Properties

Label 84.9.m.a.73.1
Level $84$
Weight $9$
Character 84.73
Analytic conductor $34.220$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [84,9,Mod(61,84)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("84.61"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(84, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 84.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.2198032451\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 38255 x^{8} + 1483053595 x^{6} - 139470625170 x^{5} + 5194605060018 x^{4} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{8}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 73.1
Root \(-3.70642 - 2.13991i\) of defining polynomial
Character \(\chi\) \(=\) 84.73
Dual form 84.9.m.a.61.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-40.5000 - 23.3827i) q^{3} +(-489.814 + 282.795i) q^{5} +(-1456.69 + 1908.63i) q^{7} +(1093.50 + 1894.00i) q^{9} +(-4106.46 + 7112.59i) q^{11} +13651.5i q^{13} +26450.0 q^{15} +(6393.53 + 3691.30i) q^{17} +(26652.7 - 15387.9i) q^{19} +(103625. - 43238.0i) q^{21} +(-57456.4 - 99517.3i) q^{23} +(-35367.0 + 61257.5i) q^{25} -102276. i q^{27} -124123. q^{29} +(-331222. - 191231. i) q^{31} +(332623. - 192040. i) q^{33} +(173760. - 1.34682e6i) q^{35} +(-678319. - 1.17488e6i) q^{37} +(319210. - 552887. i) q^{39} -2.68579e6i q^{41} -1.62184e6 q^{43} +(-1.07122e6 - 618472. i) q^{45} +(3.06709e6 - 1.77079e6i) q^{47} +(-1.52090e6 - 5.56056e6i) q^{49} +(-172625. - 298996. i) q^{51} +(4.54092e6 - 7.86511e6i) q^{53} -4.64513e6i q^{55} -1.43925e6 q^{57} +(197222. + 113866. i) q^{59} +(1.18352e7 - 6.83305e6i) q^{61} +(-5.20782e6 - 671889. i) q^{63} +(-3.86058e6 - 6.68672e6i) q^{65} +(4.13814e6 - 7.16746e6i) q^{67} +5.37394e6i q^{69} -2.81148e7 q^{71} +(1.49937e7 + 8.65664e6i) q^{73} +(2.86473e6 - 1.65395e6i) q^{75} +(-7.59343e6 - 1.81985e7i) q^{77} +(-1.26003e7 - 2.18243e7i) q^{79} +(-2.39148e6 + 4.14217e6i) q^{81} -1.68155e7i q^{83} -4.17552e6 q^{85} +(5.02699e6 + 2.90234e6i) q^{87} +(6.75025e7 - 3.89726e7i) q^{89} +(-2.60557e7 - 1.98861e7i) q^{91} +(8.94299e6 + 1.54897e7i) q^{93} +(-8.70325e6 + 1.50745e7i) q^{95} +1.50031e8i q^{97} -1.79616e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 405 q^{3} + 1389 q^{5} + 1217 q^{7} + 10935 q^{9} - 879 q^{11} - 75006 q^{15} - 13674 q^{17} - 29268 q^{19} - 42363 q^{21} + 312732 q^{23} - 22052 q^{25} - 289794 q^{29} + 242787 q^{31} + 71199 q^{33}+ \cdots - 3844746 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −40.5000 23.3827i −0.500000 0.288675i
\(4\) 0 0
\(5\) −489.814 + 282.795i −0.783703 + 0.452471i −0.837741 0.546068i \(-0.816124\pi\)
0.0540379 + 0.998539i \(0.482791\pi\)
\(6\) 0 0
\(7\) −1456.69 + 1908.63i −0.606702 + 0.794929i
\(8\) 0 0
\(9\) 1093.50 + 1894.00i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) −4106.46 + 7112.59i −0.280476 + 0.485799i −0.971502 0.237031i \(-0.923826\pi\)
0.691026 + 0.722830i \(0.257159\pi\)
\(12\) 0 0
\(13\) 13651.5i 0.477978i 0.971022 + 0.238989i \(0.0768160\pi\)
−0.971022 + 0.238989i \(0.923184\pi\)
\(14\) 0 0
\(15\) 26450.0 0.522469
\(16\) 0 0
\(17\) 6393.53 + 3691.30i 0.0765499 + 0.0441961i 0.537786 0.843081i \(-0.319261\pi\)
−0.461236 + 0.887277i \(0.652594\pi\)
\(18\) 0 0
\(19\) 26652.7 15387.9i 0.204516 0.118077i −0.394244 0.919006i \(-0.628994\pi\)
0.598760 + 0.800928i \(0.295660\pi\)
\(20\) 0 0
\(21\) 103625. 43238.0i 0.532827 0.222325i
\(22\) 0 0
\(23\) −57456.4 99517.3i −0.205318 0.355621i 0.744916 0.667158i \(-0.232489\pi\)
−0.950234 + 0.311537i \(0.899156\pi\)
\(24\) 0 0
\(25\) −35367.0 + 61257.5i −0.0905395 + 0.156819i
\(26\) 0 0
\(27\) 102276.i 0.192450i
\(28\) 0 0
\(29\) −124123. −0.175494 −0.0877468 0.996143i \(-0.527967\pi\)
−0.0877468 + 0.996143i \(0.527967\pi\)
\(30\) 0 0
\(31\) −331222. 191231.i −0.358651 0.207067i 0.309838 0.950789i \(-0.399725\pi\)
−0.668489 + 0.743722i \(0.733059\pi\)
\(32\) 0 0
\(33\) 332623. 192040.i 0.280476 0.161933i
\(34\) 0 0
\(35\) 173760. 1.34682e6i 0.115792 0.897504i
\(36\) 0 0
\(37\) −678319. 1.17488e6i −0.361932 0.626885i 0.626347 0.779545i \(-0.284549\pi\)
−0.988279 + 0.152660i \(0.951216\pi\)
\(38\) 0 0
\(39\) 319210. 552887.i 0.137980 0.238989i
\(40\) 0 0
\(41\) 2.68579e6i 0.950467i −0.879860 0.475233i \(-0.842364\pi\)
0.879860 0.475233i \(-0.157636\pi\)
\(42\) 0 0
\(43\) −1.62184e6 −0.474389 −0.237195 0.971462i \(-0.576228\pi\)
−0.237195 + 0.971462i \(0.576228\pi\)
\(44\) 0 0
\(45\) −1.07122e6 618472.i −0.261234 0.150824i
\(46\) 0 0
\(47\) 3.06709e6 1.77079e6i 0.628544 0.362890i −0.151644 0.988435i \(-0.548457\pi\)
0.780188 + 0.625545i \(0.215123\pi\)
\(48\) 0 0
\(49\) −1.52090e6 5.56056e6i −0.263825 0.964571i
\(50\) 0 0
\(51\) −172625. 298996.i −0.0255166 0.0441961i
\(52\) 0 0
\(53\) 4.54092e6 7.86511e6i 0.575494 0.996785i −0.420494 0.907295i \(-0.638143\pi\)
0.995988 0.0894893i \(-0.0285235\pi\)
\(54\) 0 0
\(55\) 4.64513e6i 0.507630i
\(56\) 0 0
\(57\) −1.43925e6 −0.136344
\(58\) 0 0
\(59\) 197222. + 113866.i 0.0162760 + 0.00939696i 0.508116 0.861289i \(-0.330342\pi\)
−0.491840 + 0.870686i \(0.663675\pi\)
\(60\) 0 0
\(61\) 1.18352e7 6.83305e6i 0.854783 0.493509i −0.00747910 0.999972i \(-0.502381\pi\)
0.862262 + 0.506463i \(0.169047\pi\)
\(62\) 0 0
\(63\) −5.20782e6 671889.i −0.330593 0.0426516i
\(64\) 0 0
\(65\) −3.86058e6 6.68672e6i −0.216271 0.374593i
\(66\) 0 0
\(67\) 4.13814e6 7.16746e6i 0.205355 0.355686i −0.744891 0.667187i \(-0.767498\pi\)
0.950246 + 0.311501i \(0.100832\pi\)
\(68\) 0 0
\(69\) 5.37394e6i 0.237081i
\(70\) 0 0
