Properties

Label 84.9.m.a.73.5
Level $84$
Weight $9$
Character 84.73
Analytic conductor $34.220$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [84,9,Mod(61,84)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("84.61"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(84, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 84.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.2198032451\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 38255 x^{8} + 1483053595 x^{6} - 139470625170 x^{5} + 5194605060018 x^{4} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{8}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 73.5
Root \(16.3207 + 9.42278i\) of defining polynomial
Character \(\chi\) \(=\) 84.73
Dual form 84.9.m.a.61.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-40.5000 - 23.3827i) q^{3} +(790.151 - 456.194i) q^{5} +(-2318.52 - 623.902i) q^{7} +(1093.50 + 1894.00i) q^{9} +(4311.81 - 7468.27i) q^{11} -37108.2i q^{13} -42668.2 q^{15} +(43729.9 + 25247.5i) q^{17} +(-12884.6 + 7438.94i) q^{19} +(79311.7 + 79481.3i) q^{21} +(218851. + 379062. i) q^{23} +(220914. - 382634. i) q^{25} -102276. i q^{27} -155208. q^{29} +(-1.46250e6 - 844374. i) q^{31} +(-349257. + 201643. i) q^{33} +(-2.11660e6 + 564720. i) q^{35} +(-1.15538e6 - 2.00117e6i) q^{37} +(-867690. + 1.50288e6i) q^{39} -4.20233e6i q^{41} -3.43168e6 q^{43} +(1.72806e6 + 997696. i) q^{45} +(-4.11520e6 + 2.37591e6i) q^{47} +(4.98629e6 + 2.89306e6i) q^{49} +(-1.18071e6 - 2.04505e6i) q^{51} +(-1.47580e6 + 2.55615e6i) q^{53} -7.86809e6i q^{55} +695770. q^{57} +(-1.62462e7 - 9.37973e6i) q^{59} +(-1.45547e7 + 8.40319e6i) q^{61} +(-1.35364e6 - 5.07351e6i) q^{63} +(-1.69286e7 - 2.93211e7i) q^{65} +(-9.81510e6 + 1.70003e7i) q^{67} -2.04693e7i q^{69} +3.56826e7 q^{71} +(-1.35470e7 - 7.82137e6i) q^{73} +(-1.78940e7 + 1.03311e7i) q^{75} +(-1.46565e7 + 1.46252e7i) q^{77} +(9.07568e6 + 1.57195e7i) q^{79} +(-2.39148e6 + 4.14217e6i) q^{81} -1.15204e7i q^{83} +4.60710e7 q^{85} +(6.28592e6 + 3.62918e6i) q^{87} +(-2.46432e7 + 1.42278e7i) q^{89} +(-2.31519e7 + 8.60363e7i) q^{91} +(3.94875e7 + 6.83943e7i) q^{93} +(-6.78720e6 + 1.17558e7i) q^{95} -1.52449e8i q^{97} +1.88599e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 405 q^{3} + 1389 q^{5} + 1217 q^{7} + 10935 q^{9} - 879 q^{11} - 75006 q^{15} - 13674 q^{17} - 29268 q^{19} - 42363 q^{21} + 312732 q^{23} - 22052 q^{25} - 289794 q^{29} + 242787 q^{31} + 71199 q^{33}+ \cdots - 3844746 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −40.5000 23.3827i −0.500000 0.288675i
\(4\) 0 0
\(5\) 790.151 456.194i 1.26424 0.729911i 0.290350 0.956921i \(-0.406228\pi\)
0.973892 + 0.227010i \(0.0728950\pi\)
\(6\) 0 0
\(7\) −2318.52 623.902i −0.965649 0.259851i
\(8\) 0 0
\(9\) 1093.50 + 1894.00i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 4311.81 7468.27i 0.294502 0.510093i −0.680367 0.732872i \(-0.738179\pi\)
0.974869 + 0.222779i \(0.0715127\pi\)
\(12\) 0 0
\(13\) 37108.2i 1.29926i −0.760249 0.649631i \(-0.774923\pi\)
0.760249 0.649631i \(-0.225077\pi\)
\(14\) 0 0
\(15\) −42668.2 −0.842828
\(16\) 0 0
\(17\) 43729.9 + 25247.5i 0.523580 + 0.302289i 0.738398 0.674365i \(-0.235583\pi\)
−0.214818 + 0.976654i \(0.568916\pi\)
\(18\) 0 0
\(19\) −12884.6 + 7438.94i −0.0988684 + 0.0570817i −0.548619 0.836073i \(-0.684846\pi\)
0.449751 + 0.893154i \(0.351513\pi\)
\(20\) 0 0
\(21\) 79311.7 + 79481.3i 0.407812 + 0.408684i
\(22\) 0 0
\(23\) 218851. + 379062.i 0.782056 + 1.35456i 0.930742 + 0.365677i \(0.119162\pi\)
−0.148686 + 0.988885i \(0.547504\pi\)
\(24\) 0 0
\(25\) 220914. 382634.i 0.565539 0.979542i
\(26\) 0 0
\(27\) 102276.i 0.192450i
\(28\) 0 0
\(29\) −155208. −0.219443 −0.109721 0.993962i \(-0.534996\pi\)
−0.109721 + 0.993962i \(0.534996\pi\)
\(30\) 0 0
\(31\) −1.46250e6 844374.i −1.58361 0.914299i −0.994326 0.106375i \(-0.966076\pi\)
−0.589286 0.807924i \(-0.700591\pi\)
\(32\) 0 0
\(33\) −349257. + 201643.i −0.294502 + 0.170031i
\(34\) 0 0
\(35\) −2.11660e6 + 564720.i −1.41048 + 0.376323i
\(36\) 0 0
\(37\) −1.15538e6 2.00117e6i −0.616476 1.06777i −0.990124 0.140197i \(-0.955226\pi\)
0.373647 0.927571i \(-0.378107\pi\)
\(38\) 0 0
\(39\) −867690. + 1.50288e6i −0.375065 + 0.649631i
\(40\) 0 0
\(41\) 4.20233e6i 1.48715i −0.668652 0.743575i \(-0.733128\pi\)
0.668652 0.743575i \(-0.266872\pi\)
\(42\) 0 0
\(43\) −3.43168e6 −1.00377 −0.501884 0.864935i \(-0.667360\pi\)
−0.501884 + 0.864935i \(0.667360\pi\)
\(44\) 0 0
\(45\) 1.72806e6 + 997696.i 0.421414 + 0.243304i
\(46\) 0 0
\(47\) −4.11520e6 + 2.37591e6i −0.843334 + 0.486899i −0.858396 0.512987i \(-0.828539\pi\)
0.0150621 + 0.999887i \(0.495205\pi\)
\(48\) 0 0
\(49\) 4.98629e6 + 2.89306e6i 0.864955 + 0.501849i
\(50\) 0 0
\(51\) −1.18071e6 2.04505e6i −0.174527 0.302289i
\(52\) 0 0
\(53\) −1.47580e6 + 2.55615e6i −0.187035 + 0.323954i −0.944260 0.329200i \(-0.893221\pi\)
0.757225 + 0.653154i \(0.226554\pi\)
\(54\) 0 0
\(55\) 7.86809e6i 0.859842i
\(56\) 0 0
\(57\) 695770. 0.0659123
\(58\) 0 0
\(59\) −1.62462e7 9.37973e6i −1.34074 0.774074i −0.353820 0.935313i \(-0.615118\pi\)
−0.986915 + 0.161239i \(0.948451\pi\)
\(60\) 0 0
\(61\) −1.45547e7 + 8.40319e6i −1.05120 + 0.606910i −0.922985 0.384836i \(-0.874258\pi\)
−0.128215 + 0.991746i \(0.540925\pi\)
\(62\) 0 0
\(63\) −1.35364e6 5.07351e6i −0.0859290 0.322067i
\(64\) 0 0
\(65\) −1.69286e7 2.93211e7i −0.948345 1.64258i
\(66\) 0 0
\(67\) −9.81510e6 + 1.70003e7i −0.487075 + 0.843638i −0.999890 0.0148609i \(-0.995269\pi\)
0.512815 + 0.858499i \(0.328603\pi\)
