Properties

Label 8379.2.a.bw.1.4
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,10,0,0,0,0,0,12,0,0,-8,0,0,22,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13068.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 171)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.328543\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.71519 q^{2} +5.37228 q^{4} +3.22060 q^{5} +9.15640 q^{8} +8.74456 q^{10} -2.20979 q^{11} -2.00000 q^{13} +14.1168 q^{16} +3.22060 q^{17} -1.00000 q^{19} +17.3020 q^{20} -6.00000 q^{22} +1.01082 q^{23} +5.37228 q^{25} -5.43039 q^{26} +1.01082 q^{29} -4.74456 q^{31} +20.0172 q^{32} +8.74456 q^{34} +10.7446 q^{37} -2.71519 q^{38} +29.4891 q^{40} +5.43039 q^{41} -11.1168 q^{43} -11.8716 q^{44} +2.74456 q^{46} +4.23142 q^{47} +14.5868 q^{50} -10.7446 q^{52} +9.84996 q^{53} -7.11684 q^{55} +2.74456 q^{58} -10.8608 q^{59} +5.11684 q^{61} -12.8824 q^{62} +26.1168 q^{64} -6.44121 q^{65} -4.00000 q^{67} +17.3020 q^{68} +2.02163 q^{71} +5.11684 q^{73} +29.1736 q^{74} -5.37228 q^{76} -4.00000 q^{79} +45.4647 q^{80} +14.7446 q^{82} +11.8716 q^{83} +10.3723 q^{85} -30.1844 q^{86} -20.2337 q^{88} -9.84996 q^{89} +5.43039 q^{92} +11.4891 q^{94} -3.22060 q^{95} -7.48913 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{4} + 12 q^{10} - 8 q^{13} + 22 q^{16} - 4 q^{19} - 24 q^{22} + 10 q^{25} + 4 q^{31} + 12 q^{34} + 20 q^{37} + 72 q^{40} - 10 q^{43} - 12 q^{46} - 20 q^{52} + 6 q^{55} - 12 q^{58} - 14 q^{61}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.71519 1.91993 0.959966 0.280116i \(-0.0903729\pi\)
0.959966 + 0.280116i \(0.0903729\pi\)
\(3\) 0 0
\(4\) 5.37228 2.68614
\(5\) 3.22060 1.44030 0.720149 0.693820i \(-0.244074\pi\)
0.720149 + 0.693820i \(0.244074\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 9.15640 3.23728
\(9\) 0 0
\(10\) 8.74456 2.76527
\(11\) −2.20979 −0.666276 −0.333138 0.942878i \(-0.608107\pi\)
−0.333138 + 0.942878i \(0.608107\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 14.1168 3.52921
\(17\) 3.22060 0.781111 0.390555 0.920579i \(-0.372283\pi\)
0.390555 + 0.920579i \(0.372283\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 17.3020 3.86884
\(21\) 0 0
\(22\) −6.00000 −1.27920
\(23\) 1.01082 0.210770 0.105385 0.994432i \(-0.466393\pi\)
0.105385 + 0.994432i \(0.466393\pi\)
\(24\) 0 0
\(25\) 5.37228 1.07446
\(26\) −5.43039 −1.06499
\(27\) 0 0
\(28\) 0 0
\(29\) 1.01082 0.187704 0.0938519 0.995586i \(-0.470082\pi\)
0.0938519 + 0.995586i \(0.470082\pi\)
\(30\) 0 0
\(31\) −4.74456 −0.852149 −0.426074 0.904688i \(-0.640104\pi\)
−0.426074 + 0.904688i \(0.640104\pi\)
\(32\) 20.0172 3.53857
\(33\) 0 0
\(34\) 8.74456 1.49968
\(35\) 0 0
\(36\) 0 0
\(37\) 10.7446 1.76640 0.883198 0.469001i \(-0.155386\pi\)
0.883198 + 0.469001i \(0.155386\pi\)
\(38\) −2.71519 −0.440463
\(39\) 0 0
\(40\) 29.4891 4.66264
\(41\) 5.43039 0.848084 0.424042 0.905642i \(-0.360611\pi\)
0.424042 + 0.905642i \(0.360611\pi\)
\(42\) 0 0
\(43\) −11.1168 −1.69530 −0.847651 0.530554i \(-0.821984\pi\)
−0.847651 + 0.530554i \(0.821984\pi\)
\(44\) −11.8716 −1.78971
\(45\) 0 0
\(46\) 2.74456 0.404664
\(47\) 4.23142 0.617216 0.308608 0.951189i \(-0.400137\pi\)
0.308608 + 0.951189i \(0.400137\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 14.5868 2.06288
\(51\) 0 0
\(52\) −10.7446 −1.49000
\(53\) 9.84996 1.35300 0.676498 0.736444i \(-0.263497\pi\)
0.676498 + 0.736444i \(0.263497\pi\)
\(54\) 0 0
\(55\) −7.11684 −0.959635
\(56\) 0 0
\(57\) 0 0
\(58\) 2.74456 0.360379
\(59\) −10.8608 −1.41395 −0.706976 0.707237i \(-0.749941\pi\)
−0.706976 + 0.707237i \(0.749941\pi\)
\(60\) 0 0
\(61\) 5.11684 0.655145 0.327572 0.944826i \(-0.393769\pi\)
0.327572 + 0.944826i \(0.393769\pi\)
\(62\) −12.8824 −1.63607
\(63\) 0 0
\(64\) 26.1168 3.26461
\(65\) −6.44121 −0.798933
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 17.3020 2.09817
\(69\) 0 0
\(70\) 0 0
\(71\) 2.02163 0.239924 0.119962 0.992779i \(-0.461723\pi\)
0.119962 + 0.992779i \(0.461723\pi\)
\(72\) 0 0
\(73\) 5.11684 0.598881 0.299441 0.954115i \(-0.403200\pi\)
0.299441 + 0.954115i \(0.403200\pi\)
\(74\) 29.1736 3.39136
\(75\) 0 0
\(76\) −5.37228 −0.616243
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 45.4647 5.08311
\(81\) 0 0
