Properties

Label 836.2.j.b.609.5
Level $836$
Weight $2$
Character 836.609
Analytic conductor $6.675$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [836,2,Mod(229,836)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(836, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("836.229"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 836 = 2^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 836.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.67549360898\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 3 x^{18} - x^{17} + 54 x^{16} - 67 x^{15} + 423 x^{14} - 418 x^{13} + 1762 x^{12} - 726 x^{11} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 609.5
Root \(-0.627273 - 1.93055i\) of defining polynomial
Character \(\chi\) \(=\) 836.609
Dual form 836.2.j.b.685.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.627273 - 1.93055i) q^{3} +(-0.156441 + 0.113661i) q^{5} +(-0.823967 - 2.53591i) q^{7} +(-0.906495 - 0.658608i) q^{9} +(3.30064 - 0.325253i) q^{11} +(-4.86112 - 3.53181i) q^{13} +(0.121297 + 0.373314i) q^{15} +(0.847482 - 0.615731i) q^{17} +(0.309017 - 0.951057i) q^{19} -5.41255 q^{21} -3.40760 q^{23} +(-1.53353 + 4.71972i) q^{25} +(3.08657 - 2.24253i) q^{27} +(-0.874304 - 2.69083i) q^{29} +(0.424174 + 0.308181i) q^{31} +(1.44249 - 6.57606i) q^{33} +(0.417136 + 0.303067i) q^{35} +(-2.63392 - 8.10638i) q^{37} +(-9.86757 + 7.16921i) q^{39} +(0.664517 - 2.04517i) q^{41} -0.320274 q^{43} +0.216671 q^{45} +(-1.15667 + 3.55988i) q^{47} +(-0.0887904 + 0.0645100i) q^{49} +(-0.657097 - 2.02234i) q^{51} +(-2.57428 - 1.87032i) q^{53} +(-0.479387 + 0.426037i) q^{55} +(-1.64222 - 1.19314i) q^{57} +(3.98389 + 12.2612i) q^{59} +(-1.13014 + 0.821094i) q^{61} +(-0.923246 + 2.84146i) q^{63} +1.16191 q^{65} -9.38456 q^{67} +(-2.13749 + 6.57853i) q^{69} +(10.9966 - 7.98949i) q^{71} +(0.117946 + 0.363001i) q^{73} +(8.14971 + 5.92111i) q^{75} +(-3.54443 - 8.10212i) q^{77} +(-1.64017 - 1.19165i) q^{79} +(-3.43193 - 10.5624i) q^{81} +(4.81529 - 3.49851i) q^{83} +(-0.0625962 + 0.192651i) q^{85} -5.74321 q^{87} -8.50041 q^{89} +(-4.95094 + 15.2374i) q^{91} +(0.861031 - 0.625575i) q^{93} +(0.0597552 + 0.183907i) q^{95} +(9.66260 + 7.02029i) q^{97} +(-3.20623 - 1.87898i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{5} + 15 q^{7} + 9 q^{9} + 2 q^{11} + 4 q^{13} + 15 q^{15} + 7 q^{17} - 5 q^{19} - 12 q^{21} - 16 q^{23} - 5 q^{25} - 3 q^{27} + 16 q^{29} + q^{31} - 27 q^{33} - 13 q^{35} + 14 q^{37} - 29 q^{39}+ \cdots - 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/836\mathbb{Z}\right)^\times\).