\(68\) 0 0
\(69\) 2.04693e7i 0.903041i
\(70\) 0 0
\(71\) 3.56826e7 1.40418 0.702091 0.712087i \(-0.252250\pi\)
0.702091 + 0.712087i \(0.252250\pi\)
\(72\) 0 0
\(73\) −1.35470e7 7.82137e6i −0.477037 0.275417i 0.242144 0.970240i \(-0.422149\pi\)
−0.719181 + 0.694823i \(0.755483\pi\)
\(74\) 0 0
\(75\) −1.78940e7 + 1.03311e7i −0.565539 + 0.326514i
\(76\) 0 0
\(77\) −1.46565e7 + 1.46252e7i −0.416934 + 0.416044i
\(78\) 0 0
\(79\) 9.07568e6 + 1.57195e7i 0.233008 + 0.403582i 0.958692 0.284447i \(-0.0918098\pi\)
−0.725684 + 0.688028i \(0.758476\pi\)
\(80\) 0 0
\(81\) −2.39148e6 + 4.14217e6i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 1.15204e7i 0.242747i −0.992607 0.121374i \(-0.961270\pi\)
0.992607 0.121374i \(-0.0387299\pi\)
\(84\) 0 0
\(85\) 4.60710e7 0.882576
\(86\) 0 0
\(87\) 6.28592e6 + 3.62918e6i 0.109721 + 0.0633477i
\(88\) 0 0
\(89\) −2.46432e7 + 1.42278e7i −0.392770 + 0.226766i −0.683360 0.730082i \(-0.739482\pi\)
0.290590 + 0.956848i \(0.406148\pi\)
\(90\) 0 0
\(91\) −2.31519e7 + 8.60363e7i −0.337614 + 1.25463i
\(92\) 0 0
\(93\) 3.94875e7 + 6.83943e7i 0.527871 + 0.914299i
\(94\) 0 0
\(95\) −6.78720e6 + 1.17558e7i −0.0833291 + 0.144330i
\(96\) 0 0
\(97\) 1.52449e8i 1.72201i −0.508593 0.861007i \(-0.669834\pi\)
0.508593 0.861007i \(-0.330166\pi\)
\(98\) 0 0
\(99\) 1.88599e7 0.196335
\(100\) 0 0
\(101\) 1.63696e7 + 9.45100e6i 0.157309 + 0.0908222i 0.576588 0.817035i \(-0.304384\pi\)
−0.419279 + 0.907857i \(0.637717\pi\)
\(102\) 0 0
\(103\) 1.36241e8 7.86589e7i 1.21049 0.698874i 0.247621 0.968857i \(-0.420351\pi\)
0.962865 + 0.269983i \(0.0870179\pi\)
\(104\) 0 0
\(105\) 9.89271e7 + 2.66207e7i 0.813876 + 0.219010i
\(106\) 0 0
\(107\) −6.14765e7 1.06480e8i −0.469001 0.812334i 0.530371 0.847766i \(-0.322053\pi\)
−0.999372 + 0.0354319i \(0.988719\pi\)
\(108\) 0 0
\(109\) −2.12086e7 + 3.67344e7i −0.150247 + 0.260236i −0.931318 0.364206i \(-0.881340\pi\)
0.781071 + 0.624442i \(0.214674\pi\)
\(110\) 0 0
\(111\) 1.08063e8i 0.711845i
\(112\) 0 0
\(113\) 1.70573e8 1.04615 0.523077 0.852285i \(-0.324784\pi\)
0.523077 + 0.852285i \(0.324784\pi\)
\(114\) 0 0
\(115\) 3.45851e8 + 1.99677e8i 1.97742 + 1.14166i
\(116\) 0 0
\(117\) 7.02829e7 4.05779e7i 0.375065 0.216544i
\(118\) 0 0
\(119\) −8.56369e7 8.58200e7i −0.427044 0.427958i
\(120\) 0 0
\(121\) 6.99960e7 + 1.21237e8i 0.326537 + 0.565578i
\(122\) 0 0
\(123\) −9.82618e7 + 1.70194e8i −0.429303 + 0.743575i
\(124\) 0 0
\(125\) 4.67162e7i 0.191350i
\(126\) 0 0
\(127\) −1.68997e8 −0.649628 −0.324814 0.945778i \(-0.605302\pi\)
−0.324814 + 0.945778i \(0.605302\pi\)
\(128\) 0 0
\(129\) 1.38983e8 + 8.02420e7i 0.501884 + 0.289763i
\(130\) 0 0
\(131\) 1.34426e8 7.76109e7i 0.456455 0.263535i −0.254097 0.967179i \(-0.581778\pi\)
0.710553 + 0.703644i \(0.248445\pi\)
\(132\) 0 0
\(133\) 3.45145e7 9.20862e6i 0.110305 0.0294298i
\(134\) 0 0
\(135\) −4.66576e7 8.08134e7i −0.140471 0.243304i
\(136\) 0 0
\(137\) 1.58330e7 2.74236e7i 0.0449450 0.0778471i −0.842678 0.538418i \(-0.819022\pi\)
0.887623 + 0.460571i \(0.152355\pi\)
\(138\) 0 0
\(139\) 4.96025e8i 1.32875i 0.747398 + 0.664377i \(0.231303\pi\)
−0.747398 + 0.664377i \(0.768697\pi\)
\(140\) 0 0
\(141\) 2.22221e8 0.562223
\(142\) 0 0
\(143\) −2.77135e8 1.60004e8i −0.662745 0.382636i
\(144\) 0 0
\(145\) −1.22638e8 + 7.08049e7i −0.277429 + 0.160174i
\(146\) 0 0
\(147\) −1.34297e8 2.33762e8i −0.287606 0.500616i
\(148\) 0 0
\(149\) −1.89726e8 3.28616e8i −0.384931 0.666720i 0.606829 0.794833i \(-0.292441\pi\)
−0.991760 + 0.128113i \(0.959108\pi\)
\(150\) 0 0
\(151\) 9.12604e7 1.58068e8i 0.175539 0.304043i −0.764808 0.644258i \(-0.777166\pi\)
0.940348 + 0.340215i \(0.110500\pi\)
\(152\) 0 0
\(153\) 1.10433e8i 0.201526i
\(154\) 0 0
\(155\) −1.54079e9 −2.66943
\(156\) 0 0
\(157\) 4.12944e8 + 2.38413e8i 0.679661 + 0.392402i 0.799727 0.600363i \(-0.204977\pi\)
−0.120066 + 0.992766i \(0.538311\pi\)
\(158\) 0 0
\(159\) 1.19539e8 6.90161e7i 0.187035 0.107985i
\(160\) 0 0
\(161\) −2.70915e8 1.01541e9i −0.403208 1.51125i
\(162\) 0 0
\(163\) 2.20882e6 + 3.82578e6i 0.00312903 + 0.00541963i 0.867586 0.497288i \(-0.165671\pi\)
−0.864457 + 0.502707i \(0.832337\pi\)
\(164\) 0 0
\(165\) −1.83977e8 + 3.18658e8i −0.248215 + 0.429921i
\(166\) 0 0
\(167\) 1.17558e9i 1.51142i −0.654908 0.755709i \(-0.727293\pi\)
0.654908 0.755709i \(-0.272707\pi\)
\(168\) 0 0
\(169\) −5.61290e8 −0.688083
\(170\) 0 0
\(171\) −2.81787e7 1.62690e7i −0.0329561 0.0190272i
\(172\) 0 0
\(173\) 1.13605e9 6.55898e8i 1.26827 0.732237i 0.293611 0.955925i \(-0.405143\pi\)
0.974661 + 0.223688i \(0.0718097\pi\)
\(174\) 0 0
\(175\) −7.50919e8 + 7.49316e8i −0.800647 + 0.798938i
\(176\) 0 0
\(177\) 4.38647e8 + 7.59758e8i 0.446912 + 0.774074i
\(178\) 0 0
\(179\) −8.82047e8 + 1.52775e9i −0.859171 + 1.48813i 0.0135496 + 0.999908i \(0.495687\pi\)
−0.872721 + 0.488220i \(0.837646\pi\)
\(180\) 0 0
\(181\) 7.89659e8i 0.735742i 0.929877 + 0.367871i \(0.119913\pi\)
−0.929877 + 0.367871i \(0.880087\pi\)
\(182\) 0 0
\(183\) 7.85956e8 0.700800
\(184\) 0 0
\(185\) −1.82584e9 1.05415e9i −1.55875 0.899945i
\(186\) 0 0
\(187\) 3.77110e8 2.17725e8i 0.308391 0.178050i
\(188\) 0 0
\(189\) −6.38101e7 + 2.37129e8i −0.0500083 + 0.185839i
\(190\) 0 0
\(191\) −7.33171e8 1.26989e9i −0.550899 0.954185i −0.998210 0.0598062i \(-0.980952\pi\)
0.447311 0.894378i \(-0.352382\pi\)
\(192\) 0 0
\(193\) 1.05021e9 1.81901e9i 0.756911 1.31101i −0.187507 0.982263i \(-0.560041\pi\)
0.944418 0.328746i \(-0.106626\pi\)
\(194\) 0 0
\(195\) 1.58334e9i 1.09505i
\(196\) 0 0