\(71\) −2.81148e7 −1.10637 −0.553187 0.833057i \(-0.686588\pi\)
−0.553187 + 0.833057i \(0.686588\pi\)
\(72\) 0 0
\(73\) 1.49937e7 + 8.65664e6i 0.527981 + 0.304830i 0.740194 0.672393i \(-0.234734\pi\)
−0.212213 + 0.977223i \(0.568067\pi\)
\(74\) 0 0
\(75\) 2.86473e6 1.65395e6i 0.0905395 0.0522730i
\(76\) 0 0
\(77\) −7.59343e6 1.81985e7i −0.216011 0.517694i
\(78\) 0 0
\(79\) −1.26003e7 2.18243e7i −0.323498 0.560315i 0.657709 0.753272i \(-0.271526\pi\)
−0.981207 + 0.192957i \(0.938192\pi\)
\(80\) 0 0
\(81\) −2.39148e6 + 4.14217e6i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 1.68155e7i 0.354321i −0.984182 0.177160i \(-0.943309\pi\)
0.984182 0.177160i \(-0.0566911\pi\)
\(84\) 0 0
\(85\) −4.17552e6 −0.0799899
\(86\) 0 0
\(87\) 5.02699e6 + 2.90234e6i 0.0877468 + 0.0506606i
\(88\) 0 0
\(89\) 6.75025e7 3.89726e7i 1.07587 0.621154i 0.146091 0.989271i \(-0.453331\pi\)
0.929779 + 0.368117i \(0.119997\pi\)
\(90\) 0 0
\(91\) −2.60557e7 1.98861e7i −0.379959 0.289990i
\(92\) 0 0
\(93\) 8.94299e6 + 1.54897e7i 0.119550 + 0.207067i
\(94\) 0 0
\(95\) −8.70325e6 + 1.50745e7i −0.106853 + 0.185075i
\(96\) 0 0
\(97\) 1.50031e8i 1.69470i 0.531033 + 0.847351i \(0.321804\pi\)
−0.531033 + 0.847351i \(0.678196\pi\)
\(98\) 0 0
\(99\) −1.79616e7 −0.186984
\(100\) 0 0
\(101\) 9.51524e7 + 5.49363e7i 0.914396 + 0.527927i 0.881843 0.471543i \(-0.156303\pi\)
0.0325532 + 0.999470i \(0.489636\pi\)
\(102\) 0 0
\(103\) −8.77965e7 + 5.06893e7i −0.780060 + 0.450368i −0.836452 0.548041i \(-0.815374\pi\)
0.0563912 + 0.998409i \(0.482041\pi\)
\(104\) 0 0
\(105\) −3.85295e7 + 5.04831e7i −0.316983 + 0.415326i
\(106\) 0 0
\(107\) 3.45484e7 + 5.98396e7i 0.263568 + 0.456513i 0.967188 0.254064i \(-0.0817673\pi\)
−0.703619 + 0.710577i \(0.748434\pi\)
\(108\) 0 0
\(109\) −1.38845e8 + 2.40487e8i −0.983615 + 1.70367i −0.335679 + 0.941977i \(0.608966\pi\)
−0.647936 + 0.761695i \(0.724368\pi\)
\(110\) 0 0
\(111\) 6.34437e7i 0.417923i
\(112\) 0 0
\(113\) 1.03160e8 0.632700 0.316350 0.948642i \(-0.397543\pi\)
0.316350 + 0.948642i \(0.397543\pi\)
\(114\) 0 0
\(115\) 5.62859e7 + 3.24967e7i 0.321817 + 0.185801i
\(116\) 0 0
\(117\) −2.58560e7 + 1.49280e7i −0.137980 + 0.0796630i
\(118\) 0 0
\(119\) −1.63587e7 + 6.82575e6i −0.0815758 + 0.0340379i
\(120\) 0 0
\(121\) 7.34535e7 + 1.27225e8i 0.342666 + 0.593515i
\(122\) 0 0
\(123\) −6.28010e7 + 1.08775e8i −0.274376 + 0.475233i
\(124\) 0 0
\(125\) 2.60940e8i 1.06881i
\(126\) 0 0
\(127\) 3.26999e7 0.125699 0.0628495 0.998023i \(-0.479981\pi\)
0.0628495 + 0.998023i \(0.479981\pi\)
\(128\) 0 0
\(129\) 6.56846e7 + 3.79230e7i 0.237195 + 0.136944i
\(130\) 0 0
\(131\) 1.25512e8 7.24644e7i 0.426187 0.246059i −0.271534 0.962429i \(-0.587531\pi\)
0.697721 + 0.716370i \(0.254198\pi\)
\(132\) 0 0
\(133\) −9.45495e6 + 7.32855e7i −0.0302171 + 0.234213i
\(134\) 0 0
\(135\) 2.89231e7 + 5.00962e7i 0.0870781 + 0.150824i
\(136\) 0 0
\(137\) 6.32330e7 1.09523e8i 0.179499 0.310901i −0.762210 0.647330i \(-0.775886\pi\)
0.941709 + 0.336428i \(0.109219\pi\)
\(138\) 0 0
\(139\) 2.58673e8i 0.692933i −0.938062 0.346467i \(-0.887381\pi\)
0.938062 0.346467i \(-0.112619\pi\)
\(140\) 0 0
\(141\) −1.65623e8 −0.419029
\(142\) 0 0
\(143\) −9.70978e7 5.60594e7i −0.232202 0.134062i
\(144\) 0 0
\(145\) 6.07974e7 3.51014e7i 0.137535 0.0794058i
\(146\) 0 0
\(147\) −6.84243e7 + 2.60765e8i −0.146535 + 0.558445i
\(148\) 0 0
\(149\) −3.65743e8 6.33485e8i −0.742046 1.28526i −0.951562 0.307456i \(-0.900522\pi\)
0.209516 0.977805i \(-0.432811\pi\)
\(150\) 0 0
\(151\) −2.36502e8 + 4.09634e8i −0.454912 + 0.787930i −0.998683 0.0513032i \(-0.983663\pi\)
0.543771 + 0.839233i \(0.316996\pi\)
\(152\) 0 0
\(153\) 1.61458e7i 0.0294641i
\(154\) 0 0
\(155\) 2.16316e8 0.374768
\(156\) 0 0
\(157\) −5.90781e7 3.41087e7i −0.0972361 0.0561393i 0.450593 0.892729i \(-0.351212\pi\)
−0.547830 + 0.836590i \(0.684546\pi\)
\(158\) 0 0
\(159\) −3.67815e8 + 2.12358e8i −0.575494 + 0.332262i
\(160\) 0 0
\(161\) 2.73638e8 + 3.53034e7i 0.407260 + 0.0525428i
\(162\) 0 0
\(163\) −2.68505e8 4.65065e8i −0.380367 0.658814i 0.610748 0.791825i \(-0.290869\pi\)
−0.991115 + 0.133011i \(0.957536\pi\)
\(164\) 0 0
\(165\) −1.08616e8 + 1.88128e8i −0.146540 + 0.253815i
\(166\) 0 0
\(167\) 1.30300e9i 1.67524i −0.546253 0.837620i \(-0.683946\pi\)
0.546253 0.837620i \(-0.316054\pi\)
\(168\) 0 0
\(169\) 6.29366e8 0.771537
\(170\) 0 0
\(171\) 5.82895e7 + 3.36534e7i 0.0681719 + 0.0393591i
\(172\) 0 0
\(173\) 1.04566e9 6.03713e8i 1.16737 0.673979i 0.214308 0.976766i \(-0.431250\pi\)
0.953058 + 0.302787i \(0.0979171\pi\)
\(174\) 0 0
\(175\) −6.53987e7 1.56736e8i −0.0697296 0.167115i
\(176\) 0 0
\(177\) −5.32500e6 9.22317e6i −0.00542534 0.00939696i
\(178\) 0 0
\(179\) 8.89506e8 1.54067e9i 0.866437 1.50071i 0.000823108 1.00000i \(-0.499738\pi\)
0.865614 0.500713i \(-0.166929\pi\)
\(180\) 0 0
\(181\) 9.12768e7i 0.0850445i −0.999096 0.0425222i \(-0.986461\pi\)
0.999096 0.0425222i \(-0.0135393\pi\)
\(182\) 0 0
\(183\) −6.39100e8 −0.569855
\(184\) 0 0
\(185\) 6.64501e8 + 3.83650e8i 0.567294 + 0.327528i
\(186\) 0 0
\(187\) −5.25095e7 + 3.03164e7i −0.0429409 + 0.0247919i
\(188\) 0 0
\(189\) 1.95206e8 + 1.48984e8i 0.152984 + 0.116760i
\(190\) 0 0
\(191\) −1.05197e9 1.82206e9i −0.790438 1.36908i −0.925696 0.378269i \(-0.876520\pi\)
0.135258 0.990810i \(-0.456814\pi\)
\(192\) 0 0
\(193\) −9.00818e8 + 1.56026e9i −0.649244 + 1.12452i 0.334060 + 0.942552i \(0.391581\pi\)
−0.983304 + 0.181971i \(0.941752\pi\)
\(194\) 0 0
\(195\) 3.61083e8i 0.249729i
\(196\) 0 0
\(197\) 1.10059e9 0.730736 0.365368 0.930863i \(-0.380943\pi\)
