334727i
\(13\) 2.37833 + 2.37833i 0.659631 + 0.659631i 0.955293 0.295662i \(-0.0955401\pi\)
−0.295662 + 0.955293i \(0.595540\pi\)
\(14\) −3.59451 1.03900i −0.960672 0.277685i
\(15\) 1.30505 1.81572i 0.336964 0.468816i
\(16\) 3.77906 1.31099i 0.944765 0.327749i
\(17\) −3.17167 3.17167i −0.769244 0.769244i 0.208730 0.977973i \(-0.433067\pi\)
−0.977973 + 0.208730i \(0.933067\pi\)
\(18\) −0.117921 1.40929i −0.0277943 0.332173i
\(19\) 7.49985i 1.72058i 0.509802 + 0.860292i \(0.329719\pi\)
−0.509802 + 0.860292i \(0.670281\pi\)
\(20\) 1.44559 + 4.23205i 0.323244 + 0.946316i
\(21\) −1.08012 2.41523i −0.235702 0.527046i
\(22\) −0.354109 4.23199i −0.0754962 0.902263i
\(23\) −2.48231 2.48231i −0.517598 0.517598i 0.399246 0.916844i \(-0.369272\pi\)
−0.916844 + 0.399246i \(0.869272\pi\)
\(24\) 2.43327 + 1.44195i 0.496689 + 0.294336i
\(25\) −4.73922 + 1.59366i −0.947845 + 0.318733i
\(26\) −3.63222 3.07130i −0.712336 0.602332i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 5.18822 + 1.04039i 0.980481 + 0.196615i
\(29\) −2.42536 −0.450379 −0.225189 0.974315i \(-0.572300\pi\)
−0.225189 + 0.974315i \(0.572300\pi\)
\(30\) −1.62509 + 2.71276i −0.296699 + 0.495281i
\(31\) 1.92561i 0.345849i −0.984935 0.172924i \(-0.944678\pi\)
0.984935 0.172924i \(-0.0553216\pi\)
\(32\) −5.17119 + 2.29320i −0.914146 + 0.405384i
\(33\) 2.12339 2.12339i 0.369634 0.369634i
\(34\) 4.84381 + 4.09580i 0.830707 + 0.702423i
\(35\) −1.19081 + 5.79500i −0.201283 + 0.979533i
\(36\) 0.332370 + 1.97219i 0.0553951 + 0.328698i
\(37\) −7.03701 7.03701i −1.15688 1.15688i −0.985144 0.171733i \(-0.945063\pi\)
−0.171733 0.985144i \(-0.554937\pi\)
\(38\) −0.884392 10.5695i −0.143467 1.71459i
\(39\) 3.36347i 0.538587i
\(40\) −2.53631 5.79372i −0.401025 0.916067i
\(41\) 2.62677i 0.410233i −0.978738 0.205116i \(-0.934243\pi\)
0.978738 0.205116i \(-0.0657573\pi\)
\(42\) 1.80701 + 3.27639i 0.278828 + 0.505557i
\(43\) 2.67688 2.67688i 0.408220 0.408220i −0.472897 0.881117i \(-0.656792\pi\)
0.881117 + 0.472897i \(0.156792\pi\)
\(44\) 0.998083 + 5.92234i 0.150467 + 0.892826i
\(45\) −2.20672 + 0.361094i −0.328958 + 0.0538287i
\(46\) 3.79102 + 3.20558i 0.558955 + 0.472637i
\(47\) 5.83940 + 5.83940i 0.851764 + 0.851764i 0.990350 0.138586i \(-0.0442559\pi\)
−0.138586 + 0.990350i \(0.544256\pi\)
\(48\) −3.59921 1.74519i −0.519501 0.251896i
\(49\) 5.21749 + 4.66667i 0.745356 + 0.666667i
\(50\) 6.49101 2.80479i 0.917967 0.396657i
\(51\) 4.48542i 0.628085i
\(52\) 5.48101 + 3.90004i 0.760080 + 0.540838i
\(53\) −3.92370 + 3.92370i −0.538962 + 0.538962i −0.923224 0.384262i \(-0.874456\pi\)
0.384262 + 0.923224i \(0.374456\pi\)
\(54\) −0.913135 + 1.07990i −0.124262 + 0.146956i
\(55\) −6.62661 + 1.08434i −0.893532 + 0.146212i
\(56\) −7.43438 0.854404i −0.993461 0.114175i
\(57\) 5.30319 5.30319i 0.702425 0.702425i
\(58\) 3.41804 0.286002i 0.448810 0.0375539i
\(59\) 12.1091i 1.57647i 0.615373 + 0.788236i \(0.289005\pi\)
−0.615373 + 0.788236i \(0.710995\pi\)
\(60\) 1.97032 4.01470i 0.254368 0.518296i
\(61\) −3.11135 −0.398367 −0.199184 0.979962i \(-0.563829\pi\)
−0.199184 + 0.979962i \(0.563829\pi\)
\(62\) 0.227070 + 2.71373i 0.0288379 + 0.344644i
\(63\) −0.944062 + 2.47159i −0.118941 + 0.311391i
\(64\) 7.01729 3.84158i 0.877161 0.480197i
\(65\) −4.38952 + 6.10712i −0.544452 + 0.757495i
\(66\) −2.74207 + 3.24286i −0.337526 + 0.399168i
\(67\) −5.83002 5.83002i −0.712250 0.712250i 0.254756 0.967005i \(-0.418005\pi\)
−0.967005 + 0.254756i \(0.918005\pi\)
\(68\) −7.30931 5.20097i −0.886384 0.630710i
\(69\) 3.51052i 0.422617i
\(70\) 0.994836 8.30724i 0.118906 0.992906i
\(71\) 1.88481 0.223685 0.111843 0.993726i \(-0.464325\pi\)
0.111843 + 0.993726i \(0.464325\pi\)
\(72\) −0.700969 2.74019i −0.0826100 0.322935i
\(73\) −1.14816 + 1.14816i −0.134382 + 0.134382i −0.771098 0.636716i \(-0.780292\pi\)
0.636716 + 0.771098i \(0.280292\pi\)
\(74\) 10.7470 + 9.08736i 1.24931 + 1.05638i
\(75\) 4.47803 + 2.22425i 0.517078 + 0.256834i
\(76\) 2.49273 + 14.7911i 0.285935 + 1.69666i
\(77\) −2.83495 + 7.42199i −0.323072 + 0.845815i
\(78\) 0.396625 + 4.74010i 0.0449089 + 0.536711i
\(79\) 14.4613i 1.62702i 0.581549 + 0.813512i \(0.302447\pi\)
−0.581549 + 0.813512i \(0.697553\pi\)
\(80\) 4.25759 + 7.86593i 0.476013 + 0.879438i
\(81\) −1.00000 −0.111111
\(82\) 0.309752 + 3.70188i 0.0342064 + 0.408804i
\(83\) 8.44650 + 8.44650i 0.927124 + 0.927124i 0.997519 0.0703954i \(-0.0224261\pi\)
−0.0703954 + 0.997519i \(0.522426\pi\)
\(84\) −2.93296 4.40429i −0.320012 0.480547i
\(85\) 5.85372 8.14426i 0.634925 0.883370i
\(86\) −3.45683 + 4.08815i −0.372760 + 0.440837i
\(87\) 1.71499 + 1.71499i 0.183866 + 0.183866i
\(88\) −2.10496 8.22859i −0.224389 0.877170i
\(89\) 3.40001 0.360400 0.180200 0.983630i \(-0.442325\pi\)
0.180200 + 0.983630i \(0.442325\pi\)
\(90\) 3.06732 0.769104i 0.323324 0.0810707i
\(91\) 3.63297 + 8.12356i 0.380838 + 0.851580i
\(92\) −5.72064 4.07055i −0.596418 0.424384i
\(93\) −1.36161 + 1.36161i −0.141192 + 0.141192i
\(94\) −8.91799 7.54081i −0.919820 0.777775i
\(95\) −16.5501 + 2.70815i −1.69800 + 0.277850i
\(96\) 5.27812 + 2.03505i 0.538696 + 0.207701i
\(97\) −0.895923 0.895923i −0.0909672 0.0909672i 0.660159 0.751126i \(-0.270489\pi\)
−0.751126 + 0.660159i \(0.770489\pi\)
\(98\) −7.90325 5.96143i −0.798349 0.602195i
\(99\) −3.00292 −0.301805
\(100\) −8.81696 + 4.71818i −0.881696 + 0.471818i
\(101\) 3.27179 0.325556 0.162778 0.986663i \(-0.447955\pi\)
0.162778 + 0.986663i \(0.447955\pi\)
\(102\) −0.528927 6.32126i −0.0523716 0.625898i
\(103\) −10.5912 + 10.5912i −1.04359 + 1.04359i −0.0445799 + 0.999006i \(0.514195\pi\)
−0.999006 + 0.0445799i \(0.985805\pi\)
\(104\) −8.18423 4.84995i −0.802529 0.475577i
\(105\) 4.93971 3.25565i 0.482066 0.317719i
\(106\) 5.06694 5.99232i 0.492145 0.582025i
\(107\) −0.666115 0.666115i −0.0643957 0.0643957i 0.674175 0.738571i \(-0.264499\pi\)
−0.738571 + 0.674175i \(0.764499\pi\)
\(108\) 1.15953 1.62957i 0.111576 0.156805i
\(109\) 11.7431 1.12479 0.562394 0.826869i \(-0.309880\pi\)
0.562394 + 0.826869i \(0.309880\pi\)
\(110\) 9.21094 2.30956i 0.878229 0.220208i
\(111\) 9.95183i 0.944586i
\(112\) 10.5779 + 0.327431i 0.999521 + 0.0309393i
\(113\) 0.890203 + 0.890203i 0.0837432 + 0.0837432i 0.747738 0.663994i \(-0.231140\pi\)
−0.663994 + 0.747738i \(0.731140\pi\)
\(114\) −6.84837 + 8.09909i −0.641409 + 0.758549i
\(115\) 4.58142 6.37412i 0.427220 0.594390i
\(116\) −4.78328 + 0.806119i −0.444116 + 0.0748463i
\(117\) −2.37833 + 2.37833i −0.219877 + 0.219877i
\(118\) −1.42792 17.0652i −0.131451 1.57098i
\(119\) −4.84481 10.8333i −0.444123 0.993089i
\(120\) −2.30334 + 5.89022i −0.210265 + 0.537701i
\(121\) 1.98244 0.180222
\(122\) 4.38479 0.366894i 0.396980 0.0332170i
\(123\) −1.85741 + 1.85741i −0.167477 + 0.167477i
\(124\) −0.640014 3.79766i −0.0574749 0.341040i
\(125\) −5.22807 9.88267i −0.467613 0.883933i
\(126\) 1.03900 3.59451i 0.0925618 0.320224i
\(127\) 7.20293 7.20293i 0.639157 0.639157i −0.311191 0.950347i \(-0.600728\pi\)
0.950347 + 0.311191i \(0.100728\pi\)
\(128\) −9.43638 + 6.24138i −0.834066 + 0.551665i
\(129\) −3.78568 −0.333310