\(82\) 14.7446 1.62826
\(83\) 11.8716 1.30308 0.651538 0.758616i \(-0.274124\pi\)
0.651538 + 0.758616i \(0.274124\pi\)
\(84\) 0 0
\(85\) 10.3723 1.12503
\(86\) −30.1844 −3.25487
\(87\) 0 0
\(88\) −20.2337 −2.15692
\(89\) −9.84996 −1.04409 −0.522047 0.852917i \(-0.674831\pi\)
−0.522047 + 0.852917i \(0.674831\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 5.43039 0.566157
\(93\) 0 0
\(94\) 11.4891 1.18501
\(95\) −3.22060 −0.330427
\(96\) 0 0
\(97\) −7.48913 −0.760405 −0.380203 0.924903i \(-0.624146\pi\)
−0.380203 + 0.924903i \(0.624146\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 28.8614 2.88614
\(101\) −12.8824 −1.28185 −0.640924 0.767604i \(-0.721449\pi\)
−0.640924 + 0.767604i \(0.721449\pi\)
\(102\) 0 0
\(103\) 7.25544 0.714899 0.357450 0.933932i \(-0.383646\pi\)
0.357450 + 0.933932i \(0.383646\pi\)
\(104\) −18.3128 −1.79572
\(105\) 0 0
\(106\) 26.7446 2.59766
\(107\) 4.41957 0.427256 0.213628 0.976915i \(-0.431472\pi\)
0.213628 + 0.976915i \(0.431472\pi\)
\(108\) 0 0
\(109\) 5.25544 0.503380 0.251690 0.967808i \(-0.419014\pi\)
0.251690 + 0.967808i \(0.419014\pi\)
\(110\) −19.3236 −1.84243
\(111\) 0 0
\(112\) 0 0
\(113\) −11.8716 −1.11679 −0.558393 0.829577i \(-0.688582\pi\)
−0.558393 + 0.829577i \(0.688582\pi\)
\(114\) 0 0
\(115\) 3.25544 0.303571
\(116\) 5.43039 0.504199
\(117\) 0 0
\(118\) −29.4891 −2.71469
\(119\) 0 0
\(120\) 0 0
\(121\) −6.11684 −0.556077
\(122\) 13.8932 1.25783
\(123\) 0 0
\(124\) −25.4891 −2.28899
\(125\) 1.19897 0.107239
\(126\) 0 0
\(127\) −12.7446 −1.13090 −0.565449 0.824784i \(-0.691297\pi\)
−0.565449 + 0.824784i \(0.691297\pi\)
\(128\) 30.8780 2.72925
\(129\) 0 0
\(130\) −17.4891 −1.53390
\(131\) 15.0922 1.31861 0.659306 0.751875i \(-0.270850\pi\)
0.659306 + 0.751875i \(0.270850\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −10.8608 −0.938228
\(135\) 0 0
\(136\) 29.4891 2.52867
\(137\) 12.0597 1.03033 0.515167 0.857090i \(-0.327730\pi\)
0.515167 + 0.857090i \(0.327730\pi\)
\(138\) 0 0
\(139\) −3.11684 −0.264367 −0.132184 0.991225i \(-0.542199\pi\)
−0.132184 + 0.991225i \(0.542199\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.48913 0.460637
\(143\) 4.41957 0.369583
\(144\) 0 0
\(145\) 3.25544 0.270349
\(146\) 13.8932 1.14981
\(147\) 0 0
\(148\) 57.7228 4.74479
\(149\) 20.5226 1.68128 0.840638 0.541598i \(-0.182180\pi\)
0.840638 + 0.541598i \(0.182180\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) −9.15640 −0.742682
\(153\) 0 0
\(154\) 0 0
\(155\) −15.2804 −1.22735
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) −10.8608 −0.864037
\(159\) 0 0
\(160\) 64.4674 5.09659
\(161\) 0 0
\(162\) 0 0
\(163\) −21.4891 −1.68316 −0.841579 0.540134i \(-0.818374\pi\)
−0.841579 + 0.540134i \(0.818374\pi\)
\(164\) 29.1736 2.27807
\(165\) 0 0
\(166\) 32.2337 2.50182
\(167\) 6.44121 0.498435 0.249218 0.968447i \(-0.419827\pi\)
0.249218 + 0.968447i \(0.419827\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 28.1628 2.15999
\(171\) 0 0
\(172\) −59.7228 −4.55382
\(173\) 1.01082 0.0768509 0.0384255 0.999261i \(-0.487766\pi\)
0.0384255 + 0.999261i \(0.487766\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −31.1952 −2.35143
\(177\) 0 0
\(178\) −26.7446 −2.00459
\(179\) −4.41957 −0.330334 −0.165167 0.986266i \(-0.552816\pi\)
−0.165167 + 0.986266i \(0.552816\pi\)
\(180\) 0 0
\(181\) −19.4891 −1.44862 −0.724308 0.689477i \(-0.757840\pi\)
−0.724308 + 0.689477i \(0.757840\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 9.25544 0.682320
\(185\) 34.6040 2.54413
\(186\) 0 0
\(187\) −7.11684 −0.520435
\(188\) 22.7324 1.65793
\(189\) 0 0
\(190\) −8.74456 −0.634397
\(191\) −21.5334 −1.55810 −0.779051 0.626960i \(-0.784299\pi\)
−0.779051 + 0.626960i \(0.784299\pi\)
\(192\) 0 0
\(193\) 16.2337 1.16853 0.584263 0.811564i \(-0.301384\pi\)
0.584263 + 0.811564i \(0.301384\pi\)
\(194\) −20.3344 −1.45993
\(195\) 0 0
\(196\) 0 0
\(197\) −23.7432 −1.69163 −0.845816 0.533475i \(-0.820886\pi\)
−0.845816 + 0.533475i \(0.820886\pi\)
\(198\) 0 0
\(199\) −0.883156 −0.0626053 −0.0313026 0.999510i \(-0.509966\pi\)
−0.0313026 + 0.999510i \(0.509966\pi\)
\(200\) 49.1908 3.47831
\(201\) 0 0
\(202\) −34.9783 −2.46106
\(203\) 0 0
\(204\) 0 0
\(205\) 17.4891 1.22149
\(206\) 19.6999 1.37256
\(207\) 0 0
