Properties

Label 84.6
Level 84
Weight 6
Dimension 392
Nonzero newspaces 8
Newform subspaces 18
Sturm bound 2304
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 18 \)
Sturm bound: \(2304\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(84))\).

Total New Old
Modular forms 1020 408 612
Cusp forms 900 392 508
Eisenstein series 120 16 104

Trace form

\( 392 q + 9 q^{3} - 22 q^{4} + 66 q^{5} - 54 q^{6} + 232 q^{7} - 534 q^{8} + 531 q^{9} + 2140 q^{10} - 534 q^{11} - 246 q^{12} - 958 q^{13} - 3720 q^{14} + 918 q^{15} - 2398 q^{16} + 3252 q^{17} - 1380 q^{18}+ \cdots - 297126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(84))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
84.6.a \(\chi_{84}(1, \cdot)\) 84.6.a.a 1 1
84.6.a.b 1
84.6.a.c 2
84.6.a.d 2
84.6.b \(\chi_{84}(55, \cdot)\) 84.6.b.a 20 1
84.6.b.b 20
84.6.e \(\chi_{84}(71, \cdot)\) 84.6.e.a 60 1
84.6.f \(\chi_{84}(41, \cdot)\) 84.6.f.a 2 1
84.6.f.b 4
84.6.f.c 8
84.6.i \(\chi_{84}(25, \cdot)\) 84.6.i.a 2 2
84.6.i.b 4
84.6.i.c 8
84.6.k \(\chi_{84}(5, \cdot)\) 84.6.k.a 2 2
84.6.k.b 24
84.6.n \(\chi_{84}(11, \cdot)\) 84.6.n.a 152 2
84.6.o \(\chi_{84}(19, \cdot)\) 84.6.o.a 40 2
84.6.o.b 40

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(84))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(84)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)