\(130\) 5.46593 9.12431i 0.479394 0.800255i
\(131\) −0.273205 −0.0238700 −0.0119350 0.999929i \(-0.503799\pi\)
−0.0119350 + 0.999929i \(0.503799\pi\)
\(132\) 3.48197 4.89347i 0.303067 0.425922i
\(133\) −7.08033 + 18.5365i −0.613942 + 1.60732i
\(134\) 8.90366 + 7.52869i 0.769159 + 0.650380i
\(135\) 1.81572 + 1.30505i 0.156272 + 0.112321i
\(136\) 10.9142 + 6.46774i 0.935888 + 0.554605i
\(137\) 12.4496 12.4496i 1.06364 1.06364i 0.0658125 0.997832i \(-0.479036\pi\)
0.997832 0.0658125i \(-0.0209639\pi\)
\(138\) −0.413965 4.94734i −0.0352391 0.421146i
\(139\) 6.67967i 0.566562i 0.959037 + 0.283281i \(0.0914229\pi\)
−0.959037 + 0.283281i \(0.908577\pi\)
\(140\) −0.422411 + 11.8246i −0.0357002 + 0.999363i
\(141\) 8.25816i 0.695462i
\(142\) −2.65624 + 0.222259i −0.222906 + 0.0186515i
\(143\) −7.14196 + 7.14196i −0.597241 + 0.597241i
\(144\) 1.31099 + 3.77906i 0.109250 + 0.314922i
\(145\) −0.875784 5.35210i −0.0727299 0.444468i
\(146\) 1.48269 1.75348i 0.122709 0.145119i
\(147\) −0.389493 6.98916i −0.0321249 0.576456i
\(148\) −16.2172 11.5394i −1.33305 0.948534i
\(149\) −5.54020 −0.453871 −0.226935 0.973910i \(-0.572871\pi\)
−0.226935 + 0.973910i \(0.572871\pi\)
\(150\) −6.57312 2.60655i −0.536693 0.212824i
\(151\) 0.135366 0.0110159 0.00550796 0.999985i \(-0.498247\pi\)
0.00550796 + 0.999985i \(0.498247\pi\)
\(152\) −5.25716 20.5510i −0.426412 1.66691i
\(153\) 3.17167 3.17167i 0.256415 0.256415i
\(154\) 3.12005 10.7940i 0.251421 0.869808i
\(155\) 4.24927 0.695324i 0.341310 0.0558497i
\(156\) −1.11792 6.63340i −0.0895051 0.531097i
\(157\) 2.85632 2.85632i 0.227959 0.227959i −0.583881 0.811840i \(-0.698466\pi\)
0.811840 + 0.583881i \(0.198466\pi\)
\(158\) −1.70529 20.3801i −0.135666 1.62136i
\(159\) 5.54895 0.440061
\(160\) −6.92774 10.5833i −0.547686 0.836684i
\(161\) −3.79180 8.47872i −0.298836 0.668217i
\(162\) 1.40929 0.117921i 0.110724 0.00926477i
\(163\) −13.0658 + 13.0658i −1.02339 + 1.02339i −0.0236748 + 0.999720i \(0.507537\pi\)
−0.999720 + 0.0236748i \(0.992463\pi\)
\(164\) −0.873060 5.18049i −0.0681746 0.404528i
\(165\) 5.45246 + 3.91898i 0.424474 + 0.305092i
\(166\) −12.8996 10.9075i −1.00120 0.846589i
\(167\) 0.369628 + 0.369628i 0.0286027 + 0.0286027i 0.721263 0.692661i \(-0.243562\pi\)
−0.692661 + 0.721263i \(0.743562\pi\)
\(168\) 4.65274 + 5.86106i 0.358967 + 0.452190i
\(169\) 1.68705i 0.129773i
\(170\) −7.28920 + 12.1679i −0.559056 + 0.933235i
\(171\) −7.49985 −0.573528
\(172\) 4.38959 6.16902i 0.334703 0.470384i
\(173\) −11.3541 11.3541i −0.863233 0.863233i 0.128479 0.991712i \(-0.458990\pi\)
−0.991712 + 0.128479i \(0.958990\pi\)
\(174\) −2.61915 2.21468i −0.198557 0.167895i
\(175\) −13.2179 0.535240i −0.999181 0.0404603i
\(176\) 3.93682 + 11.3482i 0.296749 + 0.855405i
\(177\) 8.56243 8.56243i 0.643592 0.643592i
\(178\) −4.79160 + 0.400934i −0.359145 + 0.0300512i
\(179\) 24.1089 1.80199 0.900994 0.433832i \(-0.142839\pi\)
0.900994 + 0.433832i \(0.142839\pi\)
\(180\) −4.23205 + 1.44559i −0.315439 + 0.107748i
\(181\) −8.93271 −0.663963 −0.331981 0.943286i \(-0.607717\pi\)
−0.331981 + 0.943286i \(0.607717\pi\)
\(182\) −6.07784 11.0200i −0.450519 0.816859i
\(183\) 2.20005 + 2.20005i 0.162633 + 0.162633i
\(184\) 8.54204 + 5.06199i 0.629728 + 0.373175i
\(185\) 12.9877 18.0697i 0.954873 1.32851i
\(186\) 1.75834 2.07946i 0.128927 0.152474i
\(187\) 9.52430 9.52430i 0.696486 0.696486i
\(188\) 13.4572 + 9.57556i 0.981470 + 0.698369i
\(189\) 2.41523 1.08012i 0.175682 0.0785674i
\(190\) 23.0045 5.76817i 1.66892 0.418467i
\(191\) −2.58414 −0.186982 −0.0934908 0.995620i \(-0.529803\pi\)
−0.0934908 + 0.995620i \(0.529803\pi\)
\(192\) −7.67837 2.24557i −0.554139 0.162060i
\(193\) 12.7542 + 12.7542i 0.918070 + 0.918070i 0.996889 0.0788185i \(-0.0251148\pi\)
−0.0788185 + 0.996889i \(0.525115\pi\)
\(194\) 1.36826 + 1.15697i 0.0982355 + 0.0830653i
\(195\) 7.42224 1.21453i 0.531518 0.0869742i
\(196\) 11.8409 + 7.46941i 0.845782 + 0.533529i
\(197\) 12.5295 + 12.5295i 0.892687 + 0.892687i 0.994775 0.102088i \(-0.0325523\pi\)
−0.102088 + 0.994775i \(0.532552\pi\)
\(198\) 4.23199 0.354109i 0.300754 0.0251654i
\(199\) −11.5976 −0.822129 −0.411065 0.911606i \(-0.634843\pi\)
−0.411065 + 0.911606i \(0.634843\pi\)
\(200\) 11.8693 7.68899i 0.839284 0.543694i
\(201\) 8.24489i 0.581550i
\(202\) −4.61090 + 0.385814i −0.324422 + 0.0271458i
\(203\) −5.99450 2.28970i −0.420732 0.160705i
\(204\) 1.49082 + 8.84610i 0.104378 + 0.619351i
\(205\) 5.79655 0.948510i 0.404848 0.0662468i
\(206\) 13.6772 16.1750i 0.952934 1.12697i
\(207\) 2.48231 2.48231i 0.172533 0.172533i
\(208\) 12.1058 + 5.86988i 0.839390 + 0.407003i
\(209\) −22.5215 −1.55784
\(210\) −6.57756 + 5.17065i −0.453895 + 0.356809i
\(211\) 25.5145i 1.75649i −0.478213 0.878244i \(-0.658715\pi\)
0.478213 0.878244i \(-0.341285\pi\)
\(212\) −6.43416 + 9.04241i −0.441900 + 0.621035i
\(213\) −1.33276 1.33276i −0.0913192 0.0913192i
\(214\) 1.01730 + 0.860199i 0.0695410 + 0.0588020i
\(215\) 6.87372 + 4.94051i 0.468784 + 0.336940i
\(216\) −1.44195 + 2.43327i −0.0981121 + 0.165563i
\(217\) 1.81789 4.75930i 0.123406 0.323082i
\(218\) −16.5495 + 1.38477i −1.12087 + 0.0937881i
\(219\) 1.62374 0.109722
\(220\) −12.7085 + 4.34101i −0.856809 + 0.292671i
\(221\) 15.0866i 1.01483i
\(222\) −1.17353 14.0250i −0.0787624 0.941296i
\(223\) 17.1885 17.1885i 1.15102 1.15102i 0.164676 0.986348i \(-0.447342\pi\)
0.986348 0.164676i \(-0.0526580\pi\)
\(224\) −14.9460 + 0.785920i −0.998620 + 0.0525115i
\(225\) −1.59366 4.73922i −0.106244 0.315948i
\(226\) −1.35953 1.14958i −0.0904343 0.0764688i
\(227\) 13.5914 13.5914i 0.902094 0.902094i −0.0935233 0.995617i \(-0.529813\pi\)
0.995617 + 0.0935233i \(0.0298130\pi\)
\(228\) 8.69628 12.2215i 0.575925 0.809390i
\(229\) 7.88853i 0.521289i −0.965435 0.260644i \(-0.916065\pi\)
0.965435 0.260644i \(-0.0839350\pi\)
\(230\) −5.70491 + 9.52322i −0.376170 + 0.627943i
\(231\) 7.25275 3.24353i 0.477196 0.213409i
\(232\) 6.64596 1.70010i 0.436329 0.111617i
\(233\) 20.9449 + 20.9449i 1.37214 + 1.37214i 0.857260 + 0.514884i \(0.172165\pi\)
0.514884 + 0.857260i \(0.327835\pi\)
\(234\) 3.07130 3.63222i 0.200777 0.237445i
\(235\) −10.7773 + 14.9945i −0.703037 + 0.978132i
\(236\) 4.02471 + 23.8815i 0.261986 + 1.55455i
\(237\) 10.2257 10.2257i 0.664229 0.664229i
\(238\) 8.10522 + 14.6960i 0.525383 + 0.952599i
\(239\) 11.3812i 0.736186i −0.929789 0.368093i \(-0.880011\pi\)
0.929789 0.368093i \(-0.119989\pi\)
\(240\) 2.55148 8.57263i 0.164698 0.553361i
\(241\) 15.4129i 0.992834i −0.868084 0.496417i \(-0.834649\pi\)
0.868084 0.496417i \(-0.165351\pi\)
\(242\) −2.79383 + 0.233772i −0.179594 + 0.0150274i
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) −6.13617 + 1.03412i −0.392828 + 0.0662027i
\(245\) −8.41402 + 13.1986i −0.537552 + 0.843231i
\(246\) 2.39859 2.83665i 0.152929 0.180858i
\(247\) −17.8371 + 17.8371i −1.13495 + 1.13495i
\(248\) 1.34979 + 5.27652i 0.0857117 + 0.335060i
\(249\) 11.9452i 0.756993i
\(250\) 8.53324 + 13.3110i 0.539690 + 0.841864i
\(251\) 12.7592 0.805356 0.402678 0.915342i \(-0.368079\pi\)
0.402678 + 0.915342i \(0.368079\pi\)