0.365368 + 0.930863i \(0.380943\pi\)
\(198\) 0 0
\(199\) −2.64767e9 1.52864e9i −1.68831 0.974746i −0.955812 0.293977i \(-0.905021\pi\)
−0.732498 0.680769i \(-0.761646\pi\)
\(200\) 0 0
\(201\) −3.35189e8 + 1.93522e8i −0.205355 + 0.118562i
\(202\) 0 0
\(203\) 1.80809e8 2.36905e8i 0.106472 0.139505i
\(204\) 0 0
\(205\) 7.59527e8 + 1.31554e9i 0.430059 + 0.744884i
\(206\) 0 0
\(207\) 1.25657e8 2.17644e8i 0.0684393 0.118540i
\(208\) 0 0
\(209\) 2.52760e8i 0.132472i
\(210\) 0 0
\(211\) −1.51847e9 −0.766083 −0.383041 0.923731i \(-0.625123\pi\)
−0.383041 + 0.923731i \(0.625123\pi\)
\(212\) 0 0
\(213\) 1.13865e9 + 6.57400e8i 0.553187 + 0.319382i
\(214\) 0 0
\(215\) 7.94402e8 4.58648e8i 0.371780 0.214647i
\(216\) 0 0
\(217\) 8.47476e8 3.53614e8i 0.382198 0.159474i
\(218\) 0 0
\(219\) −4.04831e8 7.01188e8i −0.175994 0.304830i
\(220\) 0 0
\(221\) −5.03920e7 + 8.72815e7i −0.0211248 + 0.0365892i
\(222\) 0 0
\(223\) 3.17111e9i 1.28231i 0.767413 + 0.641153i \(0.221544\pi\)
−0.767413 + 0.641153i \(0.778456\pi\)
\(224\) 0 0
\(225\) −1.54695e8 −0.0603597
\(226\) 0 0
\(227\) −1.03782e9 5.99185e8i −0.390857 0.225662i 0.291674 0.956518i \(-0.405788\pi\)
−0.682532 + 0.730856i \(0.739121\pi\)
\(228\) 0 0
\(229\) 3.28021e9 1.89383e9i 1.19278 0.688651i 0.233842 0.972275i \(-0.424870\pi\)
0.958936 + 0.283624i \(0.0915368\pi\)
\(230\) 0 0
\(231\) −1.17997e8 + 9.14595e8i −0.0414402 + 0.321204i
\(232\) 0 0
\(233\) 4.07388e8 + 7.05617e8i 0.138224 + 0.239412i 0.926825 0.375495i \(-0.122527\pi\)
−0.788600 + 0.614906i \(0.789194\pi\)
\(234\) 0 0
\(235\) −1.00154e9 + 1.73471e9i −0.328394 + 0.568796i
\(236\) 0 0
\(237\) 1.17851e9i 0.373543i
\(238\) 0 0
\(239\) −5.21004e9 −1.59679 −0.798397 0.602131i \(-0.794318\pi\)
−0.798397 + 0.602131i \(0.794318\pi\)
\(240\) 0 0
\(241\) 7.50376e8 + 4.33230e8i 0.222439 + 0.128425i 0.607079 0.794641i \(-0.292341\pi\)
−0.384640 + 0.923067i \(0.625674\pi\)
\(242\) 0 0
\(243\) 1.93710e8 1.11839e8i 0.0555556 0.0320750i
\(244\) 0 0
\(245\) 2.31745e9 + 2.29354e9i 0.643201 + 0.636564i
\(246\) 0 0
\(247\) 2.10069e8 + 3.63850e8i 0.0564384 + 0.0977541i
\(248\) 0 0
\(249\) −3.93191e8 + 6.81027e8i −0.102284 + 0.177160i
\(250\) 0 0
\(251\) 6.32101e9i 1.59255i 0.604938 + 0.796273i \(0.293198\pi\)
−0.604938 + 0.796273i \(0.706802\pi\)
\(252\) 0 0
\(253\) 9.43768e8 0.230347
\(254\) 0 0
\(255\) 1.69109e8 + 9.76349e7i 0.0399949 + 0.0230911i
\(256\) 0 0
\(257\) 2.87584e8 1.66037e8i 0.0659222 0.0380602i −0.466677 0.884428i \(-0.654549\pi\)
0.532599 + 0.846368i \(0.321215\pi\)
\(258\) 0 0
\(259\) 3.23051e9 + 4.16785e8i 0.717914 + 0.0926218i
\(260\) 0 0
\(261\) −1.35729e8 2.35089e8i −0.0292489 0.0506606i
\(262\) 0 0
\(263\) −1.41286e9 + 2.44714e9i −0.295308 + 0.511488i −0.975056 0.221957i \(-0.928755\pi\)
0.679749 + 0.733445i \(0.262089\pi\)
\(264\) 0 0
\(265\) 5.13659e9i 1.04158i
\(266\) 0 0
\(267\) −3.64514e9 −0.717247
\(268\) 0 0
\(269\) 4.64753e9 + 2.68326e9i 0.887592 + 0.512452i 0.873154 0.487444i \(-0.162071\pi\)
0.0144381 + 0.999896i \(0.495404\pi\)
\(270\) 0 0
\(271\) 2.31806e9 1.33833e9i 0.429782 0.248135i −0.269472 0.963008i \(-0.586849\pi\)
0.699254 + 0.714874i \(0.253516\pi\)
\(272\) 0 0
\(273\) 5.90265e8 + 1.41464e9i 0.106266 + 0.254680i
\(274\) 0 0
\(275\) −2.90466e8 5.03102e8i −0.0507884 0.0879681i
\(276\) 0 0
\(277\) −1.44245e9 + 2.49840e9i −0.245009 + 0.424368i −0.962134 0.272577i \(-0.912124\pi\)
0.717125 + 0.696944i \(0.245457\pi\)
\(278\) 0 0
\(279\) 8.36444e8i 0.138045i
\(280\) 0 0
\(281\) −5.10904e9 −0.819434 −0.409717 0.912213i \(-0.634373\pi\)
−0.409717 + 0.912213i \(0.634373\pi\)
\(282\) 0 0
\(283\) −6.48419e9 3.74365e9i −1.01090 0.583646i −0.0994476 0.995043i \(-0.531708\pi\)
−0.911456 + 0.411397i \(0.865041\pi\)
\(284\) 0 0
\(285\) 7.04964e8 4.07011e8i 0.106853 0.0616917i
\(286\) 0 0
\(287\) 5.12617e9 + 3.91237e9i 0.755554 + 0.576650i
\(288\) 0 0
\(289\) −3.46063e9 5.99398e9i −0.496093 0.859259i
\(290\) 0 0
\(291\) 3.50812e9 6.07624e9i 0.489218 0.847351i
\(292\) 0 0
\(293\) 9.75896e8i 0.132414i −0.997806 0.0662069i \(-0.978910\pi\)
0.997806 0.0662069i \(-0.0210897\pi\)
\(294\) 0 0
\(295\) −1.28803e8 −0.0170074
\(296\) 0 0
\(297\) 7.27446e8 + 4.19991e8i 0.0934921 + 0.0539777i
\(298\) 0 0
\(299\) 1.35856e9 7.84368e8i 0.169979 0.0981375i
\(300\) 0 0
\(301\) 2.36252e9 3.09549e9i 0.287813 0.377106i
\(302\) 0 0
\(303\) −2.56912e9 4.44984e9i −0.304799 0.527927i
\(304\) 0 0
\(305\) −3.86470e9 + 6.69385e9i −0.446597 + 0.773529i
\(306\) 0 0
\(307\) 5.89263e9i 0.663370i −0.943390 0.331685i \(-0.892383\pi\)
0.943390 0.331685i \(-0.107617\pi\)
\(308\) 0 0
\(309\) 4.74101e9 0.520040
\(310\) 0 0
\(311\) −1.04962e10 6.05996e9i −1.12199 0.647781i −0.180082 0.983652i \(-0.557636\pi\)
−0.941908 + 0.335870i \(0.890970\pi\)
\(312\) 0 0
\(313\) 7.55111e9 4.35963e9i 0.786744 0.454227i −0.0520711 0.998643i \(-0.516582\pi\)
0.838815 + 0.544417i \(0.183249\pi\)
\(314\) 0 0
\(315\) 2.74087e9 1.14364e9i 0.278386 0.116158i
\(316\) 0 0
\(317\) −6.70410e9 1.16118e10i −0.663901 1.14991i −0.979582 0.201045i \(-0.935566\pi\)
0.315681 0.948866i \(-0.397767\pi\)
\(318\) 0 0
\(319\) 5.09707e8 8.82838e8i 0.0492218 0.0852547i
\(320\) 0 0
\(321\) 3.23134e9i 0.304342i
\(322\) 0 0
\(323\) 2.27206e8 0.0208742
\(324\) 0 0
\(325\) −8.36258e8 4.82814e8i −0.0749561 0.0432759i
\(326\) 0 0
\(327\) 1.12465e10 6.49315e9i 0.983615 0.567890i
\(328\) 0 0
\(329\) −1.08804e9 + 8.43342e9i −0.0928670 + 0.719814i
\(330\) 0 0
\(331\) −8.77673e9 1.52017e10i −0.731174 1.26643i −0.956382 0.292120i \(-0.905639\pi\)