\(197\) −3.68170e8 −0.244446 −0.122223 0.992503i \(-0.539002\pi\)
−0.122223 + 0.992503i \(0.539002\pi\)
\(198\) 0 0
\(199\) 1.06933e9 + 6.17377e8i 0.681865 + 0.393675i 0.800557 0.599256i \(-0.204537\pi\)
−0.118692 + 0.992931i \(0.537870\pi\)
\(200\) 0 0
\(201\) 7.95023e8 4.59007e8i 0.487075 0.281213i
\(202\) 0 0
\(203\) 3.59853e8 + 9.68344e7i 0.211905 + 0.0570224i
\(204\) 0 0
\(205\) −1.91708e9 3.32048e9i −1.08549 1.88012i
\(206\) 0 0
\(207\) −4.78628e8 + 8.29008e8i −0.260685 + 0.451520i
\(208\) 0 0
\(209\) 1.28301e8i 0.0672428i
\(210\) 0 0
\(211\) −2.16657e9 −1.09306 −0.546528 0.837441i \(-0.684051\pi\)
−0.546528 + 0.837441i \(0.684051\pi\)
\(212\) 0 0
\(213\) −1.44515e9 8.34355e8i −0.702091 0.405352i
\(214\) 0 0
\(215\) −2.71155e9 + 1.56551e9i −1.26901 + 0.732661i
\(216\) 0 0
\(217\) 2.86403e9 + 2.87016e9i 1.29163 + 1.29439i
\(218\) 0 0
\(219\) 3.65769e8 + 6.33531e8i 0.159012 + 0.275417i
\(220\) 0 0
\(221\) 9.36890e8 1.62274e9i 0.392753 0.680268i
\(222\) 0 0
\(223\) 1.96048e9i 0.792761i −0.918086 0.396380i \(-0.870266\pi\)
0.918086 0.396380i \(-0.129734\pi\)
\(224\) 0 0
\(225\) 9.66276e8 0.377026
\(226\) 0 0
\(227\) −3.85172e8 2.22379e8i −0.145061 0.0837510i 0.425713 0.904858i \(-0.360023\pi\)
−0.570774 + 0.821107i \(0.693357\pi\)
\(228\) 0 0
\(229\) −7.22193e7 + 4.16958e7i −0.0262610 + 0.0151618i −0.513073 0.858345i \(-0.671493\pi\)
0.486812 + 0.873507i \(0.338160\pi\)
\(230\) 0 0
\(231\) 9.35565e8 2.49613e8i 0.328569 0.0876636i
\(232\) 0 0
\(233\) 9.57414e8 + 1.65829e9i 0.324845 + 0.562648i 0.981481 0.191560i \(-0.0613546\pi\)
−0.656636 + 0.754208i \(0.728021\pi\)
\(234\) 0 0
\(235\) −2.16775e9 + 3.75466e9i −0.710786 + 1.23112i
\(236\) 0 0
\(237\) 8.48855e8i 0.269054i
\(238\) 0 0
\(239\) 5.74965e9 1.76218 0.881089 0.472951i \(-0.156811\pi\)
0.881089 + 0.472951i \(0.156811\pi\)
\(240\) 0 0
\(241\) 5.63575e9 + 3.25380e9i 1.67064 + 0.964546i 0.967279 + 0.253715i \(0.0816526\pi\)
0.703363 + 0.710831i \(0.251681\pi\)
\(242\) 0 0
\(243\) 1.93710e8 1.11839e8i 0.0555556 0.0320750i
\(244\) 0 0
\(245\) 5.25972e9 + 1.12378e7i 1.45982 + 0.00311900i
\(246\) 0 0
\(247\) 2.76046e8 + 4.78126e8i 0.0741641 + 0.128456i
\(248\) 0 0
\(249\) −2.69377e8 + 4.66575e8i −0.0700751 + 0.121374i
\(250\) 0 0
\(251\) 8.26879e8i 0.208328i 0.994560 + 0.104164i \(0.0332167\pi\)
−0.994560 + 0.104164i \(0.966783\pi\)
\(252\) 0 0
\(253\) 3.77458e9 0.921270
\(254\) 0 0
\(255\) −1.86588e9 1.07726e9i −0.441288 0.254778i
\(256\) 0 0
\(257\) 5.24692e9 3.02931e9i 1.20274 0.694402i 0.241576 0.970382i \(-0.422336\pi\)
0.961163 + 0.275980i \(0.0890023\pi\)
\(258\) 0 0
\(259\) 1.43023e9 + 5.36060e9i 0.317839 + 1.19128i
\(260\) 0 0
\(261\) −1.69720e8 2.93963e8i −0.0365738 0.0633477i
\(262\) 0 0
\(263\) −2.36049e9 + 4.08848e9i −0.493377 + 0.854553i −0.999971 0.00763120i \(-0.997571\pi\)
0.506594 + 0.862185i \(0.330904\pi\)
\(264\) 0 0
\(265\) 2.69300e9i 0.546075i
\(266\) 0 0
\(267\) 1.33074e9 0.261846
\(268\) 0 0
\(269\) −8.05825e9 4.65243e9i −1.53897 0.888527i −0.998899 0.0469109i \(-0.985062\pi\)
−0.540076 0.841617i \(-0.681604\pi\)
\(270\) 0 0
\(271\) −7.22249e8 + 4.16991e8i −0.133909 + 0.0773124i −0.565458 0.824777i \(-0.691301\pi\)
0.431549 + 0.902090i \(0.357967\pi\)
\(272\) 0 0
\(273\) 2.94941e9 2.94312e9i 0.530988 0.529855i
\(274\) 0 0
\(275\) −1.90507e9 3.29969e9i −0.333105 0.576955i
\(276\) 0 0
\(277\) 5.58602e9 9.67528e9i 0.948820 1.64340i 0.200904 0.979611i \(-0.435612\pi\)
0.747916 0.663793i \(-0.231055\pi\)
\(278\) 0 0
\(279\) 3.69329e9i 0.609533i
\(280\) 0 0
\(281\) 5.88765e8 0.0944314 0.0472157 0.998885i \(-0.484965\pi\)
0.0472157 + 0.998885i \(0.484965\pi\)
\(282\) 0 0
\(283\) −4.79981e9 2.77117e9i −0.748305 0.432034i 0.0767763 0.997048i \(-0.475537\pi\)
−0.825081 + 0.565014i \(0.808871\pi\)
\(284\) 0 0
\(285\) 5.49763e8 3.17406e8i 0.0833291 0.0481100i
\(286\) 0 0
\(287\) −2.62184e9 + 9.74320e9i −0.386437 + 1.43607i
\(288\) 0 0
\(289\) −2.21301e9 3.83304e9i −0.317243 0.549480i
\(290\) 0 0
\(291\) −3.56466e9 + 6.17417e9i −0.497103 + 0.861007i
\(292\) 0 0
\(293\) 9.38671e9i 1.27363i 0.771017 + 0.636814i \(0.219748\pi\)
−0.771017 + 0.636814i \(0.780252\pi\)
\(294\) 0 0
\(295\) −1.71159e10 −2.26002
\(296\) 0 0
\(297\) −7.63824e8 4.40994e8i −0.0981675 0.0566770i
\(298\) 0 0
\(299\) 1.40663e10 8.12119e9i 1.75993 1.01610i
\(300\) 0 0
\(301\) 7.95643e9 + 2.14103e9i 0.969287 + 0.260830i
\(302\) 0 0
\(303\) −4.41979e8 7.65531e8i −0.0524362 0.0908222i
\(304\) 0 0
\(305\) −7.66697e9 + 1.32796e10i −0.885981 + 1.53456i
\(306\) 0 0
\(307\) 5.32865e9i 0.599879i −0.953958 0.299940i \(-0.903033\pi\)
0.953958 0.299940i \(-0.0969665\pi\)
\(308\) 0 0
\(309\) −7.35703e9 −0.806991
\(310\) 0 0
\(311\) 1.06252e10 + 6.13448e9i 1.13579 + 0.655747i 0.945384 0.325959i \(-0.105687\pi\)
0.190403 + 0.981706i \(0.439020\pi\)
\(312\) 0 0
\(313\) 3.82607e9 2.20898e9i 0.398635 0.230152i −0.287260 0.957853i \(-0.592744\pi\)
0.685895 + 0.727701i \(0.259411\pi\)
\(314\) 0 0
\(315\) −3.38408e9 3.39132e9i −0.343715 0.344451i
\(316\) 0 0
\(317\) −3.64028e9 6.30515e9i −0.360494 0.624394i 0.627548 0.778578i \(-0.284059\pi\)
−0.988042 + 0.154184i \(0.950725\pi\)
\(318\) 0 0
\(319\) −6.69227e8 + 1.15913e9i −0.0646265 + 0.111936i
\(320\) 0 0
\(321\) 5.74994e9i 0.541556i
\(322\) 0 0
\(323\) −7.51258e8 −0.0690207
\(324\) 0 0
\(325\) −1.41989e10 8.19771e9i −1.27268 0.734783i
\(326\) 0 0
\(327\) 1.71790e9 9.91828e8i 0.150247 0.0867452i
\(328\) 0 0
\(329\) 1.10235e10 2.94113e9i 0.940886 0.251033i
\(330\) 0 0