\(252\) −1.04039 + 5.18822i −0.0655382 + 0.326827i
\(253\) 7.45420 7.45420i 0.468642 0.468642i
\(254\) −9.30163 + 11.0004i −0.583636 + 0.690226i
\(255\) −9.89807 + 1.61966i −0.619841 + 0.101427i
\(256\) 12.5626 9.90865i 0.785162 0.619291i
\(257\) 15.0108 + 15.0108i 0.936348 + 0.936348i 0.998092 0.0617442i \(-0.0196663\pi\)
−0.0617442 + 0.998092i \(0.519666\pi\)
\(258\) 5.33511 0.446412i 0.332149 0.0277924i
\(259\) −10.7492 24.0360i −0.667923 1.49352i
\(260\) −6.62713 + 13.5033i −0.410997 + 0.837441i
\(261\) 2.42536i 0.150126i
\(262\) 0.385024 0.0322166i 0.0237869 0.00199035i
\(263\) −11.0013 11.0013i −0.678369 0.678369i 0.281262 0.959631i \(-0.409247\pi\)
−0.959631 + 0.281262i \(0.909247\pi\)
\(264\) −4.33006 + 7.30692i −0.266497 + 0.449710i
\(265\) −10.0753 7.24169i −0.618923 0.444853i
\(266\) 7.79237 26.9583i 0.477781 1.65292i
\(267\) −2.40417 2.40417i −0.147133 0.147133i
\(268\) −13.4356 9.56017i −0.820711 0.583980i
\(269\) 8.37372i 0.510555i 0.966868 + 0.255277i \(0.0821668\pi\)
−0.966868 + 0.255277i \(0.917833\pi\)
\(270\) −2.71276 1.62509i −0.165094 0.0988996i
\(271\) 5.26514i 0.319834i 0.987130 + 0.159917i \(0.0511227\pi\)
−0.987130 + 0.159917i \(0.948877\pi\)
\(272\) −16.1440 7.82790i −0.978873 0.474636i
\(273\) 3.17533 8.31312i 0.192180 0.503133i
\(274\) −16.0771 + 19.0132i −0.971251 + 1.14863i
\(275\) −4.78565 14.2315i −0.288586 0.858194i
\(276\) 1.16679 + 6.92342i 0.0702327 + 0.416741i
\(277\) 11.6013 + 11.6013i 0.697055 + 0.697055i 0.963774 0.266719i \(-0.0859396\pi\)
−0.266719 + 0.963774i \(0.585940\pi\)
\(278\) −0.787675 9.41358i −0.0472416 0.564589i
\(279\) 1.92561 0.115283
\(280\) −0.799076 16.7141i −0.0477539 0.998859i
\(281\) −12.0023 −0.715997 −0.357998 0.933722i \(-0.616541\pi\)
−0.357998 + 0.933722i \(0.616541\pi\)
\(282\) 0.973813 + 11.6381i 0.0579897 + 0.693040i
\(283\) 3.99550 + 3.99550i 0.237508 + 0.237508i 0.815817 0.578309i \(-0.196287\pi\)
−0.578309 + 0.815817i \(0.696287\pi\)
\(284\) 3.71719 0.626454i 0.220575 0.0371732i
\(285\) 13.6176 + 9.78771i 0.806638 + 0.579774i
\(286\) 9.22289 10.9073i 0.545361 0.644960i
\(287\) 2.47983 6.49229i 0.146380 0.383228i
\(288\) −2.29320 5.17119i −0.135128 0.304715i
\(289\) 3.11903i 0.183472i
\(290\) 1.86536 + 7.43938i 0.109538 + 0.436855i
\(291\) 1.26703i 0.0742744i
\(292\) −1.88277 + 2.64600i −0.110181 + 0.154845i
\(293\) −21.8942 21.8942i −1.27907 1.27907i −0.941186 0.337888i \(-0.890287\pi\)
−0.337888 0.941186i \(-0.609713\pi\)
\(294\) 1.37308 + 9.80381i 0.0800796 + 0.571770i
\(295\) −26.7214 + 4.37252i −1.55578 + 0.254578i
\(296\) 24.2155 + 14.3500i 1.40749 + 0.834078i
\(297\) 2.12339 + 2.12339i 0.123211 + 0.123211i
\(298\) 7.80773 0.653307i 0.452290 0.0378451i
\(299\) 11.8075i 0.682848i
\(300\) 9.57079 + 2.89827i 0.552570 + 0.167332i
\(301\) 9.14328 4.08900i 0.527010 0.235686i
\(302\) −0.190770 + 0.0159625i −0.0109776 + 0.000918540i
\(303\) −2.31351 2.31351i −0.132908 0.132908i
\(304\) 9.83226 + 28.3424i 0.563919 + 1.62555i
\(305\) −1.12349 6.86587i −0.0643307 0.393139i
\(306\) −4.09580 + 4.84381i −0.234141 + 0.276902i
\(307\) −20.0439 + 20.0439i −1.14397 + 1.14397i −0.156251 + 0.987717i \(0.549941\pi\)
−0.987717 + 0.156251i \(0.950059\pi\)
\(308\) −3.12420 + 15.5798i −0.178018 + 0.887743i
\(309\) 14.9783 0.852084
\(310\) −5.90646 + 1.48099i −0.335464 + 0.0841146i
\(311\) 2.95009i 0.167284i 0.996496 + 0.0836421i \(0.0266552\pi\)
−0.996496 + 0.0836421i \(0.973345\pi\)
\(312\) 2.35769 + 9.21655i 0.133478 + 0.521785i
\(313\) −8.39886 + 8.39886i −0.474732 + 0.474732i −0.903442 0.428710i \(-0.858968\pi\)
0.428710 + 0.903442i \(0.358968\pi\)
\(314\) −3.68855 + 4.36220i −0.208157 + 0.246173i
\(315\) −5.79500 1.19081i −0.326511 0.0670943i
\(316\) 4.80651 + 28.5204i 0.270387 + 1.60440i
\(317\) −24.0231 24.0231i −1.34927 1.34927i −0.886455 0.462815i \(-0.846840\pi\)
−0.462815 0.886455i \(-0.653160\pi\)
\(318\) −7.82008 + 0.654340i −0.438528 + 0.0366936i
\(319\) 7.28319i 0.407780i
\(320\) 11.0112 + 14.0980i 0.615544 + 0.788103i
\(321\) 0.942028i 0.0525789i
\(322\) 6.34356 + 11.5018i 0.353513 + 0.640972i
\(323\) 23.7871 23.7871i 1.32355 1.32355i
\(324\) −1.97219 + 0.332370i −0.109566 + 0.0184650i
\(325\) −15.0617 7.48119i −0.835474 0.414982i
\(326\) 16.8728 19.9543i 0.934497 1.10516i
\(327\) −8.30365 8.30365i −0.459193 0.459193i
\(328\) 1.84128 + 7.19785i 0.101668 + 0.397435i
\(329\) 8.91983 + 19.9453i 0.491766 + 1.09962i
\(330\) −8.14623 4.88001i −0.448435 0.268636i
\(331\) 23.5363i 1.29367i 0.762628 + 0.646837i \(0.223909\pi\)
−0.762628 + 0.646837i \(0.776091\pi\)
\(332\) 19.4655 + 13.8507i 1.06831 + 0.760157i
\(333\) 7.03701 7.03701i 0.385626 0.385626i
\(334\) −0.564499 0.477325i −0.0308880 0.0261181i
\(335\) 10.7600 14.9704i 0.587883 0.817920i
\(336\) −7.24820 7.71126i −0.395422 0.420684i
\(337\) −18.0931 + 18.0931i −0.985592 + 0.985592i −0.999898 0.0143053i \(-0.995446\pi\)
0.0143053 + 0.999898i \(0.495446\pi\)
\(338\) 0.198940 + 2.37755i 0.0108209 + 0.129321i
\(339\) 1.25894i 0.0683761i
\(340\) 8.83774 18.0076i 0.479294 0.976601i
\(341\) 5.78245 0.313137
\(342\) 10.5695 0.884392i 0.571531 0.0478224i
\(343\) 8.48987 + 16.4597i 0.458410 + 0.888741i
\(344\) −5.45875 + 9.21156i −0.294316 + 0.496654i
\(345\) −7.74674 + 1.26763i −0.417070 + 0.0682468i
\(346\) 17.3400 + 14.6623i 0.932205 + 0.788248i
\(347\) 23.5853 + 23.5853i 1.26613 + 1.26613i 0.948072 + 0.318055i \(0.103030\pi\)
0.318055 + 0.948072i \(0.396970\pi\)
\(348\) 3.95230 + 2.81228i 0.211866 + 0.150754i
\(349\) 23.3192i 1.24825i −0.781324 0.624125i \(-0.785456\pi\)
0.781324 0.624125i \(-0.214544\pi\)
\(350\) 18.6910 0.804367i 0.999075 0.0429952i
\(351\) 3.36347 0.179529
\(352\) −6.88631 15.5287i −0.367042 0.827683i
\(353\) −18.0172 + 18.0172i −0.958959 + 0.958959i −0.999190 0.0402313i \(-0.987191\pi\)
0.0402313 + 0.999190i \(0.487191\pi\)
\(354\) −11.0572 + 13.0766i −0.587686 + 0.695015i
\(355\) 0.680591 + 4.15924i 0.0361220 + 0.220749i
\(356\) 6.70546 1.13006i 0.355389 0.0598932i
\(357\) −4.23452 + 11.0861i −0.224115 + 0.586740i
\(358\) −33.9765 + 2.84296i −1.79571 + 0.150255i
\(359\) 21.4705i 1.13317i −0.824003 0.566586i \(-0.808264\pi\)
0.824003 0.566586i \(-0.191736\pi\)
\(360\) 5.79372 2.53631i 0.305356 0.133675i
\(361\) −37.2477 −1.96041
\(362\) 12.5888 1.05336i 0.661651 0.0553632i
\(363\) −1.40180 1.40180i −0.0735753 0.0735753i
\(364\) 9.86493 + 14.8137i 0.517063 + 0.776449i
\(365\) −2.94826 2.11907i −0.154319 0.110917i
\(366\) −3.35995 2.84108i −0.175627 0.148506i
\(367\) 25.6709 + 25.6709i 1.34001 + 1.34001i 0.896043 + 0.443967i \(0.146429\pi\)
0.443967 + 0.896043i \(0.353571\pi\)
\(368\) −12.6351 6.12652i −0.658651 0.319367i
\(369\) 2.62677 0.136744
\(370\) −16.1726 + 26.9970i −0.840773 + 1.40351i
\(371\) −13.4020 + 5.99356i −0.695797 + 0.311170i
\(372\) −2.23279 + 3.13791i −0.115765 + 0.162693i
\(373\) 1.68540 1.68540i 0.0872665 0.0872665i −0.662126 0.749393i \(-0.730346\pi\)
0.749393 + 0.662126i \(0.230346\pi\)
\(374\) −12.2994 + 14.5456i −0.635985 + 0.752135i
\(375\) −3.29130 + 10.6849i −0.169962 + 0.551766i