0.225208 0.974311i \(-0.427694\pi\)
\(332\) 0 0
\(333\) 1.48348e9 2.56947e9i 0.120644 0.208962i
\(334\) 0 0
\(335\) 4.68097e9i 0.371669i
\(336\) 0 0
\(337\) 3.68707e9 0.285865 0.142933 0.989732i \(-0.454347\pi\)
0.142933 + 0.989732i \(0.454347\pi\)
\(338\) 0 0
\(339\) −4.17799e9 2.41216e9i −0.316350 0.182645i
\(340\) 0 0
\(341\) 2.72029e9 1.57056e9i 0.201186 0.116155i
\(342\) 0 0
\(343\) 1.28285e10 + 5.19719e9i 0.926829 + 0.375485i
\(344\) 0 0
\(345\) −1.51972e9 2.63223e9i −0.107272 0.185801i
\(346\) 0 0
\(347\) −8.27333e9 + 1.43298e10i −0.570640 + 0.988378i 0.425860 + 0.904789i \(0.359972\pi\)
−0.996500 + 0.0835889i \(0.973362\pi\)
\(348\) 0 0
\(349\) 8.55255e9i 0.576493i −0.957556 0.288246i \(-0.906928\pi\)
0.957556 0.288246i \(-0.0930722\pi\)
\(350\) 0 0
\(351\) 1.39622e9 0.0919870
\(352\) 0 0
\(353\) −5.79315e9 3.34468e9i −0.373092 0.215405i 0.301716 0.953398i \(-0.402440\pi\)
−0.674809 + 0.737993i \(0.735774\pi\)
\(354\) 0 0
\(355\) 1.37710e10 7.95071e9i 0.867068 0.500602i
\(356\) 0 0
\(357\) 8.22132e8 + 1.06068e8i 0.0506138 + 0.00652995i
\(358\) 0 0
\(359\) 2.06593e9 + 3.57829e9i 0.124376 + 0.215426i 0.921489 0.388405i \(-0.126974\pi\)
−0.797113 + 0.603830i \(0.793640\pi\)
\(360\) 0 0
\(361\) −8.01820e9 + 1.38879e10i −0.472116 + 0.817728i
\(362\) 0 0
\(363\) 6.87016e9i 0.395677i
\(364\) 0 0
\(365\) −9.79220e9 −0.551707
\(366\) 0 0
\(367\) −1.18309e9 6.83059e8i −0.0652161 0.0376525i 0.467037 0.884238i \(-0.345321\pi\)
−0.532253 + 0.846585i \(0.678655\pi\)
\(368\) 0 0
\(369\) 5.08688e9 2.93691e9i 0.274376 0.158411i
\(370\) 0 0
\(371\) 8.39682e9 + 2.01240e10i 0.443220 + 1.06223i
\(372\) 0 0
\(373\) −1.47249e10 2.55043e10i −0.760707 1.31758i −0.942487 0.334244i \(-0.891519\pi\)
0.181780 0.983339i \(-0.441814\pi\)
\(374\) 0 0
\(375\) −6.10147e9 + 1.05681e10i −0.308538 + 0.534404i
\(376\) 0 0
\(377\) 1.69447e9i 0.0838821i
\(378\) 0 0
\(379\) −3.21245e8 −0.0155697 −0.00778485 0.999970i \(-0.502478\pi\)
−0.00778485 + 0.999970i \(0.502478\pi\)
\(380\) 0 0
\(381\) −1.32435e9 7.64612e8i −0.0628495 0.0362862i
\(382\) 0 0
\(383\) 1.17225e10 6.76799e9i 0.544785 0.314532i −0.202231 0.979338i \(-0.564819\pi\)
0.747016 + 0.664806i \(0.231486\pi\)
\(384\) 0 0
\(385\) 8.86582e9 + 6.76653e9i 0.403530 + 0.307980i
\(386\) 0 0
\(387\) −1.77348e9 3.07177e9i −0.0790649 0.136944i
\(388\) 0 0
\(389\) −1.51250e10 + 2.61972e10i −0.660535 + 1.14408i 0.319940 + 0.947438i \(0.396337\pi\)
−0.980475 + 0.196643i \(0.936996\pi\)
\(390\) 0 0
\(391\) 8.48356e8i 0.0362970i
\(392\) 0 0
\(393\) −6.77765e9 −0.284125
\(394\) 0 0
\(395\) 1.23436e10 + 7.12657e9i 0.507053 + 0.292747i
\(396\) 0 0
\(397\) 1.60828e10 9.28540e9i 0.647440 0.373799i −0.140035 0.990147i \(-0.544721\pi\)
0.787475 + 0.616347i \(0.211388\pi\)
\(398\) 0 0
\(399\) 2.09654e9 2.74698e9i 0.0827201 0.108384i
\(400\) 0 0
\(401\) −1.89713e10 3.28592e10i −0.733701 1.27081i −0.955291 0.295668i \(-0.904458\pi\)
0.221589 0.975140i \(-0.428876\pi\)
\(402\) 0 0
\(403\) 2.61060e9 4.52169e9i 0.0989737 0.171427i
\(404\) 0 0
\(405\) 2.70519e9i 0.100549i
\(406\) 0 0
\(407\) 1.11419e10 0.406054
\(408\) 0 0
\(409\) 2.67249e10 + 1.54296e10i 0.955042 + 0.551394i 0.894644 0.446781i \(-0.147430\pi\)
0.0603984 + 0.998174i \(0.480763\pi\)
\(410\) 0 0
\(411\) −5.12188e9 + 2.95712e9i −0.179499 + 0.103634i
\(412\) 0 0
\(413\) −5.04620e8 + 2.10555e8i −0.0173446 + 0.00723712i
\(414\) 0 0
\(415\) 4.75532e9 + 8.23646e9i 0.160320 + 0.277682i
\(416\) 0 0
\(417\) −6.04846e9 + 1.04762e10i −0.200033 + 0.346467i
\(418\) 0 0
\(419\) 3.55878e10i 1.15464i 0.816519 + 0.577318i \(0.195901\pi\)
−0.816519 + 0.577318i \(0.804099\pi\)
\(420\) 0 0
\(421\) −4.75589e10 −1.51392 −0.756961 0.653460i \(-0.773317\pi\)
−0.756961 + 0.653460i \(0.773317\pi\)
\(422\) 0 0
\(423\) 6.70773e9 + 3.87271e9i 0.209515 + 0.120963i
\(424\) 0 0
\(425\) −4.52240e8 + 2.61101e8i −0.0138616 + 0.00800299i
\(426\) 0 0
\(427\) −4.19849e9 + 3.25426e10i −0.126294 + 0.978905i
\(428\) 0 0
\(429\) 2.62164e9 + 4.54081e9i 0.0774005 + 0.134062i
\(430\) 0 0
\(431\) −2.46357e10 + 4.26703e10i −0.713930 + 1.23656i 0.249440 + 0.968390i \(0.419753\pi\)
−0.963371 + 0.268174i \(0.913580\pi\)
\(432\) 0 0
\(433\) 3.81881e10i 1.08637i 0.839614 + 0.543184i \(0.182781\pi\)
−0.839614 + 0.543184i \(0.817219\pi\)
\(434\) 0 0
\(435\) −3.28306e9 −0.0916899
\(436\) 0 0
\(437\) −3.06273e9 1.76827e9i −0.0839815 0.0484867i
\(438\) 0 0
\(439\) 1.68590e10 9.73352e9i 0.453913 0.262067i −0.255568 0.966791i \(-0.582263\pi\)
0.709481 + 0.704724i \(0.248929\pi\)
\(440\) 0 0
\(441\) 8.86858e9 8.96105e9i 0.234477 0.236922i
\(442\) 0 0
\(443\) 7.42727e9 + 1.28644e10i 0.192848 + 0.334022i 0.946193 0.323603i \(-0.104894\pi\)
−0.753345 + 0.657625i \(0.771561\pi\)
\(444\) 0 0
\(445\) −2.20425e10 + 3.81787e10i −0.562109 + 0.973601i
\(446\) 0 0
\(447\) 3.42082e10i 0.856841i
\(448\) 0 0
\(449\) −1.59088e10 −0.391429 −0.195714 0.980661i \(-0.562703\pi\)
−0.195714 + 0.980661i \(0.562703\pi\)
\(450\) 0 0
\(451\) 1.91029e10 + 1.10291e10i 0.461736 + 0.266584i
\(452\) 0 0
\(453\) 1.91567e10 1.10601e10i 0.454912 0.262643i
\(454\) 0 0
\(455\) 1.83861e10 + 2.37209e9i 0.428987 + 0.0553459i
\(456\) 0 0
\(457\) −6.88140e9 1.19189e10i −0.157765 0.273258i 0.776297 0.630367i \(-0.217096\pi\)
−0.934063 + 0.357109i \(0.883762\pi\)
\(458\) 0 0
\(459\) 3.77531e8 6.53903e8i 0.00850555 0.0147320i
\(460\) 0 0
\(461\) 2.30707e10i 0.510806i −0.966835 0.255403i \(-0.917792\pi\)
0.966835 0.255403i \(-0.0822082\pi\)
\(462\) 0 0
\(463\) −4.27958e10 −0.931273 −0.465636 0.884976i \(-0.654175\pi\)