\(n\) \(419\) \(705\) \(761\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.627273 1.93055i 0.362156 1.11460i −0.589586 0.807705i \(-0.700709\pi\)
0.951743 0.306897i \(-0.0992908\pi\)
\(4\) 0 0
\(5\) −0.156441 + 0.113661i −0.0699625 + 0.0508308i −0.622217 0.782845i \(-0.713768\pi\)
0.552254 + 0.833676i \(0.313768\pi\)
\(6\) 0 0
\(7\) −0.823967 2.53591i −0.311430 0.958483i −0.977199 0.212325i \(-0.931896\pi\)
0.665769 0.746158i \(-0.268104\pi\)
\(8\) 0 0
\(9\) −0.906495 0.658608i −0.302165 0.219536i
\(10\) 0 0
\(11\) 3.30064 0.325253i 0.995180 0.0980673i
\(12\) 0 0
\(13\) −4.86112 3.53181i −1.34823 0.979547i −0.999098 0.0424741i \(-0.986476\pi\)
−0.349133 0.937073i \(-0.613524\pi\)
\(14\) 0 0
\(15\) 0.121297 + 0.373314i 0.0313187 + 0.0963891i
\(16\) 0 0
\(17\) 0.847482 0.615731i 0.205544 0.149337i −0.480251 0.877131i \(-0.659454\pi\)
0.685795 + 0.727794i \(0.259454\pi\)
\(18\) 0 0
\(19\) 0.309017 0.951057i 0.0708934 0.218187i
\(20\) 0 0
\(21\) −5.41255 −1.18111
\(22\) 0 0
\(23\) −3.40760 −0.710533 −0.355267 0.934765i \(-0.615610\pi\)
−0.355267 + 0.934765i \(0.615610\pi\)
\(24\) 0 0
\(25\) −1.53353 + 4.71972i −0.306706 + 0.943944i
\(26\) 0 0
\(27\) 3.08657 2.24253i 0.594011 0.431575i
\(28\) 0 0
\(29\) −0.874304 2.69083i −0.162354 0.499675i 0.836477 0.548001i \(-0.184611\pi\)
−0.998832 + 0.0483267i \(0.984611\pi\)
\(30\) 0 0
\(31\) 0.424174 + 0.308181i 0.0761839 + 0.0553509i 0.625225 0.780444i \(-0.285007\pi\)
−0.549041 + 0.835795i \(0.685007\pi\)
\(32\) 0 0
\(33\) 1.44249 6.57606i 0.251105 1.14475i
\(34\) 0 0
\(35\) 0.417136 + 0.303067i 0.0705089 + 0.0512277i
\(36\) 0 0
\(37\) −2.63392 8.10638i −0.433014 1.33268i −0.895108 0.445850i \(-0.852902\pi\)
0.462094 0.886831i \(-0.347098\pi\)
\(38\) 0 0
\(39\) −9.86757 + 7.16921i −1.58008 + 1.14799i
\(40\) 0 0
\(41\) 0.664517 2.04517i 0.103780 0.319402i −0.885662 0.464330i \(-0.846295\pi\)
0.989442 + 0.144928i \(0.0462951\pi\)
\(42\) 0 0
\(43\) −0.320274 −0.0488414 −0.0244207 0.999702i \(-0.507774\pi\)
−0.0244207 + 0.999702i \(0.507774\pi\)
\(44\) 0 0
\(45\) 0.216671 0.0322994
\(46\) 0 0
\(47\) −1.15667 + 3.55988i −0.168718 + 0.519262i −0.999291 0.0376486i \(-0.988013\pi\)
0.830573 + 0.556910i \(0.188013\pi\)
\(48\) 0 0
\(49\) −0.0887904 + 0.0645100i −0.0126843 + 0.00921571i
\(50\) 0 0
\(51\) −0.657097 2.02234i −0.0920120 0.283184i
\(52\) 0 0
\(53\) −2.57428 1.87032i −0.353604 0.256908i 0.396775 0.917916i \(-0.370129\pi\)
−0.750379 + 0.661007i \(0.770129\pi\)
\(54\) 0 0
\(55\) −0.479387 + 0.426037i −0.0646405 + 0.0574468i
\(56\) 0 0
\(57\) −1.64222 1.19314i −0.217518 0.158036i
\(58\) 0 0
\(59\) 3.98389 + 12.2612i 0.518659 + 1.59627i 0.776525 + 0.630087i \(0.216981\pi\)
−0.257866 + 0.966181i \(0.583019\pi\)
\(60\) 0 0