\(376\) −20.0943 11.9078i −1.03628 0.614099i
\(377\) −5.76833 5.76833i −0.297084 0.297084i
\(378\) −3.27639 + 1.80701i −0.168519 + 0.0929427i
\(379\) 11.0290 0.566523 0.283262 0.959043i \(-0.408584\pi\)
0.283262 + 0.959043i \(0.408584\pi\)
\(380\) −31.7398 + 10.8417i −1.62821 + 0.556169i
\(381\) −10.1865 −0.521869
\(382\) 3.64180 0.304725i 0.186330 0.0155911i
\(383\) 12.6130 12.6130i 0.644495 0.644495i −0.307162 0.951657i \(-0.599379\pi\)
0.951657 + 0.307162i \(0.0993795\pi\)
\(384\) 11.0858 + 2.25921i 0.565722 + 0.115290i
\(385\) −17.4019 3.57590i −0.886885 0.182245i
\(386\) −19.4784 16.4704i −0.991425 0.838322i
\(387\) 2.67688 + 2.67688i 0.136073 + 0.136073i
\(388\) −2.06471 1.46915i −0.104820 0.0745848i
\(389\) −34.1653 −1.73225 −0.866125 0.499828i \(-0.833397\pi\)
−0.866125 + 0.499828i \(0.833397\pi\)
\(390\) −10.3169 + 2.58686i −0.522415 + 0.130991i
\(391\) 15.7462i 0.796319i
\(392\) −17.5681 9.13025i −0.887324 0.461147i
\(393\) 0.193185 + 0.193185i 0.00974488 + 0.00974488i
\(394\) −19.1351 16.1801i −0.964014 0.815144i
\(395\) −31.9120 + 5.22188i −1.60567 + 0.262741i
\(396\) −5.92234 + 0.998083i −0.297609 + 0.0501556i
\(397\) −23.7065 + 23.7065i −1.18979 + 1.18979i −0.212670 + 0.977124i \(0.568216\pi\)
−0.977124 + 0.212670i \(0.931784\pi\)
\(398\) 16.3443 1.36760i 0.819266 0.0685515i
\(399\) 18.1139 8.10077i 0.906827 0.405546i
\(400\) −15.8205 + 12.2356i −0.791026 + 0.611782i
\(401\) 16.9872 0.848302 0.424151 0.905592i \(-0.360573\pi\)
0.424151 + 0.905592i \(0.360573\pi\)
\(402\) −0.972248 11.6194i −0.0484913 0.579524i
\(403\) 4.57973 4.57973i 0.228133 0.228133i
\(404\) 6.45260 1.08745i 0.321029 0.0541025i
\(405\) −0.361094 2.20672i −0.0179429 0.109653i
\(406\) 8.71799 + 2.51996i 0.432666 + 0.125064i
\(407\) 21.1316 21.1316i 1.04745 1.04745i
\(408\) −3.14414 12.2909i −0.155658 0.608491i
\(409\) 28.8479 1.42644 0.713218 0.700942i \(-0.247237\pi\)
0.713218 + 0.700942i \(0.247237\pi\)
\(410\) −8.05716 + 2.02026i −0.397915 + 0.0997735i
\(411\) −17.6064 −0.868462
\(412\) −17.3677 + 24.4081i −0.855646 + 1.20250i
\(413\) −11.4318 + 29.9287i −0.562520 + 1.47270i
\(414\) −3.20558 + 3.79102i −0.157546 + 0.186318i
\(415\) −15.5891 + 21.6890i −0.765238 + 1.06467i
\(416\) −17.7528 6.84482i −0.870404 0.335595i
\(417\) 4.72324 4.72324i 0.231298 0.231298i
\(418\) 31.7393 2.65576i 1.55242 0.129898i
\(419\) 24.0295i 1.17392i 0.809617 + 0.586958i \(0.199675\pi\)
−0.809617 + 0.586958i \(0.800325\pi\)
\(420\) 8.65996 8.06258i 0.422563 0.393413i
\(421\) 17.2247i 0.839481i −0.907644 0.419741i \(-0.862121\pi\)
0.907644 0.419741i \(-0.137879\pi\)
\(422\) 3.00870 + 35.9572i 0.146461 + 1.75037i
\(423\) −5.83940 + 5.83940i −0.283921 + 0.283921i
\(424\) 8.00130 13.5021i 0.388577 0.655719i
\(425\) 20.0859 + 9.97668i 0.974307 + 0.483940i
\(426\) 2.03540 + 1.72108i 0.0986156 + 0.0833867i
\(427\) −7.68997 2.93731i −0.372144 0.142146i
\(428\) −1.53510 1.09231i −0.0742019 0.0527987i
\(429\) 10.1003 0.487645
\(430\) −10.2696 6.15205i −0.495246 0.296678i
\(431\) 20.3538 0.980408 0.490204 0.871608i \(-0.336922\pi\)
0.490204 + 0.871608i \(0.336922\pi\)
\(432\) 1.74519 3.59921i 0.0839653 0.173167i
\(433\) 13.7548 13.7548i 0.661014 0.661014i −0.294605 0.955619i \(-0.595188\pi\)
0.955619 + 0.294605i \(0.0951881\pi\)
\(434\) −2.00071 + 6.92160i −0.0960372 + 0.332247i
\(435\) −3.16523 + 4.40378i −0.151761 + 0.211145i
\(436\) 23.1597 3.90307i 1.10915 0.186923i
\(437\) 18.6170 18.6170i 0.890571 0.890571i
\(438\) −2.28832 + 0.191474i −0.109340 + 0.00914896i
\(439\) −24.3515 −1.16223 −0.581116 0.813821i \(-0.697384\pi\)
−0.581116 + 0.813821i \(0.697384\pi\)
\(440\) 17.3981 7.61634i 0.829422 0.363095i
\(441\) −4.66667 + 5.21749i −0.222222 + 0.248452i
\(442\) 1.77903 + 21.2614i 0.0846199 + 1.01130i
\(443\) 15.8768 15.8768i 0.754330 0.754330i −0.220954 0.975284i \(-0.570917\pi\)
0.975284 + 0.220954i \(0.0709170\pi\)
\(444\) 3.30769 + 19.6269i 0.156976 + 0.931451i
\(445\) 1.22772 + 7.50287i 0.0581996 + 0.355670i
\(446\) −22.1966 + 26.2504i −1.05104 + 1.24299i
\(447\) 3.91751 + 3.91751i 0.185292 + 0.185292i
\(448\) 20.9705 2.87004i 0.990764 0.135597i
\(449\) 12.7243i 0.600497i 0.953861 + 0.300248i \(0.0970696\pi\)
−0.953861 + 0.300248i \(0.902930\pi\)
\(450\) 2.80479 + 6.49101i 0.132219 + 0.305989i
\(451\) 7.88799 0.371431
\(452\) 2.05152 + 1.45977i 0.0964956 + 0.0686619i
\(453\) −0.0957181 0.0957181i −0.00449723 0.00449723i
\(454\) −17.5515 + 20.7569i −0.823733 + 0.974172i
\(455\) −16.6146 + 10.9503i −0.778903 + 0.513358i
\(456\) −10.8144 + 18.2491i −0.506430 + 0.854594i
\(457\) 27.6729 27.6729i 1.29449 1.29449i 0.362503 0.931983i \(-0.381922\pi\)
0.931983 0.362503i \(-0.118078\pi\)
\(458\) 0.930226 + 11.1172i 0.0434666 + 0.519473i
\(459\) −4.48542 −0.209362
\(460\) 6.91687 14.0937i 0.322501 0.657122i
\(461\) 22.9930 1.07089 0.535445 0.844570i \(-0.320144\pi\)
0.535445 + 0.844570i \(0.320144\pi\)
\(462\) −9.83874 + 5.42632i −0.457740 + 0.252455i
\(463\) 27.3905 + 27.3905i 1.27294 + 1.27294i 0.944537 + 0.328406i \(0.106511\pi\)
0.328406 + 0.944537i \(0.393489\pi\)
\(464\) −9.16560 + 3.17964i −0.425502 + 0.147611i
\(465\) −3.49636 2.51302i −0.162140 0.116539i
\(466\) −31.9872 27.0475i −1.48178 1.25295i
\(467\) 8.94233 8.94233i 0.413802 0.413802i −0.469259 0.883061i \(-0.655479\pi\)
0.883061 + 0.469259i \(0.155479\pi\)
\(468\) −3.90004 + 5.48101i −0.180279 + 0.253360i
\(469\) −8.90550 19.9133i −0.411218 0.919511i
\(470\) 13.4202 22.4024i 0.619029 1.03335i
\(471\) −4.03944 −0.186128
\(472\) −8.48811 33.1813i −0.390697 1.52729i
\(473\) 8.03846 + 8.03846i 0.369609 + 0.369609i
\(474\) −13.2051 + 15.6168i −0.606531 + 0.717302i
\(475\) −11.9522 35.5435i −0.548407 1.63085i
\(476\) −13.1556 19.7551i −0.602984 0.905473i
\(477\) −3.92370 3.92370i −0.179654 0.179654i
\(478\) 1.34208 + 16.0393i 0.0613853 + 0.733622i
\(479\) 31.1231 1.42205 0.711026 0.703166i \(-0.248231\pi\)
0.711026 + 0.703166i \(0.248231\pi\)
\(480\) −2.58488 + 12.3822i −0.117983 + 0.565167i
\(481\) 33.4727i 1.52622i
\(482\) 1.81751 + 21.7213i 0.0827854 + 0.989377i
\(483\) −3.31415 + 8.67657i −0.150799 + 0.394797i
\(484\) 3.90975 0.658905i 0.177716 0.0299502i
\(485\) 1.65354 2.30056i 0.0750833 0.104463i
\(486\) −1.07990 0.913135i −0.0489853 0.0414206i
\(487\) 5.05709 5.05709i 0.229159 0.229159i −0.583183 0.812341i \(-0.698193\pi\)
0.812341 + 0.583183i \(0.198193\pi\)
\(488\) 8.52568 2.18096i 0.385940 0.0987273i
\(489\) 18.4779 0.835598
\(490\) 10.3014 19.5929i 0.465369 0.885117i
\(491\) 22.2881i 1.00585i −0.864331 0.502923i \(-0.832258\pi\)
0.864331 0.502923i \(-0.167742\pi\)
\(492\) −3.04581 + 4.28050i −0.137316 + 0.192980i
\(493\) 7.69246 + 7.69246i 0.346451 + 0.346451i
\(494\) 23.0343 27.2411i 1.03636 1.22563i
\(495\) −1.08434 6.62661i −0.0487373 0.297844i
\(496\) −2.52446 7.27698i −0.113351 0.326746i
\(497\) 4.65846 + 1.77937i 0.208961 + 0.0798159i
\(498\) 1.40859 + 16.8342i 0.0631203 + 0.754357i
\(499\) 32.3756 1.44933 0.724665 0.689102i \(-0.241995\pi\)
0.724665 + 0.689102i \(0.241995\pi\)
\(500\) −13.5955 17.7528i −0.608007 0.793931i
\(501\) 0.522733i 0.0233540i