−0.465636 + 0.884976i \(0.654175\pi\)
\(464\) 0 0
\(465\) −8.76081e9 5.05806e9i −0.187384 0.108186i
\(466\) 0 0
\(467\) 8.02470e10 4.63306e10i 1.68718 0.974093i 0.730516 0.682895i \(-0.239280\pi\)
0.956663 0.291198i \(-0.0940538\pi\)
\(468\) 0 0
\(469\) 7.65201e9 + 1.83389e10i 0.158156 + 0.379038i
\(470\) 0 0
\(471\) 1.59511e9 + 2.76281e9i 0.0324120 + 0.0561393i
\(472\) 0 0
\(473\) 6.66002e9 1.15355e10i 0.133055 0.230458i
\(474\) 0 0
\(475\) 2.17690e9i 0.0427626i
\(476\) 0 0
\(477\) 1.98620e10 0.383663
\(478\) 0 0
\(479\) −5.36846e9 3.09948e9i −0.101978 0.0588772i 0.448143 0.893962i \(-0.352085\pi\)
−0.550122 + 0.835084i \(0.685419\pi\)
\(480\) 0 0
\(481\) 1.60390e10 9.26009e9i 0.299637 0.172996i
\(482\) 0 0
\(483\) −1.02568e10 7.82817e9i −0.188462 0.143837i
\(484\) 0 0
\(485\) −4.24279e10 7.34872e10i −0.766804 1.32814i
\(486\) 0 0
\(487\) 1.27148e9 2.20226e9i 0.0226044 0.0391519i −0.854502 0.519448i \(-0.826138\pi\)
0.877106 + 0.480296i \(0.159471\pi\)
\(488\) 0 0
\(489\) 2.51135e10i 0.439210i
\(490\) 0 0
\(491\) 4.42855e10 0.761966 0.380983 0.924582i \(-0.375586\pi\)
0.380983 + 0.924582i \(0.375586\pi\)
\(492\) 0 0
\(493\) −7.93585e8 4.58177e8i −0.0134340 0.00775613i
\(494\) 0 0
\(495\) 8.79787e9 5.07945e9i 0.146540 0.0846050i
\(496\) 0 0
\(497\) 4.09546e10 5.36606e10i 0.671239 0.879489i
\(498\) 0 0
\(499\) −1.84607e10 3.19749e10i −0.297746 0.515711i 0.677874 0.735178i \(-0.262902\pi\)
−0.975620 + 0.219467i \(0.929568\pi\)
\(500\) 0 0
\(501\) −3.04675e10 + 5.27713e10i −0.483600 + 0.837620i
\(502\) 0 0
\(503\) 1.57937e10i 0.246724i −0.992362 0.123362i \(-0.960632\pi\)
0.992362 0.123362i \(-0.0393677\pi\)
\(504\) 0 0
\(505\) −6.21427e10 −0.955487
\(506\) 0 0
\(507\) −2.54893e10 1.47163e10i −0.385768 0.222723i
\(508\) 0 0
\(509\) 3.02409e10 1.74596e10i 0.450530 0.260114i −0.257524 0.966272i \(-0.582907\pi\)
0.708054 + 0.706158i \(0.249573\pi\)
\(510\) 0 0
\(511\) −3.83635e10 + 1.60074e10i −0.562646 + 0.234767i
\(512\) 0 0
\(513\) −1.57382e9 2.72593e9i −0.0227240 0.0393591i
\(514\) 0 0
\(515\) 2.86693e10 4.96567e10i 0.407557 0.705910i
\(516\) 0 0
\(517\) 2.90866e10i 0.407128i
\(518\) 0 0
\(519\) −5.64658e10 −0.778244
\(520\) 0 0
\(521\) −1.03962e11 6.00222e10i −1.41098 0.814631i −0.415502 0.909592i \(-0.636394\pi\)
−0.995481 + 0.0949612i \(0.969727\pi\)
\(522\) 0 0
\(523\) 4.75841e10 2.74727e10i 0.635997 0.367193i −0.147074 0.989125i \(-0.546986\pi\)
0.783071 + 0.621933i \(0.213652\pi\)
\(524\) 0 0
\(525\) −1.01625e9 + 7.87699e9i −0.0133772 + 0.103687i
\(526\) 0 0
\(527\) −1.41178e9 2.44528e9i −0.0183031 0.0317020i
\(528\) 0 0
\(529\) 3.25530e10 5.63835e10i 0.415689 0.719995i
\(530\) 0 0
\(531\) 4.98051e8i 0.00626464i
\(532\) 0 0
\(533\) 3.66652e10 0.454303
\(534\) 0 0
\(535\) −3.38446e10 1.95402e10i −0.413118 0.238514i
\(536\) 0 0
\(537\) −7.20500e10 + 4.15981e10i −0.866437 + 0.500237i
\(538\) 0 0
\(539\) 4.57955e10 + 1.20166e10i 0.542585 + 0.142373i
\(540\) 0 0
\(541\) −2.78606e10 4.82561e10i −0.325239 0.563330i 0.656322 0.754481i \(-0.272111\pi\)
−0.981561 + 0.191151i \(0.938778\pi\)
\(542\) 0 0
\(543\) −2.13430e9 + 3.69671e9i −0.0245502 + 0.0425222i
\(544\) 0 0
\(545\) 1.57059e11i 1.78023i
\(546\) 0 0
\(547\) 5.94969e10 0.664577 0.332288 0.943178i \(-0.392179\pi\)
0.332288 + 0.943178i \(0.392179\pi\)
\(548\) 0 0
\(549\) 2.58835e10 + 1.49439e10i 0.284928 + 0.164503i
\(550\) 0 0
\(551\) −3.30822e9 + 1.91000e9i −0.0358912 + 0.0207218i
\(552\) 0 0
\(553\) 6.00091e10 + 7.74209e9i 0.641678 + 0.0827862i
\(554\) 0 0
\(555\) −1.79415e10 3.10756e10i −0.189098 0.327528i
\(556\) 0 0
\(557\) 4.87231e10 8.43909e10i 0.506191 0.876748i −0.493783 0.869585i \(-0.664386\pi\)
0.999974 0.00716351i \(-0.00228023\pi\)
\(558\) 0 0
\(559\) 2.21406e10i 0.226748i
\(560\) 0 0
\(561\) 2.83551e9 0.0286273
\(562\) 0 0
\(563\) 6.40959e10 + 3.70058e10i 0.637965 + 0.368329i 0.783830 0.620975i \(-0.213263\pi\)
−0.145865 + 0.989304i \(0.546597\pi\)
\(564\) 0 0
\(565\) −5.05293e10 + 2.91731e10i −0.495849 + 0.286279i
\(566\) 0 0
\(567\) −4.42220e9 1.05983e10i −0.0427864 0.102543i
\(568\) 0 0
\(569\) −2.27452e10 3.93958e10i −0.216990 0.375838i 0.736896 0.676006i \(-0.236291\pi\)
−0.953886 + 0.300168i \(0.902957\pi\)
\(570\) 0 0
\(571\) 2.29721e10 3.97888e10i 0.216101 0.374297i −0.737512 0.675334i \(-0.763999\pi\)
0.953613 + 0.301037i \(0.0973327\pi\)
\(572\) 0 0
\(573\) 9.83911e10i 0.912719i
\(574\) 0 0
\(575\) 8.12824e9 0.0743575
\(576\) 0 0
\(577\) 1.95631e10 + 1.12948e10i 0.176496 + 0.101900i 0.585645 0.810567i \(-0.300841\pi\)
−0.409149 + 0.912467i \(0.634174\pi\)
\(578\) 0 0
\(579\) 7.29663e10 4.21271e10i 0.649244 0.374841i
\(580\) 0 0
\(581\) 3.20944e10 + 2.44950e10i 0.281660 + 0.214967i
\(582\) 0 0
\(583\) 3.72942e10 + 6.45954e10i 0.322825 + 0.559149i
\(584\) 0 0
\(585\) 8.44309e9 1.46239e10i 0.0720905 0.124864i
\(586\) 0 0
\(587\) 5.75424e10i 0.484658i −0.970194 0.242329i \(-0.922089\pi\)
0.970194 0.242329i \(-0.0779113\pi\)
\(588\) 0 0
\(589\) −1.17706e10 −0.0977997
\(590\) 0 0
\(591\) −4.45739e10 2.57347e10i −0.365368 0.210945i
\(592\) 0 0
\(593\) −1.27721e11 + 7.37397e10i −1.03286 + 0.596325i −0.917804 0.397034i \(-0.870040\pi\)
−0.115061 + 0.993358i \(0.536706\pi\)
\(594\) 0 0
\(595\) 6.08245e9 7.96951e9i 0.0485300 0.0635863i
\(596\) 0 0
\(597\) 7.14872e10 + 1.23819e11i 0.562770 + 0.974746i
\(598\) 0 0
\(599\) −5.35270e10 + 9.27114e10i −0.415782 + 0.720155i −0.995510 0.0946547i \(-0.969825\pi\)
0.579728 + 0.814810i \(0.303159\pi\)
\(600\) 0 0