\(208\) −28.2337 −1.95765
\(209\) 2.20979 0.152854
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 52.9168 3.63434
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) −35.8029 −2.44174
\(216\) 0 0
\(217\) 0 0
\(218\) 14.2695 0.966455
\(219\) 0 0
\(220\) −38.2337 −2.57771
\(221\) −6.44121 −0.433282
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −32.2337 −2.14415
\(227\) −19.3236 −1.28255 −0.641277 0.767310i \(-0.721595\pi\)
−0.641277 + 0.767310i \(0.721595\pi\)
\(228\) 0 0
\(229\) −15.6277 −1.03271 −0.516354 0.856375i \(-0.672711\pi\)
−0.516354 + 0.856375i \(0.672711\pi\)
\(230\) 8.83915 0.582836
\(231\) 0 0
\(232\) 9.25544 0.607649
\(233\) −7.64018 −0.500525 −0.250262 0.968178i \(-0.580517\pi\)
−0.250262 + 0.968178i \(0.580517\pi\)
\(234\) 0 0
\(235\) 13.6277 0.888974
\(236\) −58.3472 −3.79808
\(237\) 0 0
\(238\) 0 0
\(239\) −12.6943 −0.821123 −0.410562 0.911833i \(-0.634667\pi\)
−0.410562 + 0.911833i \(0.634667\pi\)
\(240\) 0 0
\(241\) 24.2337 1.56103 0.780515 0.625138i \(-0.214957\pi\)
0.780515 + 0.625138i \(0.214957\pi\)
\(242\) −16.6084 −1.06763
\(243\) 0 0
\(244\) 27.4891 1.75981
\(245\) 0 0
\(246\) 0 0
\(247\) 2.00000 0.127257
\(248\) −43.4431 −2.75864
\(249\) 0 0
\(250\) 3.25544 0.205892
\(251\) −23.9313 −1.51053 −0.755266 0.655418i \(-0.772493\pi\)
−0.755266 + 0.655418i \(0.772493\pi\)
\(252\) 0 0
\(253\) −2.23369 −0.140431
\(254\) −34.6040 −2.17125
\(255\) 0 0
\(256\) 31.6060 1.97537
\(257\) −5.43039 −0.338738 −0.169369 0.985553i \(-0.554173\pi\)
−0.169369 + 0.985553i \(0.554173\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −34.6040 −2.14605
\(261\) 0 0
\(262\) 40.9783 2.53164
\(263\) 13.0706 0.805966 0.402983 0.915208i \(-0.367973\pi\)
0.402983 + 0.915208i \(0.367973\pi\)
\(264\) 0 0
\(265\) 31.7228 1.94872
\(266\) 0 0
\(267\) 0 0
\(268\) −21.4891 −1.31266
\(269\) −7.82833 −0.477302 −0.238651 0.971105i \(-0.576705\pi\)
−0.238651 + 0.971105i \(0.576705\pi\)
\(270\) 0 0
\(271\) −25.4891 −1.54835 −0.774177 0.632969i \(-0.781836\pi\)
−0.774177 + 0.632969i \(0.781836\pi\)
\(272\) 45.4647 2.75671
\(273\) 0 0
\(274\) 32.7446 1.97817
\(275\) −11.8716 −0.715884
\(276\) 0 0
\(277\) 9.11684 0.547778 0.273889 0.961761i \(-0.411690\pi\)
0.273889 + 0.961761i \(0.411690\pi\)
\(278\) −8.46284 −0.507567
\(279\) 0 0
\(280\) 0 0
\(281\) 24.7540 1.47670 0.738350 0.674418i \(-0.235605\pi\)
0.738350 + 0.674418i \(0.235605\pi\)
\(282\) 0 0
\(283\) −6.37228 −0.378793 −0.189396 0.981901i \(-0.560653\pi\)
−0.189396 + 0.981901i \(0.560653\pi\)
\(284\) 10.8608 0.644469
\(285\) 0 0
\(286\) 12.0000 0.709575
\(287\) 0 0
\(288\) 0 0
\(289\) −6.62772 −0.389866
\(290\) 8.83915 0.519053
\(291\) 0 0
\(292\) 27.4891 1.60868
\(293\) 25.1303 1.46813 0.734064 0.679080i \(-0.237621\pi\)
0.734064 + 0.679080i \(0.237621\pi\)
\(294\) 0 0
\(295\) −34.9783 −2.03651
\(296\) 98.3815 5.71831
\(297\) 0 0
\(298\) 55.7228 3.22794
\(299\) −2.02163 −0.116914
\(300\) 0 0
\(301\) 0 0
\(302\) −10.8608 −0.624968
\(303\) 0 0
\(304\) −14.1168 −0.809657
\(305\) 16.4793 0.943603
\(306\) 0 0
\(307\) −25.4891 −1.45474 −0.727371 0.686245i \(-0.759258\pi\)
−0.727371 + 0.686245i \(0.759258\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −41.4891 −2.35642
\(311\) −12.6943 −0.719825 −0.359913 0.932986i \(-0.617194\pi\)
−0.359913 + 0.932986i \(0.617194\pi\)
\(312\) 0 0
\(313\) −7.48913 −0.423310 −0.211655 0.977344i \(-0.567885\pi\)
−0.211655 + 0.977344i \(0.567885\pi\)
\(314\) −5.43039 −0.306455
\(315\) 0 0
\(316\) −21.4891 −1.20886
\(317\) −12.2479 −0.687911 −0.343955 0.938986i \(-0.611767\pi\)
−0.343955 + 0.938986i \(0.611767\pi\)
\(318\) 0 0
\(319\) −2.23369 −0.125063
\(320\) 84.1120 4.70200
\(321\) 0 0
\(322\) 0 0
\(323\) −3.22060 −0.179199
\(324\) 0 0
\(325\) −10.7446 −0.596001
\(326\) −58.3472 −3.23155
\(327\) 0 0
\(328\) 49.7228 2.74548
\(329\) 0 0
\(330\) 0 0
\(331\) 18.9783 1.04314 0.521569 0.853209i \(-0.325347\pi\)
0.521569 + 0.853209i \(0.325347\pi\)
\(332\) 63.7775 3.50025
\(333\) 0 0
\(334\) 17.4891 0.956962
\(335\) −12.8824 −0.703841
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) −24.4368 −1.32918
\(339\) 0 0
\(340\) 55.7228 3.02199
\(341\) 10.4845 0.567766
\(342\) 0 0
\(343\) 0 0
\(344\) −101.790 −5.48816
\(345\) 0 0
\(346\) 2.74456 0.147549