\(502\) −17.9814 + 1.50459i −0.802551 + 0.0671529i
\(503\) −4.12684 + 4.12684i −0.184007 + 0.184007i −0.793099 0.609093i \(-0.791534\pi\)
0.609093 + 0.793099i \(0.291534\pi\)
\(504\) 0.854404 7.43438i 0.0380582 0.331154i
\(505\) 1.18142 + 7.21993i 0.0525727 + 0.321283i
\(506\) −9.62612 + 11.3841i −0.427933 + 0.506087i
\(507\) −1.19293 + 1.19293i −0.0529798 + 0.0529798i
\(508\) 11.8115 16.5996i 0.524050 0.736487i
\(509\) 7.83443i 0.347255i −0.984811 0.173627i \(-0.944451\pi\)
0.984811 0.173627i \(-0.0555488\pi\)
\(510\) 13.7582 3.44976i 0.609226 0.152758i
\(511\) −3.92171 + 1.75384i −0.173486 + 0.0775854i
\(512\) −16.5359 + 15.4455i −0.730789 + 0.682603i
\(513\) 5.30319 + 5.30319i 0.234142 + 0.234142i
\(514\) −22.9246 19.3845i −1.01116 0.855012i
\(515\) −27.1963 19.5475i −1.19841 0.861364i
\(516\) −7.46607 + 1.25825i −0.328675 + 0.0553912i
\(517\) −17.5353 + 17.5353i −0.771201 + 0.771201i
\(518\) 17.9831 + 32.6060i 0.790131 + 1.43263i
\(519\) 16.0571i 0.704827i
\(520\) 7.74721 19.8116i 0.339738 0.868795i
\(521\) 25.5002i 1.11718i 0.829442 + 0.558592i \(0.188658\pi\)
−0.829442 + 0.558592i \(0.811342\pi\)
\(522\) 0.286002 + 3.41804i 0.0125180 + 0.149603i
\(523\) −10.4193 10.4193i −0.455604 0.455604i 0.441605 0.897209i \(-0.354409\pi\)
−0.897209 + 0.441605i \(0.854409\pi\)
\(524\) −0.538811 + 0.0908051i −0.0235381 + 0.00396684i
\(525\) 8.96801 + 9.72496i 0.391396 + 0.424432i
\(526\) 16.8013 + 14.2067i 0.732571 + 0.619442i
\(527\) −6.10739 + 6.10739i −0.266042 + 0.266042i
\(528\) 5.24066 10.8082i 0.228071 0.470365i
\(529\) 10.6762i 0.464184i
\(530\) 15.0530 + 9.01753i 0.653861 + 0.391697i
\(531\) −12.1091 −0.525491
\(532\) −7.80275 + 38.9108i −0.338292 + 1.68700i
\(533\) 6.24734 6.24734i 0.270602 0.270602i
\(534\) 3.67167 + 3.10467i 0.158889 + 0.134352i
\(535\) 1.22940 1.71046i 0.0531515 0.0739495i
\(536\) 20.0620 + 11.8887i 0.866547 + 0.513513i
\(537\) −17.0476 17.0476i −0.735658 0.735658i
\(538\) −0.987440 11.8010i −0.0425716 0.508777i
\(539\) −14.0136 + 15.6677i −0.603610 + 0.674857i
\(540\) 4.01470 + 1.97032i 0.172765 + 0.0847892i
\(541\) 25.1730i 1.08227i −0.840935 0.541136i \(-0.817994\pi\)
0.840935 0.541136i \(-0.182006\pi\)
\(542\) −0.620872 7.42010i −0.0266687 0.318720i
\(543\) 6.31638 + 6.31638i 0.271062 + 0.271062i
\(544\) 23.6746 + 9.12805i 1.01504 + 0.391362i
\(545\) 4.24037 + 25.9138i 0.181637 + 1.11003i
\(546\) −3.49466 + 12.0900i −0.149558 + 0.517405i
\(547\) −22.1918 22.1918i −0.948853 0.948853i 0.0499010 0.998754i \(-0.484109\pi\)
−0.998754 + 0.0499010i \(0.984109\pi\)
\(548\) 20.4152 28.6909i 0.872092 1.22562i
\(549\) 3.11135i 0.132789i
\(550\) 8.42257 + 19.4920i 0.359140 + 0.831142i
\(551\) 18.1899i 0.774915i
\(552\) −2.46077 9.61950i −0.104737 0.409433i
\(553\) −13.6524 + 35.7424i −0.580558 + 1.51992i
\(554\) −17.7176 14.9816i −0.752750 0.636505i
\(555\) −21.9609 + 3.59354i −0.932188 + 0.152537i
\(556\) 2.22012 + 13.1736i 0.0941542 + 0.558684i
\(557\) 13.9795 + 13.9795i 0.592331 + 0.592331i 0.938260 0.345930i \(-0.112436\pi\)
−0.345930 + 0.938260i \(0.612436\pi\)
\(558\) −2.71373 + 0.227070i −0.114881 + 0.00961263i
\(559\) 12.7330 0.538549
\(560\) 3.09708 + 23.4608i 0.130875 + 0.991399i
\(561\) −13.4694 −0.568678
\(562\) 16.9147 1.41533i 0.713503 0.0597019i
\(563\) −3.59971 3.59971i −0.151710 0.151710i 0.627172 0.778881i \(-0.284212\pi\)
−0.778881 + 0.627172i \(0.784212\pi\)
\(564\) −2.74477 16.2866i −0.115576 0.685792i
\(565\) −1.64298 + 2.28587i −0.0691207 + 0.0961674i
\(566\) −6.10197 5.15966i −0.256485 0.216877i
\(567\) −2.47159 0.944062i −0.103797 0.0396469i
\(568\) −5.16473 + 1.32119i −0.216707 + 0.0554359i
\(569\) 28.0941i 1.17777i −0.808218 0.588883i \(-0.799568\pi\)
0.808218 0.588883i \(-0.200432\pi\)
\(570\) −20.3453 12.1879i −0.852172 0.510495i
\(571\) 31.8090i 1.33117i 0.746323 + 0.665584i \(0.231817\pi\)
−0.746323 + 0.665584i \(0.768183\pi\)
\(572\) −11.7115 + 16.4591i −0.489683 + 0.688188i
\(573\) 1.82726 + 1.82726i 0.0763349 + 0.0763349i
\(574\) −2.72922 + 9.44194i −0.113916 + 0.394099i
\(575\) 15.7202 + 7.80827i 0.655578 + 0.325627i
\(576\) 3.84158 + 7.01729i 0.160066 + 0.292387i
\(577\) 12.2550 + 12.2550i 0.510183 + 0.510183i 0.914582 0.404400i \(-0.132519\pi\)
−0.404400 + 0.914582i \(0.632519\pi\)
\(578\) −0.367799 4.39561i −0.0152984 0.182833i
\(579\) 18.0372i 0.749601i
\(580\) −3.50609 10.2643i −0.145582 0.426201i
\(581\) 12.9022 + 28.8503i 0.535275 + 1.19691i
\(582\) −0.149409 1.78561i −0.00619322 0.0740157i
\(583\) −11.7826 11.7826i −0.487985 0.487985i
\(584\) 2.34135 3.95100i 0.0968857 0.163493i
\(585\) −6.10712 4.38952i −0.252498 0.181484i
\(586\) 33.4371 + 28.2735i 1.38127 + 1.16797i
\(587\) 2.65901 2.65901i 0.109749 0.109749i −0.650100 0.759849i \(-0.725273\pi\)
0.759849 + 0.650100i \(0.225273\pi\)
\(588\) −3.09114 13.6545i −0.127477 0.563101i
\(589\) 14.4417 0.595062
\(590\) 37.1426 9.31317i 1.52914 0.383417i
\(591\) 17.7193i 0.728876i
\(592\) −35.8187 17.3678i −1.47214 0.713812i
\(593\) −17.3614 + 17.3614i −0.712947 + 0.712947i −0.967151 0.254204i \(-0.918187\pi\)
0.254204 + 0.967151i \(0.418187\pi\)
\(594\) −3.24286 2.74207i −0.133056 0.112509i
\(595\) 22.1567 14.6030i 0.908335 0.598664i
\(596\) −10.9263 + 1.84140i −0.447559 + 0.0754265i
\(597\) 8.20071 + 8.20071i 0.335633 + 0.335633i
\(598\) 1.39236 + 16.6402i 0.0569379 + 0.680470i
\(599\) 29.4726i 1.20422i −0.798414 0.602109i \(-0.794327\pi\)
0.798414 0.602109i \(-0.205673\pi\)
\(600\) −13.8298 2.95590i −0.564598 0.120674i
\(601\) 9.91955i 0.404627i 0.979321 + 0.202313i \(0.0648460\pi\)
−0.979321 + 0.202313i \(0.935154\pi\)
\(602\) −12.4033 + 6.84077i −0.505522 + 0.278809i
\(603\) 5.83002 5.83002i 0.237417 0.237417i
\(604\) 0.266967 0.0449916i 0.0108627 0.00183068i
\(605\) 0.715847 + 4.37469i 0.0291033 + 0.177857i
\(606\) 3.53321 + 2.98759i 0.143527 + 0.121362i
\(607\) −33.7122 33.7122i −1.36834 1.36834i −0.862811 0.505526i \(-0.831298\pi\)
−0.505526 0.862811i \(-0.668702\pi\)
\(608\) −17.1987 38.7832i −0.697498 1.57287i
\(609\) 2.61969 + 5.85781i 0.106155 + 0.237371i
\(610\) 2.39295 + 9.54351i 0.0968877 + 0.386405i
\(611\) 27.7761i 1.12370i
\(612\) 5.20097 7.30931i 0.210237 0.295461i
\(613\) −4.44443 + 4.44443i −0.179509 + 0.179509i −0.791142 0.611633i \(-0.790513\pi\)
0.611633 + 0.791142i \(0.290513\pi\)
\(614\) 25.8841 30.6113i 1.04460 1.23537i
\(615\) −4.76947 3.42808i −0.192324 0.138233i
\(616\) 2.56571 22.3249i 0.103375 0.899495i
\(617\) −5.98081 + 5.98081i −0.240778 + 0.240778i −0.817172 0.576394i \(-0.804459\pi\)
0.576394 + 0.817172i \(0.304459\pi\)
\(618\) −21.1087 + 1.76626i −0.849117 + 0.0710493i
\(619\) 17.2047i 0.691516i 0.938324 + 0.345758i \(0.112378\pi\)
−0.938324 + 0.345758i \(0.887622\pi\)
\(620\) 8.14926 2.78364i 0.327282 0.111794i
\(621\) −3.51052 −0.140872
\(622\) −0.347878 4.15753i −0.0139486 0.166702i
\(623\) 8.40342 + 3.20982i 0.336676 + 0.128599i
\(624\) −4.40949 12.7108i −0.176521 0.508838i
\(625\) 19.9205 15.1055i 0.796819 0.604219i
\(626\) 10.8460 12.8268i 0.433494 0.512663i
\(627\) 15.9251 + 15.9251i 0.635987 + 0.635987i
\(628\) 4.68384 6.58255i 0.186906 0.262672i