\(601\) 1.21889e11i 0.934257i 0.884189 + 0.467129i \(0.154711\pi\)
−0.884189 + 0.467129i \(0.845289\pi\)
\(602\) 0 0
\(603\) 1.81002e10 0.136903
\(604\) 0 0
\(605\) −7.19572e10 4.15445e10i −0.537097 0.310093i
\(606\) 0 0
\(607\) −1.76210e11 + 1.01735e11i −1.29800 + 0.749402i −0.980059 0.198708i \(-0.936325\pi\)
−0.317943 + 0.948110i \(0.602992\pi\)
\(608\) 0 0
\(609\) −1.28622e10 + 5.36684e9i −0.0935078 + 0.0390166i
\(610\) 0 0
\(611\) 2.41740e10 + 4.18705e10i 0.173453 + 0.300430i
\(612\) 0 0
\(613\) −3.36957e10 + 5.83627e10i −0.238634 + 0.413327i −0.960323 0.278891i \(-0.910033\pi\)
0.721688 + 0.692218i \(0.243366\pi\)
\(614\) 0 0
\(615\) 7.10392e10i 0.496589i
\(616\) 0 0
\(617\) 1.24394e11 0.858338 0.429169 0.903224i \(-0.358807\pi\)
0.429169 + 0.903224i \(0.358807\pi\)
\(618\) 0 0
\(619\) 1.35672e9 + 7.83300e8i 0.00924115 + 0.00533538i 0.504613 0.863345i \(-0.331635\pi\)
−0.495372 + 0.868681i \(0.664968\pi\)
\(620\) 0 0
\(621\) −1.01782e10 + 5.87640e9i −0.0684393 + 0.0395134i
\(622\) 0 0
\(623\) −2.39463e10 + 1.85608e11i −0.158959 + 1.23210i
\(624\) 0 0
\(625\) 5.99771e10 + 1.03883e11i 0.393066 + 0.680810i
\(626\) 0 0
\(627\) 5.91020e9 1.02368e10i 0.0382412 0.0662358i
\(628\) 0 0
\(629\) 1.00155e10i 0.0639840i
\(630\) 0 0
\(631\) −1.06449e11 −0.671466 −0.335733 0.941957i \(-0.608984\pi\)
−0.335733 + 0.941957i \(0.608984\pi\)
\(632\) 0 0
\(633\) 6.14979e10 + 3.55058e10i 0.383041 + 0.221149i
\(634\) 0 0
\(635\) −1.60169e10 + 9.24736e9i −0.0985107 + 0.0568752i
\(636\) 0 0
\(637\) 7.59101e10 2.07626e10i 0.461044 0.126103i
\(638\) 0 0
\(639\) −3.07435e10 5.32494e10i −0.184396 0.319382i
\(640\) 0 0
\(641\) 3.65101e10 6.32373e10i 0.216262 0.374577i −0.737400 0.675456i \(-0.763947\pi\)
0.953662 + 0.300879i \(0.0972801\pi\)
\(642\) 0 0
\(643\) 1.01096e10i 0.0591412i −0.999563 0.0295706i \(-0.990586\pi\)
0.999563 0.0295706i \(-0.00941398\pi\)
\(644\) 0 0
\(645\) −4.28977e10 −0.247854
\(646\) 0 0
\(647\) −2.37711e10 1.37242e10i −0.135654 0.0783197i 0.430637 0.902525i \(-0.358289\pi\)
−0.566291 + 0.824205i \(0.691622\pi\)
\(648\) 0 0
\(649\) −1.61977e9 + 9.35174e8i −0.00913007 + 0.00527125i
\(650\) 0 0
\(651\) −4.25912e10 5.49492e9i −0.237135 0.0305941i
\(652\) 0 0
\(653\) 9.08593e10 + 1.57373e11i 0.499709 + 0.865521i 1.00000 0.000336511i \(-0.000107115\pi\)
−0.500291 + 0.865857i \(0.666774\pi\)
\(654\) 0 0
\(655\) −4.09851e10 + 7.09882e10i −0.222669 + 0.385675i
\(656\) 0 0
\(657\) 3.78641e10i 0.203220i
\(658\) 0 0
\(659\) 1.63076e11 0.864668 0.432334 0.901714i \(-0.357690\pi\)
0.432334 + 0.901714i \(0.357690\pi\)
\(660\) 0 0
\(661\) −3.66401e10 2.11542e10i −0.191934 0.110813i 0.400954 0.916098i \(-0.368679\pi\)
−0.592887 + 0.805285i \(0.702012\pi\)
\(662\) 0 0
\(663\) 4.08175e9 2.35660e9i 0.0211248 0.0121964i
\(664\) 0 0
\(665\) −1.60936e10 3.85701e10i −0.0822936 0.197226i
\(666\) 0 0
\(667\) 7.13167e9 + 1.23524e10i 0.0360320 + 0.0624092i
\(668\) 0 0
\(669\) 7.41491e10 1.28430e11i 0.370170 0.641153i
\(670\) 0 0
\(671\) 1.12238e11i 0.553670i
\(672\) 0 0
\(673\) 2.61487e11 1.27465 0.637324 0.770596i \(-0.280041\pi\)
0.637324 + 0.770596i \(0.280041\pi\)
\(674\) 0 0
\(675\) 6.26516e9 + 3.61719e9i 0.0301798 + 0.0174243i
\(676\) 0 0
\(677\) −2.24856e11 + 1.29821e11i −1.07041 + 0.618000i −0.928293 0.371850i \(-0.878724\pi\)
−0.142115 + 0.989850i \(0.545390\pi\)
\(678\) 0 0
\(679\) −2.86352e11 2.18549e11i −1.34717 1.02818i
\(680\) 0 0
\(681\) 2.80211e10 + 4.85340e10i 0.130286 + 0.225662i
\(682\) 0 0
\(683\) −2.05498e10 + 3.55933e10i −0.0944333 + 0.163563i −0.909372 0.415984i \(-0.863437\pi\)
0.814939 + 0.579547i \(0.196771\pi\)
\(684\) 0 0
\(685\) 7.15278e10i 0.324872i
\(686\) 0 0
\(687\) −1.77131e11 −0.795185
\(688\) 0 0
\(689\) 1.07371e11 + 6.19906e10i 0.476441 + 0.275074i
\(690\) 0 0
\(691\) 7.68717e10 4.43819e10i 0.337174 0.194668i −0.321848 0.946791i \(-0.604304\pi\)
0.659022 + 0.752124i \(0.270971\pi\)
\(692\) 0 0
\(693\) 2.61646e10 3.42820e10i 0.113444 0.148639i
\(694\) 0 0
\(695\) 7.31512e10 + 1.26702e11i 0.313532 + 0.543054i
\(696\) 0 0
\(697\) 9.91408e9 1.71717e10i 0.0420070 0.0727582i
\(698\) 0 0
\(699\) 3.81033e10i 0.159608i
\(700\) 0 0
\(701\) −5.41049e10 −0.224060 −0.112030 0.993705i \(-0.535735\pi\)
−0.112030 + 0.993705i \(0.535735\pi\)
\(702\) 0 0
\(703\) −3.61581e10 2.08759e10i −0.148042 0.0854719i
\(704\) 0 0
\(705\) 8.11245e10 4.68373e10i 0.328394 0.189599i
\(706\) 0 0
\(707\) −2.43461e11 + 1.01585e11i −0.974431 + 0.406586i
\(708\) 0 0
\(709\) 1.63603e11 + 2.83368e11i 0.647449 + 1.12141i 0.983730 + 0.179653i \(0.0574973\pi\)
−0.336281 + 0.941762i \(0.609169\pi\)
\(710\) 0 0
\(711\) 2.75568e10 4.77298e10i 0.107833 0.186772i
\(712\) 0 0
\(713\) 4.39498e10i 0.170058i
\(714\) 0 0
\(715\) 6.34132e10 0.242636
\(716\) 0 0
\(717\) 2.11006e11 + 1.21825e11i 0.798397 + 0.460955i
\(718\) 0 0
\(719\) −4.11971e11 + 2.37851e11i −1.54153 + 0.890000i −0.542783 + 0.839873i \(0.682629\pi\)
−0.998743 + 0.0501272i \(0.984037\pi\)
\(720\) 0 0
\(721\) 3.11455e10 2.41409e11i 0.115253 0.893332i
\(722\) 0 0
\(723\) −2.02602e10 3.50916e10i −0.0741463 0.128425i
\(724\) 0 0
\(725\) 4.38987e9 7.60347e9i 0.0158891 0.0275207i
\(726\) 0 0
\(727\) 1.61243e11i 0.577222i −0.957446 0.288611i \(-0.906807\pi\)
0.957446 0.288611i \(-0.0931934\pi\)
\(728\) 0 0
\(729\) −1.04604e10 −0.0370370
\(730\) 0 0
\(731\) −1.03693e10 5.98671e9i −0.0363145 0.0209662i
\(732\) 0 0
\(733\) 2.16374e11 1.24924e11i 0.749530 0.432741i −0.0759941 0.997108i \(-0.524213\pi\)
0.825524 + 0.564367i \(0.190880\pi\)
\(734\) 0 0