\(347\) 32.3942 1.73901 0.869505 0.493924i \(-0.164438\pi\)
0.869505 + 0.493924i \(0.164438\pi\)
\(348\) 0 0
\(349\) −17.8614 −0.956099 −0.478050 0.878333i \(-0.658656\pi\)
−0.478050 + 0.878333i \(0.658656\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −44.2337 −2.35766
\(353\) −14.9040 −0.793262 −0.396631 0.917978i \(-0.629821\pi\)
−0.396631 + 0.917978i \(0.629821\pi\)
\(354\) 0 0
\(355\) 6.51087 0.345561
\(356\) −52.9168 −2.80458
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) −4.60773 −0.243187 −0.121593 0.992580i \(-0.538800\pi\)
−0.121593 + 0.992580i \(0.538800\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −52.9168 −2.78124
\(363\) 0 0
\(364\) 0 0
\(365\) 16.4793 0.862567
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 14.2695 0.743851
\(369\) 0 0
\(370\) 93.9565 4.88457
\(371\) 0 0
\(372\) 0 0
\(373\) −24.2337 −1.25477 −0.627386 0.778708i \(-0.715875\pi\)
−0.627386 + 0.778708i \(0.715875\pi\)
\(374\) −19.3236 −0.999200
\(375\) 0 0
\(376\) 38.7446 1.99810
\(377\) −2.02163 −0.104119
\(378\) 0 0
\(379\) 28.7446 1.47651 0.738255 0.674522i \(-0.235650\pi\)
0.738255 + 0.674522i \(0.235650\pi\)
\(380\) −17.3020 −0.887573
\(381\) 0 0
\(382\) −58.4674 −2.99145
\(383\) 17.3020 0.884090 0.442045 0.896993i \(-0.354253\pi\)
0.442045 + 0.896993i \(0.354253\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 44.0776 2.24349
\(387\) 0 0
\(388\) −40.2337 −2.04256
\(389\) 12.0597 0.611454 0.305727 0.952119i \(-0.401101\pi\)
0.305727 + 0.952119i \(0.401101\pi\)
\(390\) 0 0
\(391\) 3.25544 0.164635
\(392\) 0 0
\(393\) 0 0
\(394\) −64.4674 −3.24782
\(395\) −12.8824 −0.648184
\(396\) 0 0
\(397\) 17.1168 0.859070 0.429535 0.903050i \(-0.358678\pi\)
0.429535 + 0.903050i \(0.358678\pi\)
\(398\) −2.39794 −0.120198
\(399\) 0 0
\(400\) 75.8397 3.79198
\(401\) 3.40876 0.170225 0.0851126 0.996371i \(-0.472875\pi\)
0.0851126 + 0.996371i \(0.472875\pi\)
\(402\) 0 0
\(403\) 9.48913 0.472687
\(404\) −69.2079 −3.44322
\(405\) 0 0
\(406\) 0 0
\(407\) −23.7432 −1.17691
\(408\) 0 0
\(409\) −7.48913 −0.370313 −0.185157 0.982709i \(-0.559279\pi\)
−0.185157 + 0.982709i \(0.559279\pi\)
\(410\) 47.4864 2.34519
\(411\) 0 0
\(412\) 38.9783 1.92032
\(413\) 0 0
\(414\) 0 0
\(415\) 38.2337 1.87682
\(416\) −40.0344 −1.96285
\(417\) 0 0
\(418\) 6.00000 0.293470
\(419\) −11.8716 −0.579965 −0.289983 0.957032i \(-0.593650\pi\)
−0.289983 + 0.957032i \(0.593650\pi\)
\(420\) 0 0
\(421\) −8.97825 −0.437573 −0.218787 0.975773i \(-0.570210\pi\)
−0.218787 + 0.975773i \(0.570210\pi\)
\(422\) −10.8608 −0.528694
\(423\) 0 0
\(424\) 90.1902 4.38002
\(425\) 17.3020 0.839269
\(426\) 0 0
\(427\) 0 0
\(428\) 23.7432 1.14767
\(429\) 0 0
\(430\) −97.2119 −4.68798
\(431\) −30.1844 −1.45393 −0.726966 0.686674i \(-0.759070\pi\)
−0.726966 + 0.686674i \(0.759070\pi\)
\(432\) 0 0
\(433\) 22.0000 1.05725 0.528626 0.848855i \(-0.322707\pi\)
0.528626 + 0.848855i \(0.322707\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 28.2337 1.35215
\(437\) −1.01082 −0.0483539
\(438\) 0 0
\(439\) 18.2337 0.870246 0.435123 0.900371i \(-0.356705\pi\)
0.435123 + 0.900371i \(0.356705\pi\)
\(440\) −65.1647 −3.10660
\(441\) 0 0
\(442\) −17.4891 −0.831873
\(443\) −27.9746 −1.32911 −0.664557 0.747238i \(-0.731380\pi\)
−0.664557 + 0.747238i \(0.731380\pi\)
\(444\) 0 0
\(445\) −31.7228 −1.50381
\(446\) 10.8608 0.514273
\(447\) 0 0
\(448\) 0 0
\(449\) 22.3561 1.05505 0.527524 0.849540i \(-0.323120\pi\)
0.527524 + 0.849540i \(0.323120\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) −63.7775 −2.99984
\(453\) 0 0
\(454\) −52.4674 −2.46242
\(455\) 0 0
\(456\) 0 0
\(457\) −8.37228 −0.391639 −0.195819 0.980640i \(-0.562737\pi\)
−0.195819 + 0.980640i \(0.562737\pi\)
\(458\) −42.4323 −1.98273
\(459\) 0 0
\(460\) 17.4891 0.815435
\(461\) 26.9638 1.25583 0.627914 0.778282i \(-0.283909\pi\)
0.627914 + 0.778282i \(0.283909\pi\)
\(462\) 0 0
\(463\) −2.37228 −0.110249 −0.0551246 0.998479i \(-0.517556\pi\)
−0.0551246 + 0.998479i \(0.517556\pi\)
\(464\) 14.2695 0.662447
\(465\) 0 0
\(466\) −20.7446 −0.960973
\(467\) 36.4374 1.68612 0.843062 0.537816i \(-0.180751\pi\)
0.843062 + 0.537816i \(0.180751\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 37.0019 1.70677
\(471\) 0 0