\(629\) 44.6382i 1.77984i
\(630\) 8.30724 + 0.994836i 0.330969 + 0.0396352i
\(631\) 41.5855 1.65549 0.827747 0.561101i \(-0.189622\pi\)
0.827747 + 0.561101i \(0.189622\pi\)
\(632\) −10.1369 39.6267i −0.403225 1.57627i
\(633\) −18.0414 + 18.0414i −0.717083 + 0.717083i
\(634\) 36.6883 + 31.0226i 1.45708 + 1.23206i
\(635\) 18.4958 + 13.2939i 0.733982 + 0.527553i
\(636\) 10.9436 1.84431i 0.433941 0.0731315i
\(637\) 1.31005 + 23.5078i 0.0519061 + 0.931414i
\(638\) 0.858843 + 10.2641i 0.0340019 + 0.406360i
\(639\) 1.88481i 0.0745618i
\(640\) −17.1804 18.5697i −0.679114 0.734033i
\(641\) 0.326576 0.0128990 0.00644949 0.999979i \(-0.497947\pi\)
0.00644949 + 0.999979i \(0.497947\pi\)
\(642\) −0.111085 1.32759i −0.00438418 0.0523958i
\(643\) −18.8040 18.8040i −0.741557 0.741557i 0.231321 0.972878i \(-0.425695\pi\)
−0.972878 + 0.231321i \(0.925695\pi\)
\(644\) −10.2962 15.4614i −0.405728 0.609263i
\(645\) −1.36698 8.35393i −0.0538249 0.328936i
\(646\) −30.7179 + 36.3279i −1.20858 + 1.42930i
\(647\) 12.7976 + 12.7976i 0.503127 + 0.503127i 0.912408 0.409281i \(-0.134220\pi\)
−0.409281 + 0.912408i \(0.634220\pi\)
\(648\) 2.74019 0.700969i 0.107645 0.0275367i
\(649\) −36.3627 −1.42736
\(650\) 22.1085 + 8.76706i 0.867167 + 0.343872i
\(651\) −4.65078 + 2.07989i −0.182278 + 0.0815174i
\(652\) −21.4256 + 30.1110i −0.839091 + 1.17924i
\(653\) 4.45533 4.45533i 0.174351 0.174351i −0.614537 0.788888i \(-0.710657\pi\)
0.788888 + 0.614537i \(0.210657\pi\)
\(654\) 12.6814 + 10.7231i 0.495882 + 0.419305i
\(655\) −0.0986524 0.602886i −0.00385467 0.0235567i
\(656\) −3.44368 9.92672i −0.134453 0.387573i
\(657\) −1.14816 1.14816i −0.0447939 0.0447939i
\(658\) −14.9226 27.0569i −0.581743 1.05479i
\(659\) 16.7657 0.653099 0.326549 0.945180i \(-0.394114\pi\)
0.326549 + 0.945180i \(0.394114\pi\)
\(660\) 12.0558 + 5.91673i 0.469273 + 0.230309i
\(661\) 42.9946 1.67229 0.836147 0.548505i \(-0.184803\pi\)
0.836147 + 0.548505i \(0.184803\pi\)
\(662\) −2.77544 33.1695i −0.107870 1.28917i
\(663\) −10.6678 + 10.6678i −0.414304 + 0.414304i
\(664\) −29.0657 17.2243i −1.12797 0.668432i
\(665\) −43.4616 8.93087i −1.68537 0.346324i
\(666\) −9.08736 + 10.7470i −0.352128 + 0.416437i
\(667\) 6.02052 + 6.02052i 0.233115 + 0.233115i
\(668\) 0.851830 + 0.606123i 0.0329583 + 0.0234516i
\(669\) −24.3081 −0.939807
\(670\) −13.3987 + 22.3664i −0.517635 + 0.864091i
\(671\) 9.34314i 0.360688i
\(672\) 11.1241 + 10.0127i 0.429123 + 0.386247i
\(673\) −2.34468 2.34468i −0.0903808 0.0903808i 0.660471 0.750852i \(-0.270357\pi\)
−0.750852 + 0.660471i \(0.770357\pi\)
\(674\) 23.3648 27.6319i 0.899979 1.06434i
\(675\) −2.22425 + 4.47803i −0.0856113 + 0.172359i
\(676\) −0.560727 3.32719i −0.0215664 0.127969i
\(677\) 15.9212 15.9212i 0.611900 0.611900i −0.331541 0.943441i \(-0.607568\pi\)
0.943441 + 0.331541i \(0.107568\pi\)
\(678\) 0.148455 + 1.77421i 0.00570140 + 0.0681379i
\(679\) −1.36854 3.06016i −0.0525199 0.117438i
\(680\) −10.3314 + 26.4201i −0.396193 + 1.01317i
\(681\) −19.2212 −0.736556
\(682\) −8.14914 + 0.681874i −0.312047 + 0.0261103i
\(683\) 8.37740 8.37740i 0.320552 0.320552i −0.528427 0.848979i \(-0.677218\pi\)
0.848979 + 0.528427i \(0.177218\pi\)
\(684\) −14.7911 + 2.49273i −0.565553 + 0.0953118i
\(685\) 31.9683 + 22.9774i 1.22145 + 0.877921i
\(686\) −13.9056 22.1954i −0.530919 0.847422i
\(687\) −5.57803 + 5.57803i −0.212815 + 0.212815i
\(688\) 6.60671 13.6255i 0.251878 0.519465i
\(689\) −18.6638 −0.711032
\(690\) 10.7679 2.69996i 0.409927 0.102786i
\(691\) −14.2845 −0.543408 −0.271704 0.962381i \(-0.587587\pi\)
−0.271704 + 0.962381i \(0.587587\pi\)
\(692\) −26.1661 18.6186i −0.994686 0.707773i
\(693\) −7.42199 2.83495i −0.281938 0.107691i
\(694\) −36.0198 30.4573i −1.36729 1.15614i
\(695\) −14.7402 + 2.41198i −0.559126 + 0.0914918i
\(696\) −5.90156 3.49725i −0.223698 0.132563i
\(697\) −8.33126 + 8.33126i −0.315569 + 0.315569i
\(698\) 2.74984 + 32.8635i 0.104083 + 1.24390i
\(699\) 29.6205i 1.12035i
\(700\) −26.2461 + 3.33765i −0.992011 + 0.126151i
\(701\) 10.0346i 0.379001i −0.981881 0.189500i \(-0.939313\pi\)
0.981881 0.189500i \(-0.0606868\pi\)
\(702\) −4.74010 + 0.396625i −0.178904 + 0.0149696i
\(703\) 52.7765 52.7765i 1.99050 1.99050i
\(704\) 11.5360 + 21.0724i 0.434778 + 0.794195i
\(705\) 18.2234 2.98197i 0.686334 0.112307i
\(706\) 23.2668 27.5161i 0.875659 1.03558i
\(707\) 8.08652 + 3.08878i 0.304125 + 0.116165i
\(708\) 14.0408 19.7326i 0.527687 0.741598i
\(709\) −27.1322 −1.01897 −0.509486 0.860479i \(-0.670165\pi\)
−0.509486 + 0.860479i \(0.670165\pi\)
\(710\) −1.44961 5.78131i −0.0544030 0.216969i
\(711\) −14.4613 −0.542341
\(712\) −9.31668 + 2.38330i −0.349157 + 0.0893180i
\(713\) −4.77996 + 4.77996i −0.179011 + 0.179011i
\(714\) 4.66037 16.1229i 0.174410 0.603384i
\(715\) −18.3392 13.1814i −0.685848 0.492956i
\(716\) 47.5474 8.01310i 1.77693 0.299464i
\(717\) −8.04769 + 8.04769i −0.300547 + 0.300547i
\(718\) 2.53183 + 30.2582i 0.0944872 + 1.12923i
\(719\) 27.6938 1.03280 0.516401 0.856347i \(-0.327271\pi\)
0.516401 + 0.856347i \(0.327271\pi\)
\(720\) −7.86593 + 4.25759i −0.293146 + 0.158671i
\(721\) −36.1760 + 16.1784i −1.34726 + 0.602515i
\(722\) 52.4928 4.39230i 1.95358 0.163465i
\(723\) −10.8986 + 10.8986i −0.405323 + 0.405323i
\(724\) −17.6170 + 2.96897i −0.654730 + 0.110341i
\(725\) 11.4943 3.86522i 0.426889 0.143551i
\(726\) 2.14084 + 1.81024i 0.0794541 + 0.0671842i
\(727\) −21.3358 21.3358i −0.791301 0.791301i 0.190405 0.981706i \(-0.439020\pi\)
−0.981706 + 0.190405i \(0.939020\pi\)
\(728\) −15.6494 19.7135i −0.580005 0.730631i
\(729\) 1.00000i 0.0370370i
\(730\) 4.40483 + 2.63872i 0.163030 + 0.0976634i
\(731\) −16.9804 −0.628041
\(732\) 5.07016 + 3.60769i 0.187398 + 0.133344i
\(733\) 19.5514 + 19.5514i 0.722148 + 0.722148i 0.969042 0.246895i \(-0.0794102\pi\)
−0.246895 + 0.969042i \(0.579410\pi\)
\(734\) −39.2049 33.1506i −1.44708 1.22361i
\(735\) 15.2825 3.38324i 0.563702 0.124793i
\(736\) 18.5290 + 7.14408i 0.682987 + 0.263334i
\(737\) 17.5071 17.5071i 0.644882 0.644882i
\(738\) −3.70188 + 0.309752i −0.136268 + 0.0114021i
\(739\) −4.97856 −0.183139 −0.0915696 0.995799i \(-0.529188\pi\)
−0.0915696 + 0.995799i \(0.529188\pi\)
\(740\) 19.6083 39.9536i 0.720816 1.46872i
\(741\) 25.2255 0.926683
\(742\) 18.1805 10.0270i 0.667428 0.368104i
\(743\) −12.8240 12.8240i −0.470468 0.470468i 0.431598 0.902066i \(-0.357950\pi\)
−0.902066 + 0.431598i \(0.857950\pi\)
\(744\) 2.77662 4.68551i 0.101796 0.171779i
\(745\) −2.00053 12.2257i −0.0732937 0.447913i
\(746\) −2.17647 + 2.57395i −0.0796861 + 0.0942392i
\(747\) −8.44650 + 8.44650i −0.309041 + 0.309041i
\(748\) 15.6181 21.9493i 0.571055 0.802546i
\(749\) −1.01751 2.27521i −0.0371789 0.0831345i
\(750\) 3.37841 15.4462i 0.123362 0.564017i
\(751\) 10.0477 0.366645 0.183322 0.983053i \(-0.441315\pi\)
0.183322 + 0.983053i \(0.441315\pi\)
\(752\) 29.7229 + 14.4120i 1.08388 + 0.525552i
\(753\) −9.02214 9.02214i −0.328785 0.328785i
\(754\) 8.80945 + 7.44903i 0.320821 + 0.271278i
\(755\) 0.0488797 + 0.298715i 0.00177892 + 0.0108713i
\(756\) 4.40429 2.93296i 0.160182 0.106671i
