Properties

Label 8379.2.a.cf
Level $8379$
Weight $2$
Character orbit 8379.a
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-2,0,14,-4,0,0,-18,0,-12,-8,0,4,0,0,10,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.39110656.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 10x^{4} - 4x^{3} + 20x^{2} + 16x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2793)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{2} + (\beta_{3} - \beta_1 + 2) q^{4} + (\beta_{4} + \beta_{3} - \beta_1 - 1) q^{5} + ( - \beta_{4} - 2 \beta_{3} + \beta_{2} + \cdots - 2) q^{8} + ( - \beta_{5} - \beta_{4} - \beta_{3} + \cdots - 1) q^{10}+ \cdots + (2 \beta_{5} - 4 \beta_{4} + \cdots + 2 \beta_{2}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 14 q^{4} - 4 q^{5} - 18 q^{8} - 12 q^{10} - 8 q^{11} + 4 q^{13} + 10 q^{16} - 8 q^{17} - 6 q^{19} + 20 q^{20} - 20 q^{23} + 14 q^{25} - 8 q^{26} - 4 q^{29} + 16 q^{31} - 38 q^{32} + 24 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 10x^{4} - 4x^{3} + 20x^{2} + 16x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{5} + 3\nu^{4} + 18\nu^{3} - 14\nu^{2} - 34\nu - 11 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{5} + 3\nu^{4} + 18\nu^{3} - 19\nu^{2} - 29\nu + 9 ) / 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -3\nu^{5} + 2\nu^{4} + 27\nu^{3} - 6\nu^{2} - 46\nu - 14 ) / 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -4\nu^{5} + \nu^{4} + 41\nu^{3} + 2\nu^{2} - 88\nu - 27 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - 2\beta_{4} + \beta_{2} + 6\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{4} - 6\beta_{3} + 9\beta_{2} + 8\beta _1 + 25 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9\beta_{5} - 21\beta_{4} - 2\beta_{3} + 13\beta_{2} + 42\beta _1 + 22 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.759171
−0.156000
2.87591
1.81830
−1.30569
−2.47334
−2.73812 0 5.49729 3.91150 0 0 −9.57599 0 −10.7102
1.2 −2.59905 0 4.75505 0.340834 0 0 −7.16050 0 −0.885843
1.3 −1.67222 0 0.796312 −3.61790 0 0 2.01283 0 6.04992
1.4 1.05939 0 −0.877693 −2.46348 0 0 −3.04860 0 −2.60979
1.5 1.85705 0 1.44864 −2.96557 0 0 −1.02390 0 −5.50722
1.6 2.09294 0 2.38040 0.794617 0 0 0.796162 0 1.66309
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8379.2.a.cf 6
3.b odd 2 1 2793.2.a.bl yes 6
7.b odd 2 1 8379.2.a.cg 6
21.c even 2 1 2793.2.a.bk 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2793.2.a.bk 6 21.c even 2 1
2793.2.a.bl yes 6 3.b odd 2 1
8379.2.a.cf 6 1.a even 1 1 trivial
8379.2.a.cg 6 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8379))\):

\( T_{2}^{6} + 2T_{2}^{5} - 11T_{2}^{4} - 16T_{2}^{3} + 41T_{2}^{2} + 30T_{2} - 49 \) Copy content Toggle raw display
\( T_{5}^{6} + 4T_{5}^{5} - 14T_{5}^{4} - 68T_{5}^{3} - 16T_{5}^{2} + 96T_{5} - 28 \) Copy content Toggle raw display
\( T_{11}^{6} + 8T_{11}^{5} + 2T_{11}^{4} - 88T_{11}^{3} - 84T_{11}^{2} + 176T_{11} - 56 \) Copy content Toggle raw display
\( T_{13}^{6} - 4T_{13}^{5} - 12T_{13}^{4} + 40T_{13}^{3} + 48T_{13}^{2} - 64T_{13} - 16 \) Copy content Toggle raw display
\( T_{17}^{6} + 8T_{17}^{5} - 34T_{17}^{4} - 332T_{17}^{3} - 304T_{17}^{2} + 224T_{17} + 196 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 2 T^{5} + \cdots - 49 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 4 T^{5} + \cdots - 28 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 8 T^{5} + \cdots - 56 \) Copy content Toggle raw display
$13$ \( T^{6} - 4 T^{5} + \cdots - 16 \) Copy content Toggle raw display
$17$ \( T^{6} + 8 T^{5} + \cdots + 196 \) Copy content Toggle raw display
$19$ \( (T + 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + 20 T^{5} + \cdots - 56 \) Copy content Toggle raw display
$29$ \( T^{6} + 4 T^{5} + \cdots + 5596 \) Copy content Toggle raw display
$31$ \( T^{6} - 16 T^{5} + \cdots + 1008 \) Copy content Toggle raw display
$37$ \( T^{6} - 12 T^{5} + \cdots - 7648 \) Copy content Toggle raw display
$41$ \( T^{6} - 16 T^{5} + \cdots - 56 \) Copy content Toggle raw display
$43$ \( T^{6} - 4 T^{5} + \cdots - 2032 \) Copy content Toggle raw display
$47$ \( T^{6} - 12 T^{5} + \cdots + 164 \) Copy content Toggle raw display
$53$ \( T^{6} + 4 T^{5} + \cdots - 10628 \) Copy content Toggle raw display
$59$ \( T^{6} + 4 T^{5} + \cdots - 76832 \) Copy content Toggle raw display
$61$ \( T^{6} - 24 T^{5} + \cdots - 104776 \) Copy content Toggle raw display
$67$ \( T^{6} + 8 T^{5} + \cdots - 29192 \) Copy content Toggle raw display
$71$ \( T^{6} - 338 T^{4} + \cdots + 126748 \) Copy content Toggle raw display
$73$ \( T^{6} - 24 T^{5} + \cdots - 12872 \) Copy content Toggle raw display
$79$ \( T^{6} + 16 T^{5} + \cdots - 584 \) Copy content Toggle raw display
$83$ \( T^{6} + 12 T^{5} + \cdots + 12676 \) Copy content Toggle raw display
$89$ \( T^{6} - 44 T^{5} + \cdots - 158648 \) Copy content Toggle raw display
$97$ \( T^{6} + 8 T^{5} + \cdots - 105984 \) Copy content Toggle raw display
show more
show less