\(472\) −99.4456 −4.57736
\(473\) 24.5659 1.12954
\(474\) 0 0
\(475\) −5.37228 −0.246497
\(476\) 0 0
\(477\) 0 0
\(478\) −34.4674 −1.57650
\(479\) −33.5932 −1.53491 −0.767455 0.641103i \(-0.778477\pi\)
−0.767455 + 0.641103i \(0.778477\pi\)
\(480\) 0 0
\(481\) −21.4891 −0.979820
\(482\) 65.7992 2.99707
\(483\) 0 0
\(484\) −32.8614 −1.49370
\(485\) −24.1195 −1.09521
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 46.8519 2.12088
\(489\) 0 0
\(490\) 0 0
\(491\) −1.01082 −0.0456175 −0.0228087 0.999740i \(-0.507261\pi\)
−0.0228087 + 0.999740i \(0.507261\pi\)
\(492\) 0 0
\(493\) 3.25544 0.146618
\(494\) 5.43039 0.244325
\(495\) 0 0
\(496\) −66.9783 −3.00741
\(497\) 0 0
\(498\) 0 0
\(499\) −11.1168 −0.497658 −0.248829 0.968547i \(-0.580046\pi\)
−0.248829 + 0.968547i \(0.580046\pi\)
\(500\) 6.44121 0.288059
\(501\) 0 0
\(502\) −64.9783 −2.90012
\(503\) 31.5715 1.40770 0.703852 0.710346i \(-0.251462\pi\)
0.703852 + 0.710346i \(0.251462\pi\)
\(504\) 0 0
\(505\) −41.4891 −1.84624
\(506\) −6.06490 −0.269618
\(507\) 0 0
\(508\) −68.4674 −3.03775
\(509\) −24.7540 −1.09720 −0.548601 0.836084i \(-0.684839\pi\)
−0.548601 + 0.836084i \(0.684839\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 24.0604 1.06333
\(513\) 0 0
\(514\) −14.7446 −0.650355
\(515\) 23.3669 1.02967
\(516\) 0 0
\(517\) −9.35053 −0.411236
\(518\) 0 0
\(519\) 0 0
\(520\) −58.9783 −2.58637
\(521\) −16.2912 −0.713729 −0.356864 0.934156i \(-0.616154\pi\)
−0.356864 + 0.934156i \(0.616154\pi\)
\(522\) 0 0
\(523\) 18.2337 0.797304 0.398652 0.917102i \(-0.369478\pi\)
0.398652 + 0.917102i \(0.369478\pi\)
\(524\) 81.0795 3.54198
\(525\) 0 0
\(526\) 35.4891 1.54740
\(527\) −15.2804 −0.665623
\(528\) 0 0
\(529\) −21.9783 −0.955576
\(530\) 86.1336 3.74140
\(531\) 0 0
\(532\) 0 0
\(533\) −10.8608 −0.470433
\(534\) 0 0
\(535\) 14.2337 0.615376
\(536\) −36.6256 −1.58198
\(537\) 0 0
\(538\) −21.2554 −0.916387
\(539\) 0 0
\(540\) 0 0
\(541\) 21.1168 0.907884 0.453942 0.891031i \(-0.350017\pi\)
0.453942 + 0.891031i \(0.350017\pi\)
\(542\) −69.2079 −2.97274
\(543\) 0 0
\(544\) 64.4674 2.76402
\(545\) 16.9257 0.725016
\(546\) 0 0
\(547\) 22.2337 0.950644 0.475322 0.879812i \(-0.342332\pi\)
0.475322 + 0.879812i \(0.342332\pi\)
\(548\) 64.7884 2.76762
\(549\) 0 0
\(550\) −32.2337 −1.37445
\(551\) −1.01082 −0.0430622
\(552\) 0 0
\(553\) 0 0
\(554\) 24.7540 1.05170
\(555\) 0 0
\(556\) −16.7446 −0.710128
\(557\) −20.5226 −0.869570 −0.434785 0.900534i \(-0.643176\pi\)
−0.434785 + 0.900534i \(0.643176\pi\)
\(558\) 0 0
\(559\) 22.2337 0.940385
\(560\) 0 0
\(561\) 0 0
\(562\) 67.2119 2.83516
\(563\) 38.6472 1.62879 0.814393 0.580313i \(-0.197070\pi\)
0.814393 + 0.580313i \(0.197070\pi\)
\(564\) 0 0
\(565\) −38.2337 −1.60850
\(566\) −17.3020 −0.727257
\(567\) 0 0
\(568\) 18.5109 0.776699
\(569\) 3.03245 0.127127 0.0635634 0.997978i \(-0.479753\pi\)
0.0635634 + 0.997978i \(0.479753\pi\)
\(570\) 0 0
\(571\) 2.51087 0.105077 0.0525384 0.998619i \(-0.483269\pi\)
0.0525384 + 0.998619i \(0.483269\pi\)
\(572\) 23.7432 0.992753
\(573\) 0 0
\(574\) 0 0
\(575\) 5.43039 0.226463
\(576\) 0 0
\(577\) 41.1168 1.71172 0.855858 0.517210i \(-0.173030\pi\)
0.855858 + 0.517210i \(0.173030\pi\)
\(578\) −17.9955 −0.748516
\(579\) 0 0
\(580\) 17.4891 0.726196
\(581\) 0 0
\(582\) 0 0
\(583\) −21.7663 −0.901469
\(584\) 46.8519 1.93874
\(585\) 0 0
\(586\) 68.2337 2.81871
\(587\) 1.83348 0.0756758 0.0378379 0.999284i \(-0.487953\pi\)
0.0378379 + 0.999284i \(0.487953\pi\)
\(588\) 0 0
\(589\) 4.74456 0.195496
\(590\) −94.9728 −3.90997
\(591\) 0 0
\(592\) 151.679 6.23398
\(593\) −4.04326 −0.166037 −0.0830185 0.996548i \(-0.526456\pi\)
−0.0830185 + 0.996548i \(0.526456\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 110.253 4.51614
\(597\) 0 0
\(598\) −5.48913 −0.224467
\(599\) 12.8824 0.526361 0.263181 0.964747i \(-0.415229\pi\)
0.263181 + 0.964747i \(0.415229\pi\)
\(600\) 0 0
\(601\) 25.2554 1.03019 0.515095 0.857133i \(-0.327756\pi\)
0.515095 + 0.857133i \(0.327756\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −21.4891 −0.874380
\(605\) −19.6999 −0.800916
\(606\) 0 0
\(607\) −28.7446 −1.16671 −0.583353 0.812219i \(-0.698260\pi\)
−0.583353 + 0.812219i \(0.698260\pi\)
\(608\) −20.0172 −0.811804
\(609\) 0 0