\(757\) 7.44806 + 7.44806i 0.270704 + 0.270704i 0.829384 0.558679i \(-0.188692\pi\)
−0.558679 + 0.829384i \(0.688692\pi\)
\(758\) −15.5431 + 1.30056i −0.564550 + 0.0472384i
\(759\) −10.5418 −0.382644
\(760\) 43.4520 19.0219i 1.57617 0.689998i
\(761\) 32.7237i 1.18623i −0.805117 0.593116i \(-0.797897\pi\)
0.805117 0.593116i \(-0.202103\pi\)
\(762\) 14.3557 1.20120i 0.520052 0.0435150i
\(763\) 29.0242 + 11.0862i 1.05075 + 0.401349i
\(764\) −5.09641 + 0.858890i −0.184382 + 0.0310736i
\(765\) 8.14426 + 5.85372i 0.294457 + 0.211642i
\(766\) −16.2880 + 19.2627i −0.588510 + 0.695990i
\(767\) −28.7995 + 28.7995i −1.03989 + 1.03989i
\(768\) −15.8896 1.87662i −0.573365 0.0677166i
\(769\) 4.58984 0.165514 0.0827569 0.996570i \(-0.473627\pi\)
0.0827569 + 0.996570i \(0.473627\pi\)
\(770\) 24.9460 + 2.98742i 0.898992 + 0.107659i
\(771\) 21.2285i 0.764525i
\(772\) 29.3929 + 20.9146i 1.05787 + 0.752735i
\(773\) −31.4846 31.4846i −1.13242 1.13242i −0.989773 0.142648i \(-0.954438\pi\)
−0.142648 0.989773i \(-0.545562\pi\)
\(774\) −4.08815 3.45683i −0.146946 0.124253i
\(775\) 3.06877 + 9.12587i 0.110233 + 0.327811i
\(776\) 3.08301 + 1.82698i 0.110674 + 0.0655849i
\(777\) −9.39515 + 24.5968i −0.337049 + 0.882406i
\(778\) 48.1488 4.02882i 1.72622 0.144440i
\(779\) 19.7004 0.705839
\(780\) 14.2344 4.86221i 0.509673 0.174095i
\(781\) 5.65993i 0.202528i
\(782\) −1.85681 22.1909i −0.0663994 0.793546i
\(783\) −1.71499 + 1.71499i −0.0612888 + 0.0612888i
\(784\) 25.8352 + 10.7955i 0.922685 + 0.385554i
\(785\) 7.33449 + 5.27169i 0.261779 + 0.188155i
\(786\) −0.295034 0.249473i −0.0105235 0.00889839i
\(787\) −12.2368 + 12.2368i −0.436194 + 0.436194i −0.890729 0.454535i \(-0.849805\pi\)
0.454535 + 0.890729i \(0.349805\pi\)
\(788\) 28.8749 + 20.5461i 1.02863 + 0.731923i
\(789\) 15.5582i 0.553886i
\(790\) 44.3575 11.1222i 1.57817 0.395712i
\(791\) 1.35981 + 3.04062i 0.0483492 + 0.108112i
\(792\) 8.22859 2.10496i 0.292390 0.0747964i
\(793\) −7.39982 7.39982i −0.262775 0.262775i
\(794\) 30.6138 36.2048i 1.08644 1.28486i
\(795\) 2.00369 + 12.2450i 0.0710636 + 0.434285i
\(796\) −22.8726 + 3.85468i −0.810697 + 0.136626i
\(797\) 10.3322 10.3322i 0.365985 0.365985i −0.500026 0.866011i \(-0.666676\pi\)
0.866011 + 0.500026i \(0.166676\pi\)
\(798\) −24.5724 + 13.5523i −0.869854 + 0.479747i
\(799\) 37.0413i 1.31043i
\(800\) 20.8528 19.1091i 0.737259 0.675610i
\(801\) 3.40001i 0.120133i
\(802\) −23.9399 + 2.00316i −0.845348 + 0.0707339i
\(803\) −3.44783 3.44783i −0.121671 0.121671i
\(804\) 2.74036 + 16.2605i 0.0966449 + 0.573463i
\(805\) 17.3410 11.4290i 0.611189 0.402821i
\(806\) −5.91412 + 6.99421i −0.208316 + 0.246361i
\(807\) 5.92111 5.92111i 0.208433 0.208433i
\(808\) −8.96534 + 2.29343i −0.315399 + 0.0806824i
\(809\) 16.8518i 0.592478i 0.955114 + 0.296239i \(0.0957325\pi\)
−0.955114 + 0.296239i \(0.904267\pi\)
\(810\) 0.769104 + 3.06732i 0.0270236 + 0.107775i
\(811\) 11.0683 0.388660 0.194330 0.980936i \(-0.437747\pi\)
0.194330 + 0.980936i \(0.437747\pi\)
\(812\) −12.5833 2.52332i −0.441588 0.0885511i
\(813\) 3.72301 3.72301i 0.130572 0.130572i
\(814\) −27.2887 + 32.2724i −0.956467 + 1.13115i
\(815\) −33.5506 24.1146i −1.17523 0.844699i
\(816\) 5.88036 + 16.9507i 0.205854 + 0.593393i
\(817\) 20.0762 + 20.0762i 0.702377 + 0.702377i
\(818\) −40.6550 + 3.40178i −1.42147 + 0.118940i
\(819\) −8.12356 + 3.63297i −0.283860 + 0.126946i
\(820\) 11.1166 3.79724i 0.388209 0.132605i
\(821\) 15.7536i 0.549805i −0.961472 0.274903i \(-0.911354\pi\)
0.961472 0.274903i \(-0.0886456\pi\)
\(822\) 24.8126 2.07618i 0.865438 0.0724149i
\(823\) 0.973603 + 0.973603i 0.0339377 + 0.0339377i 0.723872 0.689934i \(-0.242361\pi\)
−0.689934 + 0.723872i \(0.742361\pi\)
\(824\) 21.5979 36.4461i 0.752398 1.26966i
\(825\) −6.67924 + 13.4472i −0.232541 + 0.468171i
\(826\) 12.5814 43.5263i 0.437763 1.51447i
\(827\) −28.8134 28.8134i −1.00194 1.00194i −0.999998 0.00194243i \(-0.999382\pi\)
−0.00194243 0.999998i \(-0.500618\pi\)
\(828\) 4.07055 5.72064i 0.141461 0.198806i
\(829\) 4.04194i 0.140382i 0.997534 + 0.0701911i \(0.0223609\pi\)
−0.997534 + 0.0701911i \(0.977639\pi\)
\(830\) 19.4119 32.4044i 0.673797 1.12477i
\(831\) 16.4067i 0.569143i
\(832\) 25.8260 + 7.55290i 0.895355 + 0.261850i
\(833\) −1.74704 31.3493i −0.0605315 1.08619i
\(834\) −6.09943 + 7.21337i −0.211206 + 0.249779i
\(835\) −0.682195 + 0.949136i −0.0236083 + 0.0328462i
\(836\) −44.4166 + 7.48547i −1.53618 + 0.258890i
\(837\) −1.36161 1.36161i −0.0470641 0.0470641i
\(838\) −2.83359 33.8645i −0.0978846 1.16983i
\(839\) −17.0360 −0.588150 −0.294075 0.955782i \(-0.595011\pi\)
−0.294075 + 0.955782i \(0.595011\pi\)
\(840\) −11.2536 + 12.3837i −0.388287 + 0.427278i
\(841\) −23.1176 −0.797159
\(842\) 2.03116 + 24.2746i 0.0699984 + 0.836558i
\(843\) 8.48690 + 8.48690i 0.292304 + 0.292304i
\(844\) −8.48025 50.3193i −0.291902 1.73206i
\(845\) 3.72286 0.609184i 0.128070 0.0209566i
\(846\) 7.54081 8.91799i 0.259258 0.306607i
\(847\) 4.89978 + 1.87155i 0.168358 + 0.0643072i
\(848\) −9.68396 + 19.9719i −0.332548 + 0.685836i
\(849\) 5.65050i 0.193925i
\(850\) −29.4832 11.6915i −1.01127 0.401014i
\(851\) 34.9361i 1.19759i
\(852\) −3.07142 2.18548i −0.105225 0.0748734i
\(853\) 19.9463 + 19.9463i 0.682950 + 0.682950i 0.960664 0.277714i \(-0.0895767\pi\)
−0.277714 + 0.960664i \(0.589577\pi\)
\(854\) 11.1838 + 3.23270i 0.382700 + 0.110621i
\(855\) −2.70815 16.5501i −0.0926167 0.566000i
\(856\) 2.29221 + 1.35836i 0.0783460 + 0.0464276i
\(857\) −22.8565 22.8565i −0.780762 0.780762i 0.199198 0.979959i \(-0.436166\pi\)
−0.979959 + 0.199198i \(0.936166\pi\)
\(858\) −14.2342 + 1.19104i −0.485947 + 0.0406613i
\(859\) 15.2669i 0.520901i −0.965487 0.260451i \(-0.916129\pi\)
0.965487 0.260451i \(-0.0838711\pi\)
\(860\) 15.1984 + 7.45901i 0.518260 + 0.254350i
\(861\) −6.34425 + 2.83724i −0.216212 + 0.0966928i
\(862\) −28.6844 + 2.40015i −0.976994 + 0.0817493i
\(863\) 10.9563 + 10.9563i 0.372955 + 0.372955i 0.868553 0.495597i \(-0.165051\pi\)
−0.495597 + 0.868553i \(0.665051\pi\)
\(864\) −2.03505 + 5.27812i −0.0692337 + 0.179565i
\(865\) 20.9553 29.1551i 0.712503 0.991303i
\(866\) −17.7625 + 21.0065i −0.603595 + 0.713829i
\(867\) 2.20548 2.20548i 0.0749022 0.0749022i
\(868\) 2.00337 9.99046i 0.0679990 0.339098i
\(869\) −43.4262 −1.47313
\(870\) 3.94143 6.57944i 0.133627 0.223064i
\(871\) 27.7315i 0.939645i
\(872\) −32.1784 + 8.23157i −1.08970 + 0.278756i
\(873\) 0.895923 0.895923i 0.0303224 0.0303224i
\(874\) −24.0414 + 28.4320i −0.813211 + 0.961728i
\(875\) −3.59178 29.3615i −0.121424 0.992601i
\(876\) 3.20232 0.539683i 0.108197 0.0182342i
\(877\) 1.79847 + 1.79847i 0.0607299 + 0.0607299i 0.736819 0.676090i \(-0.236327\pi\)
−0.676090 + 0.736819i \(0.736327\pi\)
\(878\) 34.3182 2.87155i 1.15818 0.0969103i
\(879\) 30.9631i 1.04436i
\(880\) −23.6208 + 12.7852i −0.796257 + 0.430990i
\(881\) 41.8013i 1.40832i 0.710041 + 0.704160i \(0.248676\pi\)
−0.710041 + 0.704160i \(0.751324\pi\)
\(882\) 5.96143 7.90325i 0.200732 0.266116i
\(883\) −7.93799 + 7.93799i −0.267134 + 0.267134i −0.827945 0.560810i \(-0.810490\pi\)