\(735\) −4.02278e10 1.47077e11i −0.137840 0.503958i
\(736\) 0 0
\(737\) 3.39862e10 + 5.88657e10i 0.115195 + 0.199523i
\(738\) 0 0
\(739\) 2.29888e11 3.98177e11i 0.770793 1.33505i −0.166335 0.986069i \(-0.553193\pi\)
0.937129 0.348984i \(-0.113473\pi\)
\(740\) 0 0
\(741\) 1.96479e10i 0.0651694i
\(742\) 0 0
\(743\) 2.61501e10 0.0858060 0.0429030 0.999079i \(-0.486339\pi\)
0.0429030 + 0.999079i \(0.486339\pi\)
\(744\) 0 0
\(745\) 3.58292e11 + 2.06860e11i 1.16309 + 0.671509i
\(746\) 0 0
\(747\) 3.18485e10 1.83877e10i 0.102284 0.0590535i
\(748\) 0 0
\(749\) −1.64538e11 2.12279e10i −0.522803 0.0674496i
\(750\) 0 0
\(751\) −7.92470e10 1.37260e11i −0.249128 0.431503i 0.714156 0.699987i \(-0.246811\pi\)
−0.963284 + 0.268484i \(0.913477\pi\)
\(752\) 0 0
\(753\) 1.47802e11 2.56001e11i 0.459728 0.796273i
\(754\) 0 0
\(755\) 2.67526e11i 0.823338i
\(756\) 0 0
\(757\) −4.14772e10 −0.126307 −0.0631533 0.998004i \(-0.520116\pi\)
−0.0631533 + 0.998004i \(0.520116\pi\)
\(758\) 0 0
\(759\) −3.82226e10 2.20678e10i −0.115174 0.0664955i
\(760\) 0 0
\(761\) −3.23340e11 + 1.86680e11i −0.964096 + 0.556621i −0.897431 0.441154i \(-0.854569\pi\)
−0.0666649 + 0.997775i \(0.521236\pi\)
\(762\) 0 0
\(763\) −2.56745e11 6.15319e11i −0.757537 1.81553i
\(764\) 0 0
\(765\) −4.56593e9 7.90843e9i −0.0133316 0.0230911i
\(766\) 0 0
\(767\) −1.55445e9 + 2.69239e9i −0.00449154 + 0.00777958i
\(768\) 0 0
\(769\) 9.91215e10i 0.283441i −0.989907 0.141721i \(-0.954737\pi\)
0.989907 0.141721i \(-0.0452634\pi\)
\(770\) 0 0
\(771\) −1.55295e10 −0.0439482
\(772\) 0 0
\(773\) 3.49902e10 + 2.02016e10i 0.0980004 + 0.0565806i 0.548199 0.836348i \(-0.315314\pi\)
−0.450199 + 0.892928i \(0.648647\pi\)
\(774\) 0 0
\(775\) 2.34286e10 1.35265e10i 0.0649442 0.0374956i
\(776\) 0 0
\(777\) −1.21090e11 9.24179e10i −0.332219 0.253555i
\(778\) 0 0
\(779\) −4.13288e10 7.15836e10i −0.112229 0.194386i
\(780\) 0 0
\(781\) 1.15452e11 1.99969e11i 0.310312 0.537475i
\(782\) 0 0
\(783\) 1.26948e10i 0.0337737i
\(784\) 0 0
\(785\) 3.85831e10 0.101606
\(786\) 0 0
\(787\) −3.27582e11 1.89129e11i −0.853927 0.493015i 0.00804708 0.999968i \(-0.497439\pi\)
−0.861974 + 0.506953i \(0.830772\pi\)
\(788\) 0 0
\(789\) 1.14441e11 6.60727e10i 0.295308 0.170496i
\(790\) 0 0
\(791\) −1.50273e11 + 1.96894e11i −0.383861 + 0.502952i
\(792\) 0 0
\(793\) 9.32816e10 + 1.61568e11i 0.235887 + 0.408567i
\(794\) 0 0
\(795\) 1.20107e11 2.08032e11i 0.300678 0.520789i
\(796\) 0 0
\(797\) 7.62464e11i 1.88967i −0.327546 0.944835i \(-0.606222\pi\)
0.327546 0.944835i \(-0.393778\pi\)
\(798\) 0 0
\(799\) 2.61460e10 0.0641533
\(800\) 0 0
\(801\) 1.47628e11 + 8.52331e10i 0.358623 + 0.207051i
\(802\) 0 0
\(803\) −1.23142e11 + 7.10962e10i −0.296173 + 0.170995i
\(804\) 0 0
\(805\) −1.44015e11 + 6.00911e10i −0.342945 + 0.143096i
\(806\) 0 0
\(807\) −1.25483e11 2.17344e11i −0.295864 0.512452i
\(808\) 0 0
\(809\) 6.60098e9 1.14332e10i 0.0154104 0.0266916i −0.858217 0.513286i \(-0.828428\pi\)
0.873628 + 0.486595i \(0.161761\pi\)
\(810\) 0 0
\(811\) 1.57984e11i 0.365198i −0.983187 0.182599i \(-0.941549\pi\)
0.983187 0.182599i \(-0.0584510\pi\)
\(812\) 0 0
\(813\) −1.25175e11 −0.286521
\(814\) 0 0
\(815\) 2.63036e11 + 1.51864e11i 0.596189 + 0.344210i
\(816\) 0 0
\(817\) −4.32265e10 + 2.49568e10i −0.0970201 + 0.0560146i
\(818\) 0 0
\(819\) 9.17231e9 7.10948e10i 0.0203865 0.158016i
\(820\) 0 0
\(821\) 4.59911e10 + 7.96590e10i 0.101228 + 0.175332i 0.912191 0.409765i \(-0.134389\pi\)
−0.810963 + 0.585098i \(0.801056\pi\)
\(822\) 0 0
\(823\) 2.71088e10 4.69538e10i 0.0590895 0.102346i −0.834967 0.550299i \(-0.814514\pi\)
0.894057 + 0.447953i \(0.147847\pi\)
\(824\) 0 0
\(825\) 2.71675e10i 0.0586454i
\(826\) 0 0
\(827\) 7.45511e11 1.59379 0.796897 0.604115i \(-0.206473\pi\)
0.796897 + 0.604115i \(0.206473\pi\)
\(828\) 0 0
\(829\) −1.02171e11 5.89884e10i −0.216326 0.124896i 0.387922 0.921692i \(-0.373193\pi\)
−0.604248 + 0.796796i \(0.706526\pi\)
\(830\) 0 0
\(831\) 1.16838e11 6.74567e10i 0.245009 0.141456i
\(832\) 0 0
\(833\) 1.08018e10 4.11657e10i 0.0224345 0.0854979i
\(834\) 0 0
\(835\) 3.68480e11 + 6.38226e11i 0.757998 + 1.31289i
\(836\) 0 0
\(837\) −1.95583e10 + 3.38760e10i −0.0398501 + 0.0690224i
\(838\) 0 0
\(839\) 2.34278e11i 0.472807i 0.971655 + 0.236403i \(0.0759687\pi\)
−0.971655 + 0.236403i \(0.924031\pi\)
\(840\) 0 0
\(841\) −4.84840e11 −0.969202
\(842\) 0 0
\(843\) 2.06916e11 + 1.19463e11i 0.409717 + 0.236550i
\(844\) 0 0
\(845\) −3.08273e11 + 1.77981e11i −0.604656 + 0.349098i
\(846\) 0 0
\(847\) −3.49824e11 4.51327e10i −0.679698 0.0876915i
\(848\) 0 0
\(849\) 1.75073e11 + 3.03235e11i 0.336968 + 0.583646i
\(850\) 0 0
\(851\) −7.79475e10 + 1.35009e11i −0.148622 + 0.257421i
\(852\) 0 0
\(853\) 4.56237e10i 0.0861776i −0.999071 0.0430888i \(-0.986280\pi\)
0.999071 0.0430888i \(-0.0137198\pi\)
\(854\) 0 0
\(855\) −3.80680e10 −0.0712354
\(856\) 0 0
\(857\) −2.11961e11 1.22376e11i −0.392945 0.226867i 0.290490 0.956878i \(-0.406182\pi\)
−0.683436 + 0.730011i \(0.739515\pi\)
\(858\) 0 0
\(859\) −3.62298e11 + 2.09173e11i −0.665416 + 0.384178i −0.794337 0.607477i \(-0.792182\pi\)
0.128922 + 0.991655i \(0.458848\pi\)
\(860\) 0 0
\(861\) −1.16128e11 2.78315e11i −0.211312 0.506435i
\(862\) 0 0
\(863\) 3.32103e11 + 5.75219e11i 0.598728 + 1.03703i 0.993009 + 0.118037i \(0.0376603\pi\)
−0.394281 + 0.918990i \(0.629006\pi\)
\(864\) 0 0
\(865\) −3.41454e11 + 5.91415e11i −0.609912 + 1.05640i
\(866\) 0 0
\(867\) 3.23675e11i 0.572839i
\(868\) 0 0
\(869\) 2.06970e11 0.362934
\(870\) 0 0
\(871\) 9.78469e10 + 5.64919e10i 0.170010 + 0.0981553i