\(61\) −1.13014 + 0.821094i −0.144699 + 0.105130i −0.657780 0.753210i \(-0.728504\pi\)
0.513080 + 0.858341i \(0.328504\pi\)
\(62\) 0 0
\(63\) −0.923246 + 2.84146i −0.116318 + 0.357990i
\(64\) 0 0
\(65\) 1.16191 0.144117
\(66\) 0 0
\(67\) −9.38456 −1.14651 −0.573253 0.819378i \(-0.694319\pi\)
−0.573253 + 0.819378i \(0.694319\pi\)
\(68\) 0 0
\(69\) −2.13749 + 6.57853i −0.257324 + 0.791962i
\(70\) 0 0
\(71\) 10.9966 7.98949i 1.30505 0.948178i 0.305064 0.952332i \(-0.401322\pi\)
0.999991 + 0.00415409i \(0.00132229\pi\)
\(72\) 0 0
\(73\) 0.117946 + 0.363001i 0.0138045 + 0.0424860i 0.957722 0.287697i \(-0.0928896\pi\)
−0.943917 + 0.330183i \(0.892890\pi\)
\(74\) 0 0
\(75\) 8.14971 + 5.92111i 0.941047 + 0.683711i
\(76\) 0 0
\(77\) −3.54443 8.10212i −0.403925 0.923322i
\(78\) 0 0
\(79\) −1.64017 1.19165i −0.184533 0.134071i 0.491683 0.870774i \(-0.336382\pi\)
−0.676217 + 0.736703i \(0.736382\pi\)
\(80\) 0 0
\(81\) −3.43193 10.5624i −0.381326 1.17360i
\(82\) 0 0
\(83\) 4.81529 3.49851i 0.528547 0.384012i −0.291267 0.956642i \(-0.594077\pi\)
0.819814 + 0.572630i \(0.194077\pi\)
\(84\) 0 0
\(85\) −0.0625962 + 0.192651i −0.00678951 + 0.0208960i
\(86\) 0 0
\(87\) −5.74321 −0.615736
\(88\) 0 0
\(89\) −8.50041 −0.901042 −0.450521 0.892766i \(-0.648762\pi\)
−0.450521 + 0.892766i \(0.648762\pi\)
\(90\) 0 0
\(91\) −4.95094 + 15.2374i −0.519000 + 1.59732i
\(92\) 0 0
\(93\) 0.861031 0.625575i 0.0892847 0.0648691i
\(94\) 0 0
\(95\) 0.0597552 + 0.183907i 0.00613075 + 0.0188685i
\(96\) 0 0
\(97\) 9.66260 + 7.02029i 0.981089 + 0.712803i 0.957952 0.286930i \(-0.0926346\pi\)
0.0231371 + 0.999732i \(0.492635\pi\)
\(98\) 0 0
\(99\) −3.20623 1.87898i −0.322238 0.188845i
\(100\) 0 0
\(101\) 4.94315 + 3.59141i 0.491862 + 0.357359i 0.805900 0.592052i \(-0.201682\pi\)
−0.314038 + 0.949410i \(0.601682\pi\)
\(102\) 0 0
\(103\) 5.31315 + 16.3522i 0.523521 + 1.61123i 0.767223 + 0.641381i \(0.221638\pi\)
−0.243702 + 0.969850i \(0.578362\pi\)
\(104\) 0 0
\(105\) 0.846744 0.615196i 0.0826338 0.0600370i
\(106\) 0 0
\(107\) 4.07855 12.5525i 0.394288 1.21349i −0.535226 0.844709i \(-0.679774\pi\)
0.929514 0.368786i \(-0.120226\pi\)
\(108\) 0 0
\(109\) 10.2794 0.984584 0.492292 0.870430i \(-0.336159\pi\)
0.492292 + 0.870430i \(0.336159\pi\)
\(110\) 0 0
\(111\) −17.3020 −1.64223
\(112\) 0 0
\(113\) 1.17643 3.62067i 0.110669 0.340604i −0.880350 0.474324i \(-0.842692\pi\)
0.991019 + 0.133721i \(0.0426925\pi\)
\(114\) 0 0
\(115\) 0.533088 0.387311i 0.0497107 0.0361169i
\(116\) 0 0
\(117\) 2.08050 + 6.40314i 0.192343 + 0.591970i
\(118\) 0 0
\(119\) −2.25973 1.64179i −0.207150 0.150503i
\(120\) 0 0
\(121\) 10.7884 2.14708i 0.980766 0.195189i
\(122\) 0 0
\(123\) −3.53147 2.56576i −0.318422 0.231347i
\(124\) 0 0