\(610\) 44.7446 1.81165
\(611\) −8.46284 −0.342370
\(612\) 0 0
\(613\) 2.60597 0.105254 0.0526271 0.998614i \(-0.483241\pi\)
0.0526271 + 0.998614i \(0.483241\pi\)
\(614\) −69.2079 −2.79300
\(615\) 0 0
\(616\) 0 0
\(617\) 3.22060 0.129657 0.0648283 0.997896i \(-0.479350\pi\)
0.0648283 + 0.997896i \(0.479350\pi\)
\(618\) 0 0
\(619\) −6.97825 −0.280480 −0.140240 0.990118i \(-0.544787\pi\)
−0.140240 + 0.990118i \(0.544787\pi\)
\(620\) −82.0903 −3.29683
\(621\) 0 0
\(622\) −34.4674 −1.38202
\(623\) 0 0
\(624\) 0 0
\(625\) −23.0000 −0.920000
\(626\) −20.3344 −0.812727
\(627\) 0 0
\(628\) −10.7446 −0.428755
\(629\) 34.6040 1.37975
\(630\) 0 0
\(631\) 15.1168 0.601792 0.300896 0.953657i \(-0.402714\pi\)
0.300896 + 0.953657i \(0.402714\pi\)
\(632\) −36.6256 −1.45689
\(633\) 0 0
\(634\) −33.2554 −1.32074
\(635\) −41.0452 −1.62883
\(636\) 0 0
\(637\) 0 0
\(638\) −6.06490 −0.240112
\(639\) 0 0
\(640\) 99.4456 3.93093
\(641\) −24.7540 −0.977724 −0.488862 0.872361i \(-0.662588\pi\)
−0.488862 + 0.872361i \(0.662588\pi\)
\(642\) 0 0
\(643\) 35.1168 1.38487 0.692437 0.721479i \(-0.256537\pi\)
0.692437 + 0.721479i \(0.256537\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −8.74456 −0.344050
\(647\) 17.1138 0.672814 0.336407 0.941717i \(-0.390788\pi\)
0.336407 + 0.941717i \(0.390788\pi\)
\(648\) 0 0
\(649\) 24.0000 0.942082
\(650\) −29.1736 −1.14428
\(651\) 0 0
\(652\) −115.446 −4.52120
\(653\) 14.0814 0.551047 0.275524 0.961294i \(-0.411149\pi\)
0.275524 + 0.961294i \(0.411149\pi\)
\(654\) 0 0
\(655\) 48.6060 1.89919
\(656\) 76.6600 2.99307
\(657\) 0 0
\(658\) 0 0
\(659\) 11.2371 0.437735 0.218867 0.975755i \(-0.429764\pi\)
0.218867 + 0.975755i \(0.429764\pi\)
\(660\) 0 0
\(661\) 6.74456 0.262333 0.131167 0.991360i \(-0.458128\pi\)
0.131167 + 0.991360i \(0.458128\pi\)
\(662\) 51.5296 2.00276
\(663\) 0 0
\(664\) 108.701 4.21842
\(665\) 0 0
\(666\) 0 0
\(667\) 1.02175 0.0395623
\(668\) 34.6040 1.33887
\(669\) 0 0
\(670\) −34.9783 −1.35133
\(671\) −11.3071 −0.436507
\(672\) 0 0
\(673\) −25.2554 −0.973526 −0.486763 0.873534i \(-0.661822\pi\)
−0.486763 + 0.873534i \(0.661822\pi\)
\(674\) 38.0127 1.46420
\(675\) 0 0
\(676\) −48.3505 −1.85964
\(677\) −44.4539 −1.70850 −0.854252 0.519860i \(-0.825984\pi\)
−0.854252 + 0.519860i \(0.825984\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 94.9728 3.64204
\(681\) 0 0
\(682\) 28.4674 1.09007
\(683\) 34.2277 1.30968 0.654842 0.755765i \(-0.272735\pi\)
0.654842 + 0.755765i \(0.272735\pi\)
\(684\) 0 0
\(685\) 38.8397 1.48399
\(686\) 0 0
\(687\) 0 0
\(688\) −156.935 −5.98308
\(689\) −19.6999 −0.750507
\(690\) 0 0
\(691\) −27.1168 −1.03157 −0.515787 0.856717i \(-0.672500\pi\)
−0.515787 + 0.856717i \(0.672500\pi\)
\(692\) 5.43039 0.206432
\(693\) 0 0
\(694\) 87.9565 3.33878
\(695\) −10.0381 −0.380767
\(696\) 0 0
\(697\) 17.4891 0.662448
\(698\) −48.4972 −1.83565
\(699\) 0 0
\(700\) 0 0
\(701\) −30.5607 −1.15426 −0.577131 0.816652i \(-0.695828\pi\)
−0.577131 + 0.816652i \(0.695828\pi\)
\(702\) 0 0
\(703\) −10.7446 −0.405239
\(704\) −57.7126 −2.17513
\(705\) 0 0
\(706\) −40.4674 −1.52301
\(707\) 0 0
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 17.6783 0.663454
\(711\) 0 0
\(712\) −90.1902 −3.38002
\(713\) −4.79588 −0.179607
\(714\) 0 0
\(715\) 14.2337 0.532310
\(716\) −23.7432 −0.887325
\(717\) 0 0
\(718\) −12.5109 −0.466902
\(719\) 38.8354 1.44832 0.724158 0.689634i \(-0.242229\pi\)
0.724158 + 0.689634i \(0.242229\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 2.71519 0.101049
\(723\) 0 0
\(724\) −104.701 −3.89118
\(725\) 5.43039 0.201680
\(726\) 0 0
\(727\) 37.3505 1.38525 0.692627 0.721296i \(-0.256453\pi\)
0.692627 + 0.721296i \(0.256453\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 44.7446 1.65607
\(731\) −35.8029 −1.32422
\(732\) 0 0
\(733\) −18.4674 −0.682108 −0.341054 0.940044i \(-0.610784\pi\)
−0.341054 + 0.940044i \(0.610784\pi\)
\(734\) −21.7216 −0.801757
\(735\) 0 0
\(736\) 20.2337 0.745824
\(737\) 8.83915 0.325594
\(738\) 0 0
\(739\) 27.1168 0.997509 0.498755 0.866743i \(-0.333791\pi\)
0.498755 + 0.866743i \(0.333791\pi\)
\(740\) 185.902 6.83390
\(741\) 0 0
\(742\) 0 0
\(743\) 28.5391 1.04700 0.523498 0.852027i \(-0.324627\pi\)
0.523498 + 0.852027i \(0.324627\pi\)