0.560810 + 0.827945i \(0.310490\pi\)
\(884\) −5.01434 29.7536i −0.168650 1.00072i
\(885\) 21.9867 + 15.8030i 0.739076 + 0.531214i
\(886\) −20.5028 + 24.2472i −0.688805 + 0.814602i
\(887\) 8.49831 + 8.49831i 0.285345 + 0.285345i 0.835236 0.549891i \(-0.185331\pi\)
−0.549891 + 0.835236i \(0.685331\pi\)
\(888\) −6.97592 27.2699i −0.234097 0.915118i
\(889\) 24.6027 11.0027i 0.825148 0.369017i
\(890\) −2.61496 10.4289i −0.0876538 0.349579i
\(891\) 3.00292i 0.100602i
\(892\) 28.1860 39.6118i 0.943736 1.32630i
\(893\) −43.7946 + 43.7946i −1.46553 + 1.46553i
\(894\) −5.98286 5.05894i −0.200097 0.169196i
\(895\) 8.70559 + 53.2017i 0.290996 + 1.77834i
\(896\) −29.2151 + 6.51758i −0.976007 + 0.217737i
\(897\) −8.34920 + 8.34920i −0.278772 + 0.278772i
\(898\) −1.50047 17.9322i −0.0500712 0.598406i
\(899\) 4.67029i 0.155763i
\(900\) −4.71818 8.81696i −0.157273 0.293899i
\(901\) 24.8894 0.829186
\(902\) −11.1165 + 0.930162i −0.370138 + 0.0309710i
\(903\) −9.35663 3.57391i −0.311369 0.118932i
\(904\) −3.06333 1.81532i −0.101885 0.0603767i
\(905\) −3.22554 19.7120i −0.107221 0.655248i
\(906\) 0.146182 + 0.123607i 0.00485656 + 0.00410658i
\(907\) −21.8046 21.8046i −0.724011 0.724011i 0.245409 0.969420i \(-0.421078\pi\)
−0.969420 + 0.245409i \(0.921078\pi\)
\(908\) 22.2875 31.3222i 0.739635 1.03946i
\(909\) 3.27179i 0.108519i
\(910\) 22.1235 17.3913i 0.733385 0.576518i
\(911\) −0.414643 −0.0137377 −0.00686887 0.999976i \(-0.502186\pi\)
−0.00686887 + 0.999976i \(0.502186\pi\)
\(912\) 13.0886 26.9935i 0.433408 0.893846i
\(913\) −25.3642 + 25.3642i −0.839433 + 0.839433i
\(914\) −35.7359 + 42.2624i −1.18204 + 1.39792i
\(915\) −4.06048 + 5.64933i −0.134235 + 0.186761i
\(916\) −2.62191 15.5577i −0.0866304 0.514040i
\(917\) −0.675249 0.257922i −0.0222987 0.00851734i
\(918\) 6.32126 0.528927i 0.208633 0.0174572i
\(919\) 40.3280i 1.33030i −0.746711 0.665149i \(-0.768368\pi\)
0.746711 0.665149i \(-0.231632\pi\)
\(920\) −8.08592 + 20.6777i −0.266585 + 0.681725i
\(921\) 28.3464 0.934046
\(922\) −32.4038 + 2.71136i −1.06716 + 0.0892940i
\(923\) 4.48270 + 4.48270i 0.147550 + 0.147550i
\(924\) 13.2257 8.80745i 0.435095 0.289744i
\(925\) 44.5646 + 22.1353i 1.46527 + 0.727805i
\(926\) −41.8310 35.3711i −1.37465 1.16237i
\(927\) −10.5912 10.5912i −0.347862 0.347862i
\(928\) 12.5420 5.56185i 0.411712 0.182577i
\(929\) 1.92282 0.0630856 0.0315428 0.999502i \(-0.489958\pi\)
0.0315428 + 0.999502i \(0.489958\pi\)
\(930\) 5.22371 + 3.12928i 0.171292 + 0.102613i
\(931\) −34.9993 + 39.1304i −1.14706 + 1.28245i
\(932\) 48.2687 + 34.3458i 1.58109 + 1.12503i
\(933\) 2.08603 2.08603i 0.0682935 0.0682935i
\(934\) −11.5478 + 13.6568i −0.377857 + 0.446865i
\(935\) 24.4566 + 17.5783i 0.799817 + 0.574872i
\(936\) 4.84995 8.18423i 0.158526 0.267510i
\(937\) 28.0250 + 28.0250i 0.915537 + 0.915537i 0.996701 0.0811639i \(-0.0258637\pi\)
−0.0811639 + 0.996701i \(0.525864\pi\)
\(938\) 14.8986 + 27.0134i 0.486457 + 0.882020i
\(939\) 11.8778 0.387617
\(940\) −16.2712 + 33.1540i −0.530709 + 1.08137i
\(941\) 16.8454 0.549144 0.274572 0.961567i \(-0.411464\pi\)
0.274572 + 0.961567i \(0.411464\pi\)
\(942\) 5.69274 0.476336i 0.185479 0.0155199i
\(943\) −6.52047 + 6.52047i −0.212336 + 0.212336i
\(944\) 15.8750 + 45.7610i 0.516686 + 1.48940i
\(945\) 3.25565 + 4.93971i 0.105906 + 0.160689i
\(946\) −12.2764 10.3806i −0.399141 0.337503i
\(947\) 5.91437 + 5.91437i 0.192191 + 0.192191i 0.796642 0.604451i \(-0.206608\pi\)
−0.604451 + 0.796642i \(0.706608\pi\)
\(948\) 16.7683 23.5657i 0.544608 0.765378i
\(949\) −5.46141 −0.177285
\(950\) 21.0355 + 48.6816i 0.682482 + 1.57944i
\(951\) 33.9737i 1.10167i
\(952\) 20.8695 + 26.2893i 0.676385 + 0.852042i
\(953\) 40.8799 + 40.8799i 1.32423 + 1.32423i 0.910317 + 0.413911i \(0.135838\pi\)
0.413911 + 0.910317i \(0.364162\pi\)
\(954\) 5.99232 + 5.06694i 0.194008 + 0.164048i
\(955\) −0.933115 5.70247i −0.0301949 0.184527i
\(956\) −3.78276 22.4458i −0.122343 0.725949i
\(957\) −5.14999 + 5.14999i −0.166476 + 0.166476i
\(958\) −43.8615 + 3.67008i −1.41710 + 0.118575i
\(959\) 42.5236 19.0171i 1.37316 0.614096i
\(960\) 2.18272 17.7549i 0.0704471 0.573036i
\(961\) 27.2920 0.880389
\(962\) 3.94714 + 47.1727i 0.127261 + 1.52091i
\(963\) 0.666115 0.666115i 0.0214652 0.0214652i
\(964\) −5.12280 30.3972i −0.164994 0.979028i
\(965\) −23.5396 + 32.7505i −0.757765 + 1.05428i
\(966\) 3.64745 12.6186i 0.117355 0.405997i
\(967\) 14.3480 14.3480i 0.461400 0.461400i −0.437714 0.899114i \(-0.644212\pi\)
0.899114 + 0.437714i \(0.144212\pi\)
\(968\) −5.43227 + 1.38963i −0.174600 + 0.0446644i
\(969\) −33.6400 −1.08067
\(970\) −2.05903 + 3.43714i −0.0661114 + 0.110360i
\(971\) 13.1969 0.423508 0.211754 0.977323i \(-0.432082\pi\)
0.211754 + 0.977323i \(0.432082\pi\)
\(972\) 1.62957 + 1.15953i 0.0522685 + 0.0371918i
\(973\) −6.30602 + 16.5094i −0.202162 + 0.529266i
\(974\) −6.53056 + 7.72323i −0.209253 + 0.247468i
\(975\) 5.36025 + 15.9402i 0.171665 + 0.510496i
\(976\) −11.7580 + 4.07896i −0.376363 + 0.130564i
\(977\) −18.5822 + 18.5822i −0.594497 + 0.594497i −0.938843 0.344346i \(-0.888101\pi\)
0.344346 + 0.938843i \(0.388101\pi\)
\(978\) −26.0407 + 2.17893i −0.832688 + 0.0696746i
\(979\) 10.2100i 0.326312i
\(980\) −12.2072 + 28.8268i −0.389945 + 0.920838i
\(981\) 11.7431i 0.374929i
\(982\) 2.62824 + 31.4103i 0.0838705 + 1.00234i
\(983\) −35.5328 + 35.5328i −1.13332 + 1.13332i −0.143697 + 0.989622i \(0.545899\pi\)
−0.989622 + 0.143697i \(0.954101\pi\)
\(984\) 3.78766 6.39163i 0.120746 0.203758i
\(985\) −23.1247 + 32.1733i −0.736814 + 1.02513i
\(986\) −11.7480 9.93380i −0.374133 0.316357i
\(987\) 7.79621 20.4108i 0.248156 0.649682i
\(988\) −29.2497 + 41.1068i −0.930557 + 1.30778i
\(989\) −13.2897 −0.422588
\(990\) 2.30956 + 9.21094i 0.0734027 + 0.292743i
\(991\) −12.1822 −0.386980 −0.193490 0.981102i \(-0.561981\pi\)
−0.193490 + 0.981102i \(0.561981\pi\)
\(992\) 4.41580 + 9.95767i 0.140202 + 0.316156i
\(993\) 16.6427 16.6427i 0.528140 0.528140i
\(994\) −6.77495 1.95832i −0.214888 0.0621141i
\(995\) −4.18780 25.5926i −0.132762 0.811339i
\(996\) −3.97021 23.5581i −0.125801 0.746467i
\(997\) 22.4809 22.4809i 0.711976 0.711976i −0.254973 0.966948i \(-0.582066\pi\)
0.966948 + 0.254973i \(0.0820664\pi\)
\(998\) −45.6265 + 3.81777i −1.44428 + 0.120849i
\(999\) −9.95183 −0.314862
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bj.b.13.1 184
5.2 odd 4 inner 840.2.bj.b.517.41 yes 184
7.6 odd 2 inner 840.2.bj.b.13.2 yes 184
8.5 even 2 inner 840.2.bj.b.13.42 yes 184
35.27 even 4 inner 840.2.bj.b.517.42 yes 184
40.37 odd 4 inner 840.2.bj.b.517.2 yes 184
56.13 odd 2 inner 840.2.bj.b.13.41 yes 184
280.237 even 4 inner 840.2.bj.b.517.1 yes 184
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bj.b.13.1 184 1.1 even 1 trivial
840.2.bj.b.13.2 yes 184 7.6 odd 2 inner
840.2.bj.b.13.41 yes 184 56.13 odd 2 inner
840.2.bj.b.13.42 yes 184 8.5 even 2 inner
840.2.bj.b.517.1 yes 184 280.237 even 4 inner
840.2.bj.b.517.2 yes 184 40.37 odd 4 inner
840.2.bj.b.517.41 yes 184 5.2 odd 4 inner
840.2.bj.b.517.42 yes 184 35.27 even 4 inner