\(125\) −0.595317 1.83220i −0.0532468 0.163877i
\(126\) 0 0
\(127\) 16.1924 11.7645i 1.43685 1.04393i 0.448157 0.893955i \(-0.352080\pi\)
0.988690 0.149976i \(-0.0479195\pi\)
\(128\) 0 0
\(129\) −0.200900 + 0.618305i −0.0176882 + 0.0544387i
\(130\) 0 0
\(131\) −11.9783 −1.04655 −0.523275 0.852164i \(-0.675290\pi\)
−0.523275 + 0.852164i \(0.675290\pi\)
\(132\) 0 0
\(133\) −2.66641 −0.231207
\(134\) 0 0
\(135\) −0.227979 + 0.701647i −0.0196213 + 0.0603881i
\(136\) 0 0
\(137\) 6.10728 4.43720i 0.521780 0.379095i −0.295494 0.955345i \(-0.595484\pi\)
0.817274 + 0.576249i \(0.195484\pi\)
\(138\) 0 0
\(139\) 2.78669 + 8.57656i 0.236364 + 0.727454i 0.996938 + 0.0782022i \(0.0249180\pi\)
−0.760573 + 0.649252i \(0.775082\pi\)
\(140\) 0 0
\(141\) 6.14697 + 4.46603i 0.517668 + 0.376108i
\(142\) 0 0
\(143\) −17.1935 10.0761i −1.43779 0.842608i
\(144\) 0 0
\(145\) 0.442620 + 0.321582i 0.0367576 + 0.0267059i
\(146\) 0 0
\(147\) 0.0688438 + 0.211880i 0.00567814 + 0.0174755i
\(148\) 0 0
\(149\) 11.2253 8.15565i 0.919611 0.668137i −0.0238160 0.999716i \(-0.507582\pi\)
0.943427 + 0.331580i \(0.107582\pi\)
\(150\) 0 0
\(151\) 2.46458 7.58520i 0.200565 0.617275i −0.799302 0.600930i \(-0.794797\pi\)
0.999866 0.0163449i \(-0.00520298\pi\)
\(152\) 0 0
\(153\) −1.17376 −0.0948932
\(154\) 0 0
\(155\) −0.101386 −0.00814355
\(156\) 0 0
\(157\) 0.670387 2.06324i 0.0535027 0.164664i −0.920735 0.390189i \(-0.872410\pi\)
0.974237 + 0.225525i \(0.0724096\pi\)
\(158\) 0 0
\(159\) −5.22552 + 3.79656i −0.414411 + 0.301087i
\(160\) 0 0
\(161\) 2.80775 + 8.64135i 0.221281 + 0.681034i
\(162\) 0 0
\(163\) 15.2410 + 11.0732i 1.19377 + 0.867323i 0.993657 0.112451i \(-0.0358700\pi\)
0.200110 + 0.979773i \(0.435870\pi\)
\(164\) 0 0
\(165\) 0.521778 + 1.19272i 0.0406204 + 0.0928532i
\(166\) 0 0
\(167\) 8.68212 + 6.30793i 0.671843 + 0.488122i 0.870641 0.491918i \(-0.163704\pi\)
−0.198799 + 0.980040i \(0.563704\pi\)
\(168\) 0 0
\(169\) 7.13956 + 21.9733i 0.549197 + 1.69026i
\(170\) 0 0
\(171\) −0.906495 + 0.658608i −0.0693214 + 0.0503650i
\(172\) 0 0
\(173\) 7.02364 21.6165i 0.533997 1.64348i −0.211808 0.977311i \(-0.567935\pi\)
0.745805 0.666164i \(-0.232065\pi\)
\(174\) 0 0
\(175\) 13.2324 1.00027
\(176\) 0 0
\(177\) 26.1698 1.96704
\(178\) 0 0
\(179\) 0.101234 0.311567i 0.00756661 0.0232876i −0.947202 0.320638i \(-0.896103\pi\)
0.954769 + 0.297350i \(0.0961028\pi\)
\(180\) 0 0
\(181\) −2.72770 + 1.98179i −0.202748 + 0.147305i −0.684527 0.728988i \(-0.739991\pi\)
0.481778 + 0.876293i \(0.339991\pi\)
\(182\) 0 0
\(183\) 0.876255 + 2.69684i 0.0647747 + 0.199356i
\(184\) 0 0
\(185\) 1.33343 + 0.968796i 0.0980360 + 0.0712273i
\(186\) 0 0
\(187\) 2.59696 2.30795i 0.189909 0.168774i
\(188\) 0 0
\(189\) −8.23008 5.97950i −0.598650 0.434945i