\(331\) −1.07154e10 1.85596e10i −0.892681 1.54617i −0.836648 0.547741i \(-0.815488\pi\)
−0.0560332 0.998429i \(-0.517845\pi\)
\(332\) 0 0
\(333\) 2.52681e9 4.37656e9i 0.205492 0.355923i
\(334\) 0 0
\(335\) 1.79104e10i 1.42208i
\(336\) 0 0
\(337\) −2.19922e10 −1.70510 −0.852550 0.522645i \(-0.824945\pi\)
−0.852550 + 0.522645i \(0.824945\pi\)
\(338\) 0 0
\(339\) −6.90819e9 3.98845e9i −0.523077 0.301999i
\(340\) 0 0
\(341\) −1.26120e10 + 7.28157e9i −0.932756 + 0.538527i
\(342\) 0 0
\(343\) −9.75585e9 9.81858e9i −0.704837 0.709369i
\(344\) 0 0
\(345\) −9.33799e9 1.61739e10i −0.659139 1.14166i
\(346\) 0 0
\(347\) 2.11832e9 3.66903e9i 0.146108 0.253066i −0.783678 0.621167i \(-0.786659\pi\)
0.929786 + 0.368101i \(0.119992\pi\)
\(348\) 0 0
\(349\) 5.09547e9i 0.343465i 0.985144 + 0.171732i \(0.0549365\pi\)
−0.985144 + 0.171732i \(0.945064\pi\)
\(350\) 0 0
\(351\) −3.79528e9 −0.250043
\(352\) 0 0
\(353\) 6.67443e9 + 3.85348e9i 0.429848 + 0.248173i 0.699282 0.714846i \(-0.253503\pi\)
−0.269434 + 0.963019i \(0.586837\pi\)
\(354\) 0 0
\(355\) 2.81947e10 1.62782e10i 1.77523 1.02493i
\(356\) 0 0
\(357\) 1.46159e9 + 5.47813e9i 0.0899814 + 0.337256i
\(358\) 0 0
\(359\) −4.93726e8 8.55158e8i −0.0297241 0.0514836i 0.850781 0.525521i \(-0.176130\pi\)
−0.880505 + 0.474037i \(0.842796\pi\)
\(360\) 0 0
\(361\) −8.38111e9 + 1.45165e10i −0.493483 + 0.854738i
\(362\) 0 0
\(363\) 6.54678e9i 0.377052i
\(364\) 0 0
\(365\) −1.42723e10 −0.804120
\(366\) 0 0
\(367\) 1.46428e10 + 8.45400e9i 0.807158 + 0.466013i 0.845968 0.533234i \(-0.179023\pi\)
−0.0388101 + 0.999247i \(0.512357\pi\)
\(368\) 0 0
\(369\) 7.95921e9 4.59525e9i 0.429303 0.247858i
\(370\) 0 0
\(371\) 5.01645e9 5.00575e9i 0.264790 0.264225i
\(372\) 0 0
\(373\) −4.36752e9 7.56476e9i −0.225631 0.390805i 0.730877 0.682509i \(-0.239111\pi\)
−0.956509 + 0.291704i \(0.905778\pi\)
\(374\) 0 0
\(375\) −1.09235e9 + 1.89201e9i −0.0552379 + 0.0956748i
\(376\) 0 0
\(377\) 5.75949e9i 0.285114i
\(378\) 0 0
\(379\) 1.34632e10 0.652516 0.326258 0.945281i \(-0.394212\pi\)
0.326258 + 0.945281i \(0.394212\pi\)
\(380\) 0 0
\(381\) 6.84439e9 + 3.95161e9i 0.324814 + 0.187531i
\(382\) 0 0
\(383\) 3.11283e10 1.79719e10i 1.44664 0.835217i 0.448359 0.893854i \(-0.352009\pi\)
0.998279 + 0.0586370i \(0.0186755\pi\)
\(384\) 0 0
\(385\) −4.90891e9 + 1.82423e10i −0.223431 + 0.830305i
\(386\) 0 0
\(387\) −3.75255e9 6.49960e9i −0.167295 0.289763i
\(388\) 0 0
\(389\) −1.20745e10 + 2.09136e10i −0.527315 + 0.913337i 0.472178 + 0.881503i \(0.343468\pi\)
−0.999493 + 0.0318334i \(0.989865\pi\)
\(390\) 0 0
\(391\) 2.21018e10i 0.945628i
\(392\) 0 0
\(393\) −7.25900e9 −0.304303
\(394\) 0 0
\(395\) 1.43423e10 + 8.28054e9i 0.589157 + 0.340150i
\(396\) 0 0
\(397\) 2.12986e10 1.22967e10i 0.857410 0.495026i −0.00573411 0.999984i \(-0.501825\pi\)
0.863144 + 0.504958i \(0.168492\pi\)
\(398\) 0 0
\(399\) −1.61316e9 4.34092e8i −0.0636481 0.0171274i
\(400\) 0 0
\(401\) −2.09789e9 3.63366e9i −0.0811345 0.140529i 0.822603 0.568616i \(-0.192521\pi\)
−0.903738 + 0.428087i \(0.859188\pi\)
\(402\) 0 0
\(403\) −3.13332e10 + 5.42708e10i −1.18791 + 2.05753i
\(404\) 0 0
\(405\) 4.36392e9i 0.162202i
\(406\) 0 0
\(407\) −1.99270e10 −0.726215
\(408\) 0 0
\(409\) −1.37810e10 7.95648e9i −0.492480 0.284333i 0.233123 0.972447i \(-0.425106\pi\)
−0.725603 + 0.688114i \(0.758439\pi\)
\(410\) 0 0
\(411\) −1.28248e9 + 7.40438e8i −0.0449450 + 0.0259490i
\(412\) 0 0
\(413\) 3.18151e10 + 3.18831e10i 1.09354 + 1.09587i
\(414\) 0 0
\(415\) −5.25553e9 9.10284e9i −0.177184 0.306891i
\(416\) 0 0
\(417\) 1.15984e10 2.00890e10i 0.383578 0.664377i
\(418\) 0 0
\(419\) 5.82585e10i 1.89018i −0.326809 0.945090i \(-0.605974\pi\)
0.326809 0.945090i \(-0.394026\pi\)
\(420\) 0 0
\(421\) 2.37307e10 0.755410 0.377705 0.925926i \(-0.376713\pi\)
0.377705 + 0.925926i \(0.376713\pi\)
\(422\) 0 0
\(423\) −8.99994e9 5.19612e9i −0.281111 0.162300i
\(424\) 0 0
\(425\) 1.93211e10 1.11550e10i 0.592210 0.341912i
\(426\) 0 0
\(427\) 3.89883e10 1.04022e10i 1.17280 0.312907i
\(428\) 0 0
\(429\) 7.48263e9 + 1.29603e10i 0.220915 + 0.382636i
\(430\) 0 0
\(431\) −1.31104e10 + 2.27079e10i −0.379934 + 0.658065i −0.991052 0.133475i \(-0.957387\pi\)
0.611118 + 0.791539i \(0.290720\pi\)
\(432\) 0 0
\(433\) 1.04010e10i 0.295884i −0.988996 0.147942i \(-0.952735\pi\)
0.988996 0.147942i \(-0.0472649\pi\)
\(434\) 0 0
\(435\) 6.62244e9 0.184953
\(436\) 0 0
\(437\) −5.63964e9 3.25605e9i −0.154641 0.0892822i
\(438\) 0 0
\(439\) 4.94931e10 2.85749e10i 1.33256 0.769354i 0.346868 0.937914i \(-0.387245\pi\)
0.985691 + 0.168560i \(0.0539117\pi\)
\(440\) 0 0
\(441\) −2.69370e7 + 1.26076e10i −0.000712187 + 0.333333i
\(442\) 0 0
\(443\) −1.46702e9 2.54096e9i −0.0380909 0.0659754i 0.846351 0.532625i \(-0.178794\pi\)
−0.884442 + 0.466649i \(0.845461\pi\)
\(444\) 0 0
\(445\) −1.29813e10 + 2.24842e10i −0.331037 + 0.573373i
\(446\) 0 0
\(447\) 1.77453e10i 0.444480i
\(448\) 0 0
\(449\) 2.90570e10 0.714932 0.357466 0.933926i \(-0.383641\pi\)
0.357466 + 0.933926i \(0.383641\pi\)
\(450\) 0 0
\(451\) −3.13842e10 1.81197e10i −0.758585 0.437969i
\(452\) 0 0
\(453\) −7.39209e9 + 4.26783e9i −0.175539 + 0.101348i
\(454\) 0 0
\(455\) 2.09557e10 + 7.85434e10i 0.488942 + 1.83259i
\(456\) 0 0
\(457\) −1.10752e10 1.91828e10i −0.253914 0.439792i 0.710686 0.703509i \(-0.248385\pi\)
−0.964600 + 0.263717i \(0.915051\pi\)
\(458\) 0 0
\(459\) 2.58221e9 4.47252e9i 0.0581756 0.100763i
\(460\) 0 0
\(461\) 1.24751e10i 0.276210i 0.990418 + 0.138105i \(0.0441011\pi\)
−0.990418 + 0.138105i \(0.955899\pi\)
\(462\) 0 0