\(744\) 0 0
\(745\) 66.0951 2.42154
\(746\) −65.7992 −2.40908
\(747\) 0 0
\(748\) −38.2337 −1.39796
\(749\) 0 0
\(750\) 0 0
\(751\) 24.4674 0.892827 0.446414 0.894827i \(-0.352701\pi\)
0.446414 + 0.894827i \(0.352701\pi\)
\(752\) 59.7343 2.17829
\(753\) 0 0
\(754\) −5.48913 −0.199902
\(755\) −12.8824 −0.468839
\(756\) 0 0
\(757\) −5.11684 −0.185975 −0.0929874 0.995667i \(-0.529642\pi\)
−0.0929874 + 0.995667i \(0.529642\pi\)
\(758\) 78.0471 2.83480
\(759\) 0 0
\(760\) −29.4891 −1.06968
\(761\) −0.822662 −0.0298215 −0.0149107 0.999889i \(-0.504746\pi\)
−0.0149107 + 0.999889i \(0.504746\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −115.683 −4.18528
\(765\) 0 0
\(766\) 46.9783 1.69739
\(767\) 21.7216 0.784320
\(768\) 0 0
\(769\) −6.88316 −0.248213 −0.124106 0.992269i \(-0.539606\pi\)
−0.124106 + 0.992269i \(0.539606\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 87.2119 3.13883
\(773\) −5.43039 −0.195318 −0.0976588 0.995220i \(-0.531135\pi\)
−0.0976588 + 0.995220i \(0.531135\pi\)
\(774\) 0 0
\(775\) −25.4891 −0.915596
\(776\) −68.5734 −2.46164
\(777\) 0 0
\(778\) 32.7446 1.17395
\(779\) −5.43039 −0.194564
\(780\) 0 0
\(781\) −4.46738 −0.159855
\(782\) 8.83915 0.316087
\(783\) 0 0
\(784\) 0 0
\(785\) −6.44121 −0.229896
\(786\) 0 0
\(787\) 49.9565 1.78076 0.890378 0.455221i \(-0.150440\pi\)
0.890378 + 0.455221i \(0.150440\pi\)
\(788\) −127.555 −4.54396
\(789\) 0 0
\(790\) −34.9783 −1.24447
\(791\) 0 0
\(792\) 0 0
\(793\) −10.2337 −0.363409
\(794\) 46.4756 1.64936
\(795\) 0 0
\(796\) −4.74456 −0.168167
\(797\) 7.45202 0.263964 0.131982 0.991252i \(-0.457866\pi\)
0.131982 + 0.991252i \(0.457866\pi\)
\(798\) 0 0
\(799\) 13.6277 0.482114
\(800\) 107.538 3.80204
\(801\) 0 0
\(802\) 9.25544 0.326821
\(803\) −11.3071 −0.399020
\(804\) 0 0
\(805\) 0 0
\(806\) 25.7648 0.907527
\(807\) 0 0
\(808\) −117.957 −4.14970
\(809\) −3.59691 −0.126461 −0.0632303 0.997999i \(-0.520140\pi\)
−0.0632303 + 0.997999i \(0.520140\pi\)
\(810\) 0 0
\(811\) 36.7446 1.29028 0.645138 0.764066i \(-0.276800\pi\)
0.645138 + 0.764066i \(0.276800\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −64.4674 −2.25958
\(815\) −69.2079 −2.42425
\(816\) 0 0
\(817\) 11.1168 0.388929
\(818\) −20.3344 −0.710977
\(819\) 0 0
\(820\) 93.9565 3.28110
\(821\) −29.3617 −1.02473 −0.512366 0.858767i \(-0.671231\pi\)
−0.512366 + 0.858767i \(0.671231\pi\)
\(822\) 0 0
\(823\) 8.60597 0.299985 0.149993 0.988687i \(-0.452075\pi\)
0.149993 + 0.988687i \(0.452075\pi\)
\(824\) 66.4337 2.31433
\(825\) 0 0
\(826\) 0 0
\(827\) −28.5391 −0.992401 −0.496200 0.868208i \(-0.665272\pi\)
−0.496200 + 0.868208i \(0.665272\pi\)
\(828\) 0 0
\(829\) 1.25544 0.0436031 0.0218016 0.999762i \(-0.493060\pi\)
0.0218016 + 0.999762i \(0.493060\pi\)
\(830\) 103.812 3.60336
\(831\) 0 0
\(832\) −52.2337 −1.81088
\(833\) 0 0
\(834\) 0 0
\(835\) 20.7446 0.717895
\(836\) 11.8716 0.410588
\(837\) 0 0
\(838\) −32.2337 −1.11349
\(839\) −30.1844 −1.04208 −0.521041 0.853532i \(-0.674456\pi\)
−0.521041 + 0.853532i \(0.674456\pi\)
\(840\) 0 0
\(841\) −27.9783 −0.964767
\(842\) −24.3777 −0.840111
\(843\) 0 0
\(844\) −21.4891 −0.739686
\(845\) −28.9854 −0.997129
\(846\) 0 0
\(847\) 0 0
\(848\) 139.050 4.77501
\(849\) 0 0
\(850\) 46.9783 1.61134
\(851\) 10.8608 0.372303
\(852\) 0 0
\(853\) 38.4674 1.31710 0.658549 0.752538i \(-0.271171\pi\)
0.658549 + 0.752538i \(0.271171\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 40.4674 1.38315
\(857\) 35.2385 1.20372 0.601862 0.798600i \(-0.294426\pi\)
0.601862 + 0.798600i \(0.294426\pi\)
\(858\) 0 0
\(859\) −3.11684 −0.106345 −0.0531727 0.998585i \(-0.516933\pi\)
−0.0531727 + 0.998585i \(0.516933\pi\)
\(860\) −192.343 −6.55886
\(861\) 0 0
\(862\) −81.9565 −2.79145
\(863\) −14.9040 −0.507340 −0.253670 0.967291i \(-0.581638\pi\)
−0.253670 + 0.967291i \(0.581638\pi\)
\(864\) 0 0
\(865\) 3.25544 0.110688
\(866\) 59.7343 2.02985
\(867\) 0 0
\(868\) 0 0
\(869\) 8.83915 0.299847
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 48.1209 1.62958
\(873\) 0 0
\(874\) −2.74456 −0.0928362
\(875\) 0 0
\(876\) 0 0
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) 49.5080 1.67081
\(879\) 0 0
\(880\) −100.467 −3.38675
\(881\) 0.822662 0.0277162 0.0138581 0.999904i \(-0.495589\pi\)