\(872\) 0 0
\(873\) −2.84158e11 + 1.64059e11i −0.489218 + 0.282450i
\(874\) 0 0
\(875\) 4.98036e11 + 3.80109e11i 0.849627 + 0.648448i
\(876\) 0 0
\(877\) 1.19137e11 + 2.06352e11i 0.201395 + 0.348827i 0.948978 0.315342i \(-0.102119\pi\)
−0.747583 + 0.664168i \(0.768786\pi\)
\(878\) 0 0
\(879\) −2.28191e10 + 3.95238e10i −0.0382245 + 0.0662069i
\(880\) 0 0
\(881\) 8.99876e11i 1.49375i −0.664962 0.746877i \(-0.731552\pi\)
0.664962 0.746877i \(-0.268448\pi\)
\(882\) 0 0
\(883\) 9.52626e11 1.56704 0.783519 0.621368i \(-0.213423\pi\)
0.783519 + 0.621368i \(0.213423\pi\)
\(884\) 0 0
\(885\) 5.21653e9 + 3.01176e9i 0.00850371 + 0.00490962i
\(886\) 0 0
\(887\) −1.03165e12 + 5.95622e11i −1.66662 + 0.962225i −0.697182 + 0.716894i \(0.745563\pi\)
−0.969439 + 0.245331i \(0.921103\pi\)
\(888\) 0 0
\(889\) −4.76337e10 + 6.24119e10i −0.0762619 + 0.0999218i
\(890\) 0 0
\(891\) −1.96410e10 3.40193e10i −0.0311640 0.0539777i
\(892\) 0 0
\(893\) 5.44975e10 9.43925e10i 0.0856981 0.148433i
\(894\) 0 0
\(895\) 1.00619e12i 1.56815i
\(896\) 0 0
\(897\) −7.33625e10 −0.113319
\(898\) 0 0
\(899\) 4.11123e10 + 2.37362e10i 0.0629409 + 0.0363390i
\(900\) 0 0
\(901\) 5.80650e10 3.35239e10i 0.0881080 0.0508692i
\(902\) 0 0
\(903\) −1.68063e11 + 7.01251e10i −0.252768 + 0.105469i
\(904\) 0 0
\(905\) 2.58126e10 + 4.47087e10i 0.0384802 + 0.0666496i
\(906\) 0 0
\(907\) 5.10644e11 8.84462e11i 0.754552 1.30692i −0.191044 0.981581i \(-0.561187\pi\)
0.945597 0.325342i \(-0.105479\pi\)
\(908\) 0 0
\(909\) 2.40291e11i 0.351951i
\(910\) 0 0
\(911\) 6.98995e11 1.01485 0.507424 0.861697i \(-0.330598\pi\)
0.507424 + 0.861697i \(0.330598\pi\)
\(912\) 0 0
\(913\) 1.19602e11 + 6.90520e10i 0.172129 + 0.0993786i
\(914\) 0 0
\(915\) 3.13040e11 1.80734e11i 0.446597 0.257843i
\(916\) 0 0
\(917\) −4.45249e10 + 3.45114e11i −0.0629689 + 0.488073i
\(918\) 0 0
\(919\) 1.30804e11 + 2.26560e11i 0.183384 + 0.317630i 0.943031 0.332706i \(-0.107962\pi\)
−0.759647 + 0.650336i \(0.774628\pi\)
\(920\) 0 0
\(921\) −1.37786e11 + 2.38652e11i −0.191498 + 0.331685i
\(922\) 0 0
\(923\) 3.83810e11i 0.528822i
\(924\) 0 0
\(925\) 9.59604e10 0.131077
\(926\) 0 0
\(927\) −1.92011e11 1.10858e11i −0.260020 0.150123i
\(928\) 0 0
\(929\) −6.71373e11 + 3.87617e11i −0.901366 + 0.520404i −0.877643 0.479315i \(-0.840885\pi\)
−0.0237226 + 0.999719i \(0.507552\pi\)
\(930\) 0 0
\(931\) −1.26102e11 1.24800e11i −0.167850 0.166118i
\(932\) 0 0
\(933\) 2.83396e11 + 4.90857e11i 0.373997 + 0.647781i
\(934\) 0 0
\(935\) 1.71466e10 2.96988e10i 0.0224353 0.0388590i
\(936\) 0 0
\(937\) 1.10001e11i 0.142705i 0.997451 + 0.0713525i \(0.0227315\pi\)
−0.997451 + 0.0713525i \(0.977268\pi\)
\(938\) 0 0
\(939\) −4.07760e11 −0.524496
\(940\) 0 0
\(941\) −8.90460e11 5.14107e11i −1.13568 0.655685i −0.190323 0.981722i \(-0.560953\pi\)
−0.945357 + 0.326037i \(0.894287\pi\)
\(942\) 0 0
\(943\) −2.67283e11 + 1.54316e11i −0.338006 + 0.195148i
\(944\) 0 0
\(945\) −1.37747e11 1.77714e10i −0.172725 0.0222841i
\(946\) 0 0
\(947\) −2.70686e11 4.68842e11i −0.336563 0.582944i 0.647221 0.762302i \(-0.275931\pi\)
−0.983784 + 0.179359i \(0.942598\pi\)
\(948\) 0 0
\(949\) −1.18176e11 + 2.04688e11i −0.145702 + 0.252364i
\(950\) 0 0
\(951\) 6.27040e11i 0.766607i
\(952\) 0 0
\(953\) 1.03712e12 1.25736 0.628679 0.777665i \(-0.283596\pi\)
0.628679 + 0.777665i \(0.283596\pi\)
\(954\) 0 0
\(955\) 1.03054e12 + 5.94980e11i 1.23894 + 0.715301i
\(956\) 0 0
\(957\) −4.12862e10 + 2.38366e10i −0.0492218 + 0.0284182i
\(958\) 0 0
\(959\) 1.16927e11 + 2.80229e11i 0.138242 + 0.331313i
\(960\) 0 0
\(961\) −3.53307e11 6.11946e11i −0.414246 0.717496i
\(962\) 0 0
\(963\) −7.55574e10 + 1.30869e11i −0.0878561 + 0.152171i
\(964\) 0 0
\(965\) 1.01899e12i 1.17506i
\(966\) 0 0
\(967\) −1.59184e12 −1.82051 −0.910255 0.414048i \(-0.864115\pi\)
−0.910255 + 0.414048i \(0.864115\pi\)
\(968\) 0 0
\(969\) −9.20186e9 5.31269e9i −0.0104371 0.00602587i
\(970\) 0 0
\(971\) 4.29931e11 2.48221e11i 0.483639 0.279229i −0.238293 0.971193i \(-0.576588\pi\)
0.721932 + 0.691964i \(0.243254\pi\)
\(972\) 0 0
\(973\) 4.93709e11 + 3.76806e11i 0.550833 + 0.420404i
\(974\) 0 0
\(975\) 2.25790e10 + 3.91079e10i 0.0249854 + 0.0432759i
\(976\) 0 0
\(977\) 9.39687e9 1.62759e10i 0.0103135 0.0178635i −0.860823 0.508905i \(-0.830050\pi\)
0.871136 + 0.491042i \(0.163384\pi\)
\(978\) 0 0
\(979\) 6.40157e11i 0.696876i
\(980\) 0 0
\(981\) −6.07309e11 −0.655743
\(982\) 0 0
\(983\) −8.20014e11 4.73435e11i −0.878228 0.507045i −0.00815427 0.999967i \(-0.502596\pi\)
−0.870074 + 0.492922i \(0.835929\pi\)
\(984\) 0 0
\(985\) −5.39085e11 + 3.11241e11i −0.572680 + 0.330637i
\(986\) 0 0
\(987\) 2.41262e11 3.16112e11i 0.254226 0.333098i
\(988\) 0 0
\(989\) 9.31852e10 + 1.61401e11i 0.0974006 + 0.168703i
\(990\) 0 0
\(991\) 2.45053e11 4.24444e11i 0.254077 0.440074i −0.710567 0.703629i \(-0.751562\pi\)
0.964644 + 0.263555i \(0.0848950\pi\)
\(992\) 0 0
\(993\) 8.20894e11i 0.844287i
\(994\) 0 0
\(995\) 1.72916e12 1.76418
\(996\) 0 0
\(997\) 1.52518e11 + 8.80561e10i 0.154362 + 0.0891208i 0.575191 0.818019i \(-0.304928\pi\)
−0.420830 + 0.907140i \(0.638261\pi\)
\(998\) 0 0
\(999\) −1.20162e11 + 6.93756e10i −0.120644 + 0.0696538i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.9.m.a.73.1 yes 10
3.2 odd 2 252.9.z.b.73.5 10
7.5 odd 6 inner 84.9.m.a.61.1 10
21.5 even 6 252.9.z.b.145.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.9.m.a.61.1 10 7.5 odd 6 inner
84.9.m.a.73.1 yes 10 1.1 even 1 trivial
252.9.z.b.73.5 10 3.2 odd 2
252.9.z.b.145.5 10 21.5 even 6