\(463\) 5.14297e10 1.11916 0.559578 0.828778i \(-0.310963\pi\)
0.559578 + 0.828778i \(0.310963\pi\)
\(464\) 0 0
\(465\) 6.24022e10 + 3.60279e10i 1.33471 + 0.770597i
\(466\) 0 0
\(467\) 2.25703e10 1.30310e10i 0.474537 0.273974i −0.243600 0.969876i \(-0.578328\pi\)
0.718137 + 0.695902i \(0.244995\pi\)
\(468\) 0 0
\(469\) 3.33630e10 3.32918e10i 0.689563 0.688092i
\(470\) 0 0
\(471\) −1.11495e10 1.93115e10i −0.226554 0.392402i
\(472\) 0 0
\(473\) −1.47968e10 + 2.56288e10i −0.295612 + 0.512015i
\(474\) 0 0
\(475\) 6.57345e9i 0.129128i
\(476\) 0 0
\(477\) −6.45513e9 −0.124690
\(478\) 0 0
\(479\) 1.73795e10 + 1.00341e10i 0.330138 + 0.190605i 0.655902 0.754846i \(-0.272288\pi\)
−0.325765 + 0.945451i \(0.605622\pi\)
\(480\) 0 0
\(481\) −7.42599e10 + 4.28740e10i −1.38731 + 0.800964i
\(482\) 0 0
\(483\) −1.27709e10 + 4.74586e10i −0.234656 + 0.872020i
\(484\) 0 0
\(485\) −6.95462e10 1.20457e11i −1.25692 2.17704i
\(486\) 0 0
\(487\) −4.89148e9 + 8.47229e9i −0.0869610 + 0.150621i −0.906225 0.422795i \(-0.861049\pi\)
0.819264 + 0.573416i \(0.194382\pi\)
\(488\) 0 0
\(489\) 2.06592e8i 0.00361309i
\(490\) 0 0
\(491\) −4.29568e8 −0.00739105 −0.00369553 0.999993i \(-0.501176\pi\)
−0.00369553 + 0.999993i \(0.501176\pi\)
\(492\) 0 0
\(493\) −6.78723e9 3.91861e9i −0.114896 0.0663352i
\(494\) 0 0
\(495\) 1.49021e10 8.60376e9i 0.248215 0.143307i
\(496\) 0 0
\(497\) −8.27309e10 2.22624e10i −1.35595 0.364878i
\(498\) 0 0
\(499\) −6.21696e9 1.07681e10i −0.100271 0.173675i 0.811525 0.584317i \(-0.198638\pi\)
−0.911796 + 0.410643i \(0.865304\pi\)
\(500\) 0 0
\(501\) −2.74881e10 + 4.76108e10i −0.436309 + 0.755709i
\(502\) 0 0
\(503\) 8.85735e10i 1.38367i −0.722057 0.691834i \(-0.756803\pi\)
0.722057 0.691834i \(-0.243197\pi\)
\(504\) 0 0
\(505\) 1.72460e10 0.265168
\(506\) 0 0
\(507\) 2.27323e10 + 1.31245e10i 0.344041 + 0.198632i
\(508\) 0 0
\(509\) −1.00294e11 + 5.79047e10i −1.49418 + 0.862666i −0.999978 0.00668109i \(-0.997873\pi\)
−0.494203 + 0.869347i \(0.664540\pi\)
\(510\) 0 0
\(511\) 2.65293e10 + 2.65860e10i 0.389083 + 0.389915i
\(512\) 0 0
\(513\) 7.60824e8 + 1.31779e9i 0.0109854 + 0.0190272i
\(514\) 0 0
\(515\) 7.17675e10 1.24305e11i 1.02023 1.76709i
\(516\) 0 0
\(517\) 4.09779e10i 0.573572i
\(518\) 0 0
\(519\) −6.13466e10 −0.845514
\(520\) 0 0
\(521\) −1.24776e11 7.20395e10i −1.69348 0.977732i −0.951670 0.307122i \(-0.900634\pi\)
−0.741811 0.670609i \(-0.766033\pi\)
\(522\) 0 0
\(523\) 2.73214e10 1.57740e10i 0.365170 0.210831i −0.306176 0.951975i \(-0.599050\pi\)
0.671346 + 0.741144i \(0.265716\pi\)
\(524\) 0 0
\(525\) 4.79332e10 1.27888e10i 0.630957 0.168342i
\(526\) 0 0
\(527\) −4.26367e10 7.38489e10i −0.552765 0.957418i
\(528\) 0 0
\(529\) −5.66364e10 + 9.80971e10i −0.723224 + 1.25266i
\(530\) 0 0
\(531\) 4.10270e10i 0.516049i
\(532\) 0 0
\(533\) −1.55941e11 −1.93220
\(534\) 0 0
\(535\) −9.71514e10 5.60904e10i −1.18586 0.684658i
\(536\) 0 0
\(537\) 7.14458e10 4.12493e10i 0.859171 0.496043i
\(538\) 0 0
\(539\) 4.31061e10 2.47647e10i 0.510721 0.293412i
\(540\) 0 0
\(541\) 5.42610e10 + 9.39828e10i 0.633430 + 1.09713i 0.986845 + 0.161667i \(0.0516871\pi\)
−0.353415 + 0.935467i \(0.614980\pi\)
\(542\) 0 0
\(543\) 1.84644e10 3.19812e10i 0.212390 0.367871i
\(544\) 0 0
\(545\) 3.87010e10i 0.438668i
\(546\) 0 0
\(547\) −1.21262e11 −1.35449 −0.677246 0.735757i \(-0.736827\pi\)
−0.677246 + 0.735757i \(0.736827\pi\)
\(548\) 0 0
\(549\) −3.18312e10 1.83778e10i −0.350400 0.202303i
\(550\) 0 0
\(551\) 1.99980e9 1.15458e9i 0.0216960 0.0125262i
\(552\) 0 0
\(553\) −1.12347e10 4.21084e10i −0.120133 0.450265i
\(554\) 0 0
\(555\) 4.92978e10 + 8.53862e10i 0.519583 + 0.899945i
\(556\) 0 0
\(557\) −1.94381e10 + 3.36677e10i −0.201945 + 0.349778i −0.949155 0.314809i \(-0.898059\pi\)
0.747210 + 0.664588i \(0.231393\pi\)
\(558\) 0 0
\(559\) 1.27344e11i 1.30416i
\(560\) 0 0
\(561\) −2.03640e10 −0.205594
\(562\) 0 0
\(563\) −1.06997e11 6.17750e10i −1.06498 0.614864i −0.138171 0.990408i \(-0.544122\pi\)
−0.926804 + 0.375545i \(0.877456\pi\)
\(564\) 0 0
\(565\) 1.34778e11 7.78143e10i 1.32259 0.763599i
\(566\) 0 0
\(567\) 8.12902e9 8.11167e9i 0.0786513 0.0784834i
\(568\) 0 0
\(569\) −3.76060e10 6.51355e10i −0.358763 0.621396i 0.628991 0.777412i \(-0.283468\pi\)
−0.987754 + 0.156016i \(0.950135\pi\)
\(570\) 0 0
\(571\) 6.39802e9 1.10817e10i 0.0601868 0.104247i −0.834362 0.551217i \(-0.814164\pi\)
0.894549 + 0.446970i \(0.147497\pi\)
\(572\) 0 0
\(573\) 6.85740e10i 0.636123i
\(574\) 0 0
\(575\) 1.93389e11 1.76913
\(576\) 0 0
\(577\) 1.63442e11 + 9.43632e10i 1.47455 + 0.851333i 0.999589 0.0286728i \(-0.00912810\pi\)
0.474963 + 0.880006i \(0.342461\pi\)
\(578\) 0 0
\(579\) −8.50666e10 + 4.91133e10i −0.756911 + 0.437003i
\(580\) 0 0
\(581\) −7.18758e9 + 2.67103e10i −0.0630780 + 0.234409i
\(582\) 0 0
\(583\) 1.27267e10 + 2.20433e10i 0.110164 + 0.190810i
\(584\) 0 0
\(585\) 3.70228e10 6.41253e10i 0.316115 0.547527i
\(586\) 0 0
\(587\) 7.09182e10i 0.597318i 0.954360 + 0.298659i \(0.0965393\pi\)
−0.954360 + 0.298659i \(0.903461\pi\)
\(588\) 0 0
\(589\) 2.51250e10 0.208759
\(590\) 0 0
\(591\) 1.49109e10 + 8.60881e9i 0.122223 + 0.0705656i
\(592\) 0 0
\(593\) 1.08767e11 6.27965e10i 0.879584 0.507828i 0.00906300 0.999959i \(-0.497115\pi\)
0.870521 + 0.492131i \(0.163782\pi\)
\(594\) 0 0
\(595\) −1.06817e11 2.87438e10i −0.852258 0.229338i
\(596\) 0 0
\(597\) −2.88718e10 5.00075e10i −0.227288 0.393675i
\(598\) 0 0
\(599\) 3.74468e10 6.48598e10i 0.290876 0.503812i −0.683141 0.730286i \(-0.739387\pi\)
0.974017 + 0.226475i \(0.0727200\pi\)