0.0138581 + 0.999904i \(0.495589\pi\)
\(882\) 0 0
\(883\) 3.11684 0.104890 0.0524451 0.998624i \(-0.483299\pi\)
0.0524451 + 0.998624i \(0.483299\pi\)
\(884\) −34.6040 −1.16386
\(885\) 0 0
\(886\) −75.9565 −2.55181
\(887\) −21.7216 −0.729338 −0.364669 0.931137i \(-0.618818\pi\)
−0.364669 + 0.931137i \(0.618818\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −86.1336 −2.88721
\(891\) 0 0
\(892\) 21.4891 0.719509
\(893\) −4.23142 −0.141599
\(894\) 0 0
\(895\) −14.2337 −0.475780
\(896\) 0 0
\(897\) 0 0
\(898\) 60.7011 2.02562
\(899\) −4.79588 −0.159952
\(900\) 0 0
\(901\) 31.7228 1.05684
\(902\) −32.5823 −1.08487
\(903\) 0 0
\(904\) −108.701 −3.61534
\(905\) −62.7667 −2.08644
\(906\) 0 0
\(907\) 23.2554 0.772184 0.386092 0.922460i \(-0.373825\pi\)
0.386092 + 0.922460i \(0.373825\pi\)
\(908\) −103.812 −3.44512
\(909\) 0 0
\(910\) 0 0
\(911\) −37.0019 −1.22593 −0.612964 0.790111i \(-0.710023\pi\)
−0.612964 + 0.790111i \(0.710023\pi\)
\(912\) 0 0
\(913\) −26.2337 −0.868208
\(914\) −22.7324 −0.751920
\(915\) 0 0
\(916\) −83.9565 −2.77400
\(917\) 0 0
\(918\) 0 0
\(919\) 18.9783 0.626035 0.313017 0.949747i \(-0.398660\pi\)
0.313017 + 0.949747i \(0.398660\pi\)
\(920\) 29.8081 0.982743
\(921\) 0 0
\(922\) 73.2119 2.41111
\(923\) −4.04326 −0.133086
\(924\) 0 0
\(925\) 57.7228 1.89791
\(926\) −6.44121 −0.211671
\(927\) 0 0
\(928\) 20.2337 0.664203
\(929\) −4.79588 −0.157348 −0.0786739 0.996900i \(-0.525069\pi\)
−0.0786739 + 0.996900i \(0.525069\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −41.0452 −1.34448
\(933\) 0 0
\(934\) 98.9348 3.23724
\(935\) −22.9205 −0.749581
\(936\) 0 0
\(937\) 5.11684 0.167160 0.0835800 0.996501i \(-0.473365\pi\)
0.0835800 + 0.996501i \(0.473365\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 73.2119 2.38791
\(941\) −24.7540 −0.806957 −0.403479 0.914989i \(-0.632199\pi\)
−0.403479 + 0.914989i \(0.632199\pi\)
\(942\) 0 0
\(943\) 5.48913 0.178751
\(944\) −153.320 −4.99014
\(945\) 0 0
\(946\) 66.7011 2.16864
\(947\) −9.84996 −0.320081 −0.160040 0.987110i \(-0.551162\pi\)
−0.160040 + 0.987110i \(0.551162\pi\)
\(948\) 0 0
\(949\) −10.2337 −0.332200
\(950\) −14.5868 −0.473258
\(951\) 0 0
\(952\) 0 0
\(953\) 9.47365 0.306882 0.153441 0.988158i \(-0.450965\pi\)
0.153441 + 0.988158i \(0.450965\pi\)
\(954\) 0 0
\(955\) −69.3505 −2.24413
\(956\) −68.1971 −2.20565
\(957\) 0 0
\(958\) −91.2119 −2.94692
\(959\) 0 0
\(960\) 0 0
\(961\) −8.48913 −0.273843
\(962\) −58.3472 −1.88119
\(963\) 0 0
\(964\) 130.190 4.19314
\(965\) 52.2823 1.68303
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) −56.0083 −1.80017
\(969\) 0 0
\(970\) −65.4891 −2.10273
\(971\) 51.5296 1.65366 0.826832 0.562448i \(-0.190140\pi\)
0.826832 + 0.562448i \(0.190140\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 21.7216 0.696004
\(975\) 0 0
\(976\) 72.2337 2.31214
\(977\) −20.7107 −0.662595 −0.331298 0.943526i \(-0.607486\pi\)
−0.331298 + 0.943526i \(0.607486\pi\)
\(978\) 0 0
\(979\) 21.7663 0.695654
\(980\) 0 0
\(981\) 0 0
\(982\) −2.74456 −0.0875825
\(983\) −52.2823 −1.66755 −0.833773 0.552108i \(-0.813824\pi\)
−0.833773 + 0.552108i \(0.813824\pi\)
\(984\) 0 0
\(985\) −76.4674 −2.43645
\(986\) 8.83915 0.281496
\(987\) 0 0
\(988\) 10.7446 0.341830
\(989\) −11.2371 −0.357319
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) −94.9728 −3.01539
\(993\) 0 0
\(994\) 0 0
\(995\) −2.84429 −0.0901702
\(996\) 0 0
\(997\) 19.3505 0.612837 0.306419 0.951897i \(-0.400869\pi\)
0.306419 + 0.951897i \(0.400869\pi\)
\(998\) −30.1844 −0.955470
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bw.1.4 4
3.2 odd 2 inner 8379.2.a.bw.1.1 4
7.6 odd 2 171.2.a.e.1.4 yes 4
21.20 even 2 171.2.a.e.1.1 4
28.27 even 2 2736.2.a.bf.1.1 4
35.34 odd 2 4275.2.a.bp.1.1 4
84.83 odd 2 2736.2.a.bf.1.4 4
105.104 even 2 4275.2.a.bp.1.4 4
133.132 even 2 3249.2.a.bf.1.1 4
399.398 odd 2 3249.2.a.bf.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.a.e.1.1 4 21.20 even 2
171.2.a.e.1.4 yes 4 7.6 odd 2
2736.2.a.bf.1.1 4 28.27 even 2
2736.2.a.bf.1.4 4 84.83 odd 2
3249.2.a.bf.1.1 4 133.132 even 2
3249.2.a.bf.1.4 4 399.398 odd 2
4275.2.a.bp.1.1 4 35.34 odd 2
4275.2.a.bp.1.4 4 105.104 even 2
8379.2.a.bw.1.1 4 3.2 odd 2 inner
8379.2.a.bw.1.4 4 1.1 even 1 trivial