\(190\) 0 0
\(191\) 1.22340 + 3.76523i 0.0885219 + 0.272442i 0.985511 0.169610i \(-0.0542507\pi\)
−0.896989 + 0.442052i \(0.854251\pi\)
\(192\) 0 0
\(193\) −9.75462 + 7.08714i −0.702153 + 0.510144i −0.880633 0.473800i \(-0.842882\pi\)
0.178480 + 0.983944i \(0.442882\pi\)
\(194\) 0 0
\(195\) 0.728833 2.24312i 0.0521928 0.160633i
\(196\) 0 0
\(197\) 14.7630 1.05182 0.525911 0.850539i \(-0.323724\pi\)
0.525911 + 0.850539i \(0.323724\pi\)
\(198\) 0 0
\(199\) 11.1440 0.789976 0.394988 0.918686i \(-0.370749\pi\)
0.394988 + 0.918686i \(0.370749\pi\)
\(200\) 0 0
\(201\) −5.88668 + 18.1174i −0.415215 + 1.27790i
\(202\) 0 0
\(203\) −6.10330 + 4.43431i −0.428368 + 0.311227i
\(204\) 0 0
\(205\) 0.128499 + 0.395479i 0.00897474 + 0.0276214i
\(206\) 0 0
\(207\) 3.08897 + 2.24427i 0.214698 + 0.155988i
\(208\) 0 0
\(209\) 0.710620 3.23960i 0.0491546 0.224088i
\(210\) 0 0
\(211\) 15.3563 + 11.1570i 1.05717 + 0.768080i 0.973563 0.228418i \(-0.0733554\pi\)
0.0836088 + 0.996499i \(0.473355\pi\)
\(212\) 0 0
\(213\) −8.52623 26.2410i −0.584208 1.79801i
\(214\) 0 0
\(215\) 0.0501040 0.0364027i 0.00341707 0.00248264i
\(216\) 0 0
\(217\) 0.432012 1.32960i 0.0293269 0.0902589i
\(218\) 0 0
\(219\) 0.774775 0.0523544
\(220\) 0 0
\(221\) −6.29435 −0.423404
\(222\) 0 0
\(223\) −5.78776 + 17.8129i −0.387577 + 1.19284i 0.547017 + 0.837122i \(0.315763\pi\)
−0.934594 + 0.355717i \(0.884237\pi\)
\(224\) 0 0
\(225\) 4.49858 3.26841i 0.299905 0.217894i
\(226\) 0 0
\(227\) −0.475488 1.46340i −0.0315592 0.0971293i 0.934036 0.357179i \(-0.116261\pi\)
−0.965595 + 0.260049i \(0.916261\pi\)
\(228\) 0 0
\(229\) 9.75599 + 7.08814i 0.644694 + 0.468397i 0.861460 0.507826i \(-0.169551\pi\)
−0.216766 + 0.976224i \(0.569551\pi\)
\(230\) 0 0
\(231\) −17.8649 + 1.76044i −1.17542 + 0.115829i
\(232\) 0 0
\(233\) −9.67570 7.02981i −0.633876 0.460538i 0.223865 0.974620i \(-0.428133\pi\)
−0.857741 + 0.514082i \(0.828133\pi\)
\(234\) 0 0
\(235\) −0.223668 0.688380i −0.0145905 0.0449049i
\(236\) 0 0
\(237\) −3.32938 + 2.41893i −0.216266 + 0.157127i
\(238\) 0 0
\(239\) −7.56735 + 23.2899i −0.489491 + 1.50650i 0.335878 + 0.941906i \(0.390967\pi\)
−0.825369 + 0.564594i \(0.809033\pi\)
\(240\) 0 0
\(241\) −7.10535 −0.457696 −0.228848 0.973462i \(-0.573496\pi\)
−0.228848 + 0.973462i \(0.573496\pi\)
\(242\) 0 0
\(243\) −11.0984 −0.711960
\(244\) 0 0
\(245\) 0.00655818 0.0201840i 0.000418987 0.00128951i
\(246\) 0 0
\(247\) −4.86112 + 3.53181i −0.309305 + 0.224724i
\(248\) 0 0
\(249\) −3.73355 11.4907i −0.236604 0.728192i
\(250\) 0 0
\(251\) 9.20667 + 6.68904i 0.581120 + 0.422208i 0.839128 0.543934i \(-0.183066\pi\)
−0.258008 + 0.966143i \(0.583066\pi\)
\(252\) 0 0
\(253\) −11.2472 + 1.10833i −0.707108 + 0.0696801i