\(600\) 0 0
\(601\) 7.91457e10i 0.606638i −0.952889 0.303319i \(-0.901905\pi\)
0.952889 0.303319i \(-0.0980948\pi\)
\(602\) 0 0
\(603\) −4.29313e10 −0.324717
\(604\) 0 0
\(605\) 1.10615e11 + 6.38635e10i 0.825643 + 0.476685i
\(606\) 0 0
\(607\) −4.76961e9 + 2.75374e9i −0.0351340 + 0.0202846i −0.517464 0.855705i \(-0.673124\pi\)
0.482330 + 0.875990i \(0.339791\pi\)
\(608\) 0 0
\(609\) −1.23098e10 1.23361e10i −0.0894915 0.0896829i
\(610\) 0 0
\(611\) 8.81659e10 + 1.52708e11i 0.632610 + 1.09571i
\(612\) 0 0
\(613\) 1.11411e11 1.92970e11i 0.789018 1.36662i −0.137550 0.990495i \(-0.543923\pi\)
0.926569 0.376125i \(-0.122744\pi\)
\(614\) 0 0
\(615\) 1.79306e11i 1.25341i
\(616\) 0 0
\(617\) −1.45466e11 −1.00374 −0.501868 0.864944i \(-0.667354\pi\)
−0.501868 + 0.864944i \(0.667354\pi\)
\(618\) 0 0
\(619\) −9.99270e10 5.76929e10i −0.680644 0.392970i 0.119453 0.992840i \(-0.461886\pi\)
−0.800098 + 0.599870i \(0.795219\pi\)
\(620\) 0 0
\(621\) 3.87689e10 2.23832e10i 0.260685 0.150507i
\(622\) 0 0
\(623\) 6.60127e10 1.76125e10i 0.438203 0.116914i
\(624\) 0 0
\(625\) 6.49827e10 + 1.12553e11i 0.425871 + 0.737630i
\(626\) 0 0
\(627\) 3.00003e9 5.19620e9i 0.0194113 0.0336214i
\(628\) 0 0
\(629\) 1.16681e11i 0.745416i
\(630\) 0 0
\(631\) −1.98489e11 −1.25204 −0.626020 0.779807i \(-0.715317\pi\)
−0.626020 + 0.779807i \(0.715317\pi\)
\(632\) 0 0
\(633\) 8.77460e10 + 5.06602e10i 0.546528 + 0.315538i
\(634\) 0 0
\(635\) −1.33533e11 + 7.70956e10i −0.821287 + 0.474170i
\(636\) 0 0
\(637\) 1.07356e11 1.85033e11i 0.652034 1.12380i
\(638\) 0 0
\(639\) 3.90189e10 + 6.75828e10i 0.234030 + 0.405352i
\(640\) 0 0
\(641\) −6.92620e10 + 1.19965e11i −0.410264 + 0.710597i −0.994918 0.100685i \(-0.967897\pi\)
0.584655 + 0.811282i \(0.301230\pi\)
\(642\) 0 0
\(643\) 6.27928e10i 0.367338i 0.982988 + 0.183669i \(0.0587975\pi\)
−0.982988 + 0.183669i \(0.941203\pi\)
\(644\) 0 0
\(645\) 1.46424e11 0.846004
\(646\) 0 0
\(647\) 3.40232e10 + 1.96433e10i 0.194159 + 0.112098i 0.593928 0.804518i \(-0.297576\pi\)
−0.399769 + 0.916616i \(0.630910\pi\)
\(648\) 0 0
\(649\) −1.40101e11 + 8.08873e10i −0.789700 + 0.455933i
\(650\) 0 0
\(651\) −4.88813e10 1.83210e11i −0.272156 1.02006i
\(652\) 0 0
\(653\) 6.44912e10 + 1.11702e11i 0.354689 + 0.614340i 0.987065 0.160322i \(-0.0512534\pi\)
−0.632376 + 0.774662i \(0.717920\pi\)
\(654\) 0 0
\(655\) 7.08113e10 1.22649e11i 0.384713 0.666343i
\(656\) 0 0
\(657\) 3.42107e10i 0.183612i
\(658\) 0 0
\(659\) 2.68793e11 1.42520 0.712600 0.701571i \(-0.247518\pi\)
0.712600 + 0.701571i \(0.247518\pi\)
\(660\) 0 0
\(661\) 3.11244e11 + 1.79697e11i 1.63040 + 0.941314i 0.983968 + 0.178345i \(0.0570744\pi\)
0.646435 + 0.762969i \(0.276259\pi\)
\(662\) 0 0
\(663\) −7.58881e10 + 4.38140e10i −0.392753 + 0.226756i
\(664\) 0 0
\(665\) 2.30707e10 2.30215e10i 0.117971 0.117719i
\(666\) 0 0
\(667\) −3.39675e10 5.88334e10i −0.171617 0.297249i
\(668\) 0 0
\(669\) −4.58412e10 + 7.93993e10i −0.228850 + 0.396380i
\(670\) 0 0
\(671\) 1.44932e11i 0.714946i
\(672\) 0 0
\(673\) 2.68409e11 1.30839 0.654195 0.756326i \(-0.273007\pi\)
0.654195 + 0.756326i \(0.273007\pi\)
\(674\) 0 0
\(675\) −3.91342e10 2.25941e10i −0.188513 0.108838i
\(676\) 0 0
\(677\) −2.16576e11 + 1.25040e11i −1.03099 + 0.595243i −0.917268 0.398269i \(-0.869611\pi\)
−0.113723 + 0.993513i \(0.536278\pi\)
\(678\) 0 0
\(679\) −9.51130e10 + 3.53456e11i −0.447467 + 1.66286i
\(680\) 0 0
\(681\) 1.03996e10 + 1.80127e10i 0.0483537 + 0.0837510i
\(682\) 0 0
\(683\) 5.62014e10 9.73438e10i 0.258264 0.447327i −0.707513 0.706701i \(-0.750183\pi\)
0.965777 + 0.259374i \(0.0835161\pi\)
\(684\) 0 0
\(685\) 2.88917e10i 0.131223i
\(686\) 0 0
\(687\) 3.89984e9 0.0175073
\(688\) 0 0
\(689\) 9.48543e10 + 5.47642e10i 0.420901 + 0.243007i
\(690\) 0 0
\(691\) 8.27679e10 4.77861e10i 0.363036 0.209599i −0.307376 0.951588i \(-0.599451\pi\)
0.670412 + 0.741989i \(0.266118\pi\)
\(692\) 0 0
\(693\) −4.37270e10 1.17667e10i −0.189591 0.0510178i
\(694\) 0 0
\(695\) 2.26284e11 + 3.91935e11i 0.969871 + 1.67987i
\(696\) 0 0
\(697\) 1.06098e11 1.83768e11i 0.449549 0.778642i
\(698\) 0 0
\(699\) 8.95476e10i 0.375099i
\(700\) 0 0
\(701\) 3.06300e11 1.26846 0.634228 0.773146i \(-0.281318\pi\)
0.634228 + 0.773146i \(0.281318\pi\)
\(702\) 0 0
\(703\) 2.97732e10 + 1.71895e10i 0.121900 + 0.0703790i
\(704\) 0 0
\(705\) 1.75588e11 1.01376e11i 0.710786 0.410372i
\(706\) 0 0
\(707\) −3.20568e10 3.21254e10i −0.128305 0.128579i
\(708\) 0 0
\(709\) −1.34632e11 2.33189e11i −0.532798 0.922833i −0.999266 0.0382955i \(-0.987807\pi\)
0.466468 0.884538i \(-0.345526\pi\)
\(710\) 0 0
\(711\) −1.98485e10 + 3.43786e10i −0.0776693 + 0.134527i
\(712\) 0 0
\(713\) 7.39170e11i 2.86013i
\(714\) 0 0
\(715\) −2.91971e11 −1.11716
\(716\) 0 0
\(717\) −2.32861e11 1.34442e11i −0.881089 0.508697i
\(718\) 0 0
\(719\) −2.06410e11 + 1.19171e11i −0.772350 + 0.445917i −0.833712 0.552199i \(-0.813789\pi\)
0.0613622 + 0.998116i \(0.480456\pi\)
\(720\) 0 0
\(721\) −3.64954e11 + 9.73714e10i −1.35051 + 0.360322i
\(722\) 0 0
\(723\) −1.52165e11 2.63558e11i −0.556881 0.964546i
\(724\) 0 0
\(725\) −3.42875e10 + 5.93877e10i −0.124104 + 0.214954i
\(726\) 0 0
\(727\) 1.68567e11i 0.603442i 0.953396 + 0.301721i \(0.0975611\pi\)
−0.953396 + 0.301721i \(0.902439\pi\)
\(728\) 0 0
\(729\) −1.04604e10 −0.0370370
\(730\) 0 0
\(731\) −1.50067e11 8.66414e10i −0.525553 0.303428i
\(732\) 0 0
\(733\) −2.59349e11 + 1.49735e11i −0.898399 + 0.518691i −0.876680 0.481073i \(-0.840247\pi\)
−0.0217184 + 0.999764i \(0.506914\pi\)
