Defining parameters
Level: | \( N \) | \(=\) | \( 84 = 2^{2} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 84.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 84 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(84, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 36 | 0 |
Cusp forms | 28 | 28 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(84, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
84.3.h.a | $1$ | $2.289$ | \(\Q\) | \(\Q(\sqrt{-21}) \) | \(-2\) | \(-3\) | \(-4\) | \(7\) | \(q-2q^{2}-3q^{3}+4q^{4}-4q^{5}+6q^{6}+\cdots\) |
84.3.h.b | $1$ | $2.289$ | \(\Q\) | \(\Q(\sqrt{-21}) \) | \(-2\) | \(3\) | \(4\) | \(-7\) | \(q-2q^{2}+3q^{3}+4q^{4}+4q^{5}-6q^{6}+\cdots\) |
84.3.h.c | $1$ | $2.289$ | \(\Q\) | \(\Q(\sqrt{-21}) \) | \(2\) | \(-3\) | \(4\) | \(7\) | \(q+2q^{2}-3q^{3}+4q^{4}+4q^{5}-6q^{6}+\cdots\) |
84.3.h.d | $1$ | $2.289$ | \(\Q\) | \(\Q(\sqrt{-21}) \) | \(2\) | \(3\) | \(-4\) | \(-7\) | \(q+2q^{2}+3q^{3}+4q^{4}-4q^{5}+6q^{6}+\cdots\) |
84.3.h.e | $24$ | $2.289$ | None | \(0\) | \(0\) | \(0\) | \(0\) |