Properties

Label 84.3
Level 84
Weight 3
Dimension 150
Nonzero newspaces 8
Newform subspaces 18
Sturm bound 1152
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 18 \)
Sturm bound: \(1152\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(84))\).

Total New Old
Modular forms 444 174 270
Cusp forms 324 150 174
Eisenstein series 120 24 96

Trace form

\( 150 q + 4 q^{2} + 3 q^{3} + 2 q^{4} + 2 q^{5} - 12 q^{6} + 6 q^{7} - 2 q^{8} + 15 q^{9} + 40 q^{10} + 54 q^{11} + 36 q^{12} + 50 q^{13} + 6 q^{15} - 46 q^{16} - 88 q^{17} - 90 q^{18} - 92 q^{19} - 268 q^{20}+ \cdots + 102 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(84))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
84.3.c \(\chi_{84}(29, \cdot)\) 84.3.c.a 4 1
84.3.d \(\chi_{84}(13, \cdot)\) 84.3.d.a 2 1
84.3.g \(\chi_{84}(43, \cdot)\) 84.3.g.a 12 1
84.3.h \(\chi_{84}(83, \cdot)\) 84.3.h.a 1 1
84.3.h.b 1
84.3.h.c 1
84.3.h.d 1
84.3.h.e 24
84.3.j \(\chi_{84}(47, \cdot)\) 84.3.j.a 56 2
84.3.l \(\chi_{84}(67, \cdot)\) 84.3.l.a 2 2
84.3.l.b 2
84.3.l.c 14
84.3.l.d 14
84.3.m \(\chi_{84}(61, \cdot)\) 84.3.m.a 2 2
84.3.m.b 4
84.3.p \(\chi_{84}(53, \cdot)\) 84.3.p.a 2 2
84.3.p.b 4
84.3.p.c 4

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(84))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(84)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)