\(734\) 0 0
\(735\) −2.12756e11 1.23442e11i −0.729008 0.422973i
\(736\) 0 0
\(737\) 8.46417e10 + 1.46604e11i 0.286890 + 0.496907i
\(738\) 0 0
\(739\) 1.66690e11 2.88716e11i 0.558897 0.968038i −0.438692 0.898638i \(-0.644558\pi\)
0.997589 0.0694004i \(-0.0221086\pi\)
\(740\) 0 0
\(741\) 2.58188e10i 0.0856373i
\(742\) 0 0
\(743\) 5.61696e11 1.84309 0.921545 0.388272i \(-0.126928\pi\)
0.921545 + 0.388272i \(0.126928\pi\)
\(744\) 0 0
\(745\) −2.99825e11 1.73104e11i −0.973292 0.561930i
\(746\) 0 0
\(747\) 2.18196e10 1.25975e10i 0.0700751 0.0404579i
\(748\) 0 0
\(749\) 7.61013e10 + 2.85232e11i 0.241805 + 0.906299i
\(750\) 0 0
\(751\) 8.17182e10 + 1.41540e11i 0.256897 + 0.444959i 0.965409 0.260740i \(-0.0839665\pi\)
−0.708512 + 0.705699i \(0.750633\pi\)
\(752\) 0 0
\(753\) 1.93347e10 3.34886e10i 0.0601391 0.104164i
\(754\) 0 0
\(755\) 1.66530e11i 0.512512i
\(756\) 0 0
\(757\) −7.42672e10 −0.226159 −0.113079 0.993586i \(-0.536071\pi\)
−0.113079 + 0.993586i \(0.536071\pi\)
\(758\) 0 0
\(759\) −1.52871e11 8.82599e10i −0.460635 0.265948i
\(760\) 0 0
\(761\) −4.12849e11 + 2.38359e11i −1.23099 + 0.710710i −0.967235 0.253881i \(-0.918293\pi\)
−0.263750 + 0.964591i \(0.584960\pi\)
\(762\) 0 0
\(763\) 7.20913e10 7.19374e10i 0.212708 0.212254i
\(764\) 0 0
\(765\) 5.03787e10 + 8.72584e10i 0.147096 + 0.254778i
\(766\) 0 0
\(767\) −3.48065e11 + 6.02867e11i −1.00573 + 1.74197i
\(768\) 0 0
\(769\) 5.81659e11i 1.66327i −0.555323 0.831635i \(-0.687405\pi\)
0.555323 0.831635i \(-0.312595\pi\)
\(770\) 0 0
\(771\) −2.83333e11 −0.801826
\(772\) 0 0
\(773\) 1.79880e10 + 1.03854e10i 0.0503808 + 0.0290874i 0.524979 0.851115i \(-0.324073\pi\)
−0.474598 + 0.880203i \(0.657407\pi\)
\(774\) 0 0
\(775\) −6.46172e11 + 3.73068e11i −1.79119 + 1.03414i
\(776\) 0 0
\(777\) 6.74208e10 2.50547e11i 0.184974 0.687393i
\(778\) 0 0
\(779\) 3.12609e10 + 5.41455e10i 0.0848891 + 0.147032i
\(780\) 0 0
\(781\) 1.53857e11 2.66488e11i 0.413535 0.716263i
\(782\) 0 0
\(783\) 1.58740e10i 0.0422318i
\(784\) 0 0
\(785\) 4.35051e11 1.14567
\(786\) 0 0
\(787\) 2.97377e11 + 1.71691e11i 0.775191 + 0.447557i 0.834723 0.550670i \(-0.185628\pi\)
−0.0595323 + 0.998226i \(0.518961\pi\)
\(788\) 0 0
\(789\) 1.91199e11 1.10389e11i 0.493377 0.284851i
\(790\) 0 0
\(791\) −3.95477e11 1.06421e11i −1.01022 0.271844i
\(792\) 0 0
\(793\) 3.11827e11 + 5.40101e11i 0.788536 + 1.36578i
\(794\) 0 0
\(795\) 6.29695e10 1.09066e11i 0.157638 0.273037i
\(796\) 0 0
\(797\) 5.82077e10i 0.144260i 0.997395 + 0.0721302i \(0.0229797\pi\)
−0.997395 + 0.0721302i \(0.977020\pi\)
\(798\) 0 0
\(799\) −2.39943e11 −0.588737
\(800\) 0 0
\(801\) −5.38948e10 3.11162e10i −0.130923 0.0755886i
\(802\) 0 0
\(803\) −1.16824e11 + 6.74485e10i −0.280977 + 0.162222i
\(804\) 0 0
\(805\) −6.77285e11 6.78734e11i −1.61283 1.61628i
\(806\) 0 0
\(807\) 2.17573e11 + 3.76847e11i 0.512992 + 0.888527i
\(808\) 0 0
\(809\) −4.27586e10 + 7.40600e10i −0.0998226 + 0.172898i −0.911611 0.411054i \(-0.865161\pi\)
0.811789 + 0.583952i \(0.198494\pi\)
\(810\) 0 0
\(811\) 7.56023e11i 1.74764i −0.486252 0.873819i \(-0.661636\pi\)
0.486252 0.873819i \(-0.338364\pi\)
\(812\) 0 0
\(813\) 3.90015e10 0.0892727
\(814\) 0 0
\(815\) 3.49060e9 + 2.01530e9i 0.00791170 + 0.00456782i
\(816\) 0 0
\(817\) 4.42160e10 2.55281e10i 0.0992409 0.0572968i
\(818\) 0 0
\(819\) −1.88269e11 + 5.02311e10i −0.418450 + 0.111644i
\(820\) 0 0
\(821\) −1.40517e11 2.43383e11i −0.309283 0.535694i 0.668923 0.743332i \(-0.266756\pi\)
−0.978206 + 0.207638i \(0.933422\pi\)
\(822\) 0 0
\(823\) −2.21259e11 + 3.83231e11i −0.482282 + 0.835336i −0.999793 0.0203400i \(-0.993525\pi\)
0.517512 + 0.855676i \(0.326858\pi\)
\(824\) 0 0
\(825\) 1.78183e11i 0.384637i
\(826\) 0 0
\(827\) 3.33766e11 0.713543 0.356772 0.934192i \(-0.383877\pi\)
0.356772 + 0.934192i \(0.383877\pi\)
\(828\) 0 0
\(829\) 7.32765e11 + 4.23062e11i 1.55148 + 0.895748i 0.998022 + 0.0628712i \(0.0200257\pi\)
0.553459 + 0.832877i \(0.313308\pi\)
\(830\) 0 0
\(831\) −4.52468e11 + 2.61233e11i −0.948820 + 0.547801i
\(832\) 0 0
\(833\) 1.45008e11 + 2.52405e11i 0.301170 + 0.524225i
\(834\) 0 0
\(835\) −5.36290e11 9.28882e11i −1.10320 1.91080i
\(836\) 0 0
\(837\) −8.63591e10 + 1.49578e11i −0.175957 + 0.304766i
\(838\) 0 0
\(839\) 1.33895e11i 0.270220i −0.990831 0.135110i \(-0.956861\pi\)
0.990831 0.135110i \(-0.0431388\pi\)
\(840\) 0 0
\(841\) −4.76157e11 −0.951845
\(842\) 0 0
\(843\) −2.38450e10 1.37669e10i −0.0472157 0.0272600i
\(844\) 0 0
\(845\) −4.43504e11 + 2.56057e11i −0.869903 + 0.502239i
\(846\) 0 0
\(847\) −8.66476e10 3.24761e11i −0.168354 0.631000i
\(848\) 0 0
\(849\) 1.29595e11 + 2.24465e11i 0.249435 + 0.432034i
\(850\) 0 0
\(851\) 5.05711e11 8.75918e11i 0.964238 1.67011i
\(852\) 0 0
\(853\) 3.20383e11i 0.605164i 0.953123 + 0.302582i \(0.0978486\pi\)
−0.953123 + 0.302582i \(0.902151\pi\)
\(854\) 0 0
\(855\) −2.96872e10 −0.0555527
\(856\) 0 0
\(857\) −3.52411e11 2.03465e11i −0.653320 0.377195i 0.136407 0.990653i \(-0.456445\pi\)
−0.789727 + 0.613458i \(0.789778\pi\)
\(858\) 0 0
\(859\) 1.83612e11 1.06008e11i 0.337231 0.194700i −0.321816 0.946802i \(-0.604293\pi\)
0.659047 + 0.752102i \(0.270960\pi\)
\(860\) 0 0
\(861\) 3.34007e11 3.33294e11i 0.607775 0.606478i
\(862\) 0 0
\(863\) 2.51111e11 + 4.34936e11i 0.452712 + 0.784120i 0.998553 0.0537683i \(-0.0171232\pi\)
−0.545841 + 0.837888i \(0.683790\pi\)
\(864\) 0 0
\(865\) 5.98433e11 1.03652e12i 1.06893 1.85145i
\(866\) 0 0
\(867\) 2.06984e11i 0.366320i
\(868\) 0 0
\(869\) 1.56530e11 0.274486
\(870\) 0 0
