Properties

Label 84.3.h
Level $84$
Weight $3$
Character orbit 84.h
Rep. character $\chi_{84}(83,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $5$
Sturm bound $48$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 84.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 84 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(48\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(84, [\chi])\).

Total New Old
Modular forms 36 36 0
Cusp forms 28 28 0
Eisenstein series 8 8 0

Trace form

\( 28 q - 4 q^{4} - 4 q^{9} + 4 q^{16} - 44 q^{18} - 28 q^{21} - 48 q^{22} + 68 q^{25} + 68 q^{28} - 68 q^{30} - 64 q^{36} - 88 q^{37} + 92 q^{42} - 8 q^{46} - 68 q^{49} - 24 q^{57} + 280 q^{58} + 28 q^{60}+ \cdots + 120 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(84, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
84.3.h.a 84.h 84.h $1$ $2.289$ \(\Q\) \(\Q(\sqrt{-21}) \) 84.3.h.a \(-2\) \(-3\) \(-4\) \(7\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{2}-3q^{3}+4q^{4}-4q^{5}+6q^{6}+\cdots\)
84.3.h.b 84.h 84.h $1$ $2.289$ \(\Q\) \(\Q(\sqrt{-21}) \) 84.3.h.a \(-2\) \(3\) \(4\) \(-7\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{2}+3q^{3}+4q^{4}+4q^{5}-6q^{6}+\cdots\)
84.3.h.c 84.h 84.h $1$ $2.289$ \(\Q\) \(\Q(\sqrt{-21}) \) 84.3.h.a \(2\) \(-3\) \(4\) \(7\) $\mathrm{U}(1)[D_{2}]$ \(q+2q^{2}-3q^{3}+4q^{4}+4q^{5}-6q^{6}+\cdots\)
84.3.h.d 84.h 84.h $1$ $2.289$ \(\Q\) \(\Q(\sqrt{-21}) \) 84.3.h.a \(2\) \(3\) \(-4\) \(-7\) $\mathrm{U}(1)[D_{2}]$ \(q+2q^{2}+3q^{3}+4q^{4}-4q^{5}+6q^{6}+\cdots\)
84.3.h.e 84.h 84.h $24$ $2.289$ None 84.3.h.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$