\(871\) 6.30850e11 + 3.64221e11i 1.09611 + 0.632838i
\(872\) 0 0
\(873\) 2.88737e11 1.66703e11i 0.497103 0.287002i
\(874\) 0 0
\(875\) −2.91463e10 + 1.08313e11i −0.0497224 + 0.184777i
\(876\) 0 0
\(877\) 5.16027e11 + 8.93786e11i 0.872317 + 1.51090i 0.859594 + 0.510978i \(0.170717\pi\)
0.0127234 + 0.999919i \(0.495950\pi\)
\(878\) 0 0
\(879\) 2.19486e11 3.80162e11i 0.367665 0.636814i
\(880\) 0 0
\(881\) 7.05174e11i 1.17056i 0.810832 + 0.585279i \(0.199015\pi\)
−0.810832 + 0.585279i \(0.800985\pi\)
\(882\) 0 0
\(883\) 7.95305e11 1.30825 0.654125 0.756386i \(-0.273037\pi\)
0.654125 + 0.756386i \(0.273037\pi\)
\(884\) 0 0
\(885\) 6.93195e11 + 4.00216e11i 1.13001 + 0.652411i
\(886\) 0 0
\(887\) 4.17819e11 2.41228e11i 0.674985 0.389703i −0.122978 0.992409i \(-0.539244\pi\)
0.797963 + 0.602707i \(0.205911\pi\)
\(888\) 0 0
\(889\) 3.91824e11 + 1.05438e11i 0.627313 + 0.168806i
\(890\) 0 0
\(891\) 2.06233e10 + 3.57205e10i 0.0327225 + 0.0566770i
\(892\) 0 0
\(893\) 3.53486e10 6.12255e10i 0.0555861 0.0962779i
\(894\) 0 0
\(895\) 1.60954e12i 2.50847i
\(896\) 0 0
\(897\) −7.59581e11 −1.17329
\(898\) 0 0
\(899\) 2.26991e11 + 1.31054e11i 0.347513 + 0.200637i
\(900\) 0 0
\(901\) −1.29073e11 + 7.45202e10i −0.195855 + 0.113077i
\(902\) 0 0
\(903\) −2.72173e11 2.72755e11i −0.409349 0.410224i
\(904\) 0 0
\(905\) 3.60238e11 + 6.23950e11i 0.537026 + 0.930156i
\(906\) 0 0
\(907\) −1.39196e11 + 2.41094e11i −0.205682 + 0.356252i −0.950350 0.311183i \(-0.899275\pi\)
0.744668 + 0.667436i \(0.232608\pi\)
\(908\) 0 0
\(909\) 4.13387e10i 0.0605481i
\(910\) 0 0
\(911\) 9.45540e11 1.37280 0.686399 0.727225i \(-0.259190\pi\)
0.686399 + 0.727225i \(0.259190\pi\)
\(912\) 0 0
\(913\) −8.60373e10 4.96737e10i −0.123824 0.0714896i
\(914\) 0 0
\(915\) 6.21024e11 3.58549e11i 0.885981 0.511521i
\(916\) 0 0
\(917\) −3.60091e11 + 9.60740e10i −0.509255 + 0.135872i
\(918\) 0 0
\(919\) 2.32980e11 + 4.03533e11i 0.326630 + 0.565740i 0.981841 0.189706i \(-0.0607535\pi\)
−0.655211 + 0.755446i \(0.727420\pi\)
\(920\) 0 0
\(921\) −1.24598e11 + 2.15810e11i −0.173170 + 0.299940i
\(922\) 0 0
\(923\) 1.32412e12i 1.82440i
\(924\) 0 0
\(925\) −1.02095e12 −1.39456
\(926\) 0 0
\(927\) 2.97960e11 + 1.72027e11i 0.403495 + 0.232958i
\(928\) 0 0
\(929\) −3.20399e11 + 1.84983e11i −0.430159 + 0.248352i −0.699414 0.714716i \(-0.746556\pi\)
0.269255 + 0.963069i \(0.413222\pi\)
\(930\) 0 0
\(931\) −8.57679e10 1.83249e8i −0.114163 0.000243917i
\(932\) 0 0
\(933\) −2.86881e11 4.96893e11i −0.378596 0.655747i
\(934\) 0 0
\(935\) 1.98649e11 3.44071e11i 0.259921 0.450196i
\(936\) 0 0
\(937\) 9.36393e11i 1.21479i 0.794401 + 0.607393i \(0.207785\pi\)
−0.794401 + 0.607393i \(0.792215\pi\)
\(938\) 0 0
\(939\) −2.06608e11 −0.265757
\(940\) 0 0
\(941\) −7.35252e11 4.24498e11i −0.937729 0.541398i −0.0484815 0.998824i \(-0.515438\pi\)
−0.889248 + 0.457426i \(0.848772\pi\)
\(942\) 0 0
\(943\) 1.59294e12 9.19686e11i 2.01444 1.16304i
\(944\) 0 0
\(945\) 5.77572e10 + 2.16478e11i 0.0724234 + 0.271447i
\(946\) 0 0
\(947\) −3.10771e11 5.38271e11i −0.386403 0.669270i 0.605560 0.795800i \(-0.292949\pi\)
−0.991963 + 0.126530i \(0.959616\pi\)
\(948\) 0 0
\(949\) −2.90237e11 + 5.02706e11i −0.357839 + 0.619796i
\(950\) 0 0
\(951\) 3.40478e11i 0.416263i
\(952\) 0 0
\(953\) −8.09972e11 −0.981970 −0.490985 0.871168i \(-0.663363\pi\)
−0.490985 + 0.871168i \(0.663363\pi\)
\(954\) 0 0
\(955\) −1.15863e12 6.68936e11i −1.39294 0.804214i
\(956\) 0 0
\(957\) 5.42074e10 3.12966e10i 0.0646265 0.0373121i
\(958\) 0 0
\(959\) −5.38189e10 + 5.37040e10i −0.0636298 + 0.0634939i
\(960\) 0 0
\(961\) 9.99491e11 + 1.73117e12i 1.17189 + 2.02977i
\(962\) 0 0
\(963\) 1.34449e11 2.32873e11i 0.156334 0.270778i
\(964\) 0 0
\(965\) 1.91639e12i 2.20991i
\(966\) 0 0
\(967\) 1.48206e11 0.169496 0.0847480 0.996402i \(-0.472991\pi\)
0.0847480 + 0.996402i \(0.472991\pi\)
\(968\) 0 0
\(969\) 3.04260e10 + 1.75664e10i 0.0345103 + 0.0199246i
\(970\) 0 0
\(971\) −1.32961e12 + 7.67652e11i −1.49571 + 0.863550i −0.999988 0.00492975i \(-0.998431\pi\)
−0.495725 + 0.868480i \(0.665097\pi\)
\(972\) 0 0
\(973\) 3.09471e11 1.15005e12i 0.345278 1.28311i
\(974\) 0 0
\(975\) 3.83369e11 + 6.64015e11i 0.424227 + 0.734783i
\(976\) 0 0
\(977\) 8.81173e10 1.52624e11i 0.0967126 0.167511i −0.813609 0.581412i \(-0.802501\pi\)
0.910322 + 0.413901i \(0.135834\pi\)
\(978\) 0 0
\(979\) 2.45390e11i 0.267132i
\(980\) 0 0
\(981\) −9.27664e10 −0.100165
\(982\) 0 0
\(983\) 7.05620e11 + 4.07390e11i 0.755712 + 0.436311i 0.827754 0.561091i \(-0.189618\pi\)
−0.0720418 + 0.997402i \(0.522951\pi\)
\(984\) 0 0
\(985\) −2.90910e11 + 1.67957e11i −0.309039 + 0.178424i
\(986\) 0 0
\(987\) −5.15224e11 1.38644e11i −0.542910 0.146094i
\(988\) 0 0
\(989\) −7.51029e11 1.30082e12i −0.785003 1.35967i
\(990\) 0 0
\(991\) −2.70351e11 + 4.68262e11i −0.280307 + 0.485506i −0.971460 0.237202i \(-0.923770\pi\)
0.691153 + 0.722708i \(0.257103\pi\)
\(992\) 0 0
\(993\) 1.00222e12i 1.03078i
\(994\) 0 0
\(995\) 1.12657e12 1.14939
\(996\) 0 0
\(997\) −7.07745e11 4.08617e11i −0.716302 0.413557i 0.0970882 0.995276i \(-0.469047\pi\)
−0.813390 + 0.581719i \(0.802380\pi\)
\(998\) 0 0
\(999\) −2.04671e11 + 1.18167e11i −0.205492 + 0.118641i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.9.m.a.73.5 yes 10
3.2 odd 2 252.9.z.b.73.1 10
7.5 odd 6 inner 84.9.m.a.61.5 10
21.5 even 6 252.9.z.b.145.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.9.m.a.61.5 10 7.5 odd 6 inner
84.9.m.a.73.5 yes 10 1.1 even 1 trivial
252.9.z.b.73.1 10 3.2 odd 2
252.9.z.b.145.1 10 21.5 even 6