\(254\) 0 0
\(255\) 0.332658 + 0.241690i 0.0208318 + 0.0151352i
\(256\) 0 0
\(257\) −2.96122 9.11371i −0.184716 0.568498i 0.815227 0.579141i \(-0.196612\pi\)
−0.999943 + 0.0106435i \(0.996612\pi\)
\(258\) 0 0
\(259\) −18.3868 + 13.3588i −1.14250 + 0.830074i
\(260\) 0 0
\(261\) −0.979649 + 3.01505i −0.0606387 + 0.186627i
\(262\) 0 0
\(263\) −25.7833 −1.58987 −0.794933 0.606697i \(-0.792494\pi\)
−0.794933 + 0.606697i \(0.792494\pi\)
\(264\) 0 0
\(265\) 0.615305 0.0377979
\(266\) 0 0
\(267\) −5.33208 + 16.4105i −0.326318 + 1.00430i
\(268\) 0 0
\(269\) 9.06680 6.58741i 0.552812 0.401642i −0.276009 0.961155i \(-0.589012\pi\)
0.828821 + 0.559513i \(0.189012\pi\)
\(270\) 0 0
\(271\) −1.67938 5.16860i −0.102015 0.313970i 0.887003 0.461763i \(-0.152783\pi\)
−0.989018 + 0.147793i \(0.952783\pi\)
\(272\) 0 0
\(273\) 26.3110 + 19.1161i 1.59242 + 1.15696i
\(274\) 0 0
\(275\) −3.52653 + 16.0769i −0.212658 + 0.969472i
\(276\) 0 0
\(277\) 6.95680 + 5.05441i 0.417993 + 0.303690i 0.776830 0.629710i \(-0.216826\pi\)
−0.358836 + 0.933400i \(0.616826\pi\)
\(278\) 0 0
\(279\) −0.181542 0.558729i −0.0108686 0.0334502i
\(280\) 0 0
\(281\) 10.1858 7.40040i 0.607632 0.441471i −0.240947 0.970538i \(-0.577458\pi\)
0.848580 + 0.529067i \(0.177458\pi\)
\(282\) 0 0
\(283\) 1.56784 4.82531i 0.0931984 0.286835i −0.893582 0.448901i \(-0.851816\pi\)
0.986780 + 0.162066i \(0.0518157\pi\)
\(284\) 0 0
\(285\) 0.392525 0.0232512
\(286\) 0 0
\(287\) −5.73391 −0.338462
\(288\) 0 0
\(289\) −4.91419 + 15.1243i −0.289070 + 0.889666i
\(290\) 0 0
\(291\) 19.6141 14.2505i 1.14980 0.835378i
\(292\) 0 0
\(293\) 8.02183 + 24.6887i 0.468640 + 1.44233i 0.854346 + 0.519705i \(0.173958\pi\)
−0.385706 + 0.922622i \(0.626042\pi\)
\(294\) 0 0
\(295\) −2.01686 1.46534i −0.117426 0.0853151i
\(296\) 0 0
\(297\) 9.45828 8.40569i 0.548825 0.487747i
\(298\) 0 0
\(299\) 16.5647 + 12.0350i 0.957963 + 0.696001i
\(300\) 0 0
\(301\) 0.263895 + 0.812186i 0.0152107 + 0.0468136i
\(302\) 0 0
\(303\) 10.0341 7.29020i 0.576444 0.418811i
\(304\) 0 0
\(305\) 0.0834736 0.256905i 0.00477969 0.0147104i
\(306\) 0 0
\(307\) −28.4105 −1.62147 −0.810735 0.585413i \(-0.800932\pi\)
−0.810735 + 0.585413i \(0.800932\pi\)
\(308\) 0 0
\(309\) 34.9015 1.98548
\(310\) 0 0
\(311\) −6.84317 + 21.0611i −0.388040 + 1.19427i 0.546210 + 0.837648i \(0.316070\pi\)
−0.934251 + 0.356617i \(0.883930\pi\)
\(312\) 0 0
\(313\) −20.8756 + 15.1670i −1.17996 + 0.857289i −0.992167 0.124920i \(-0.960133\pi\)
−0.187791 + 0.982209i \(0.560133\pi\)
\(314\) 0 0
\(315\) −0.178530 0.549458i −0.0100590 0.0309585i
\(316\) 0 0
\(317\) −24.9102 18.0983i −1.39909 1.01650i −0.994797 0.101873i \(-0.967516\pi\)
−0.404296 0.914628i \(-0.632484\pi\)
\(318\) 0 0
\(319\) −3.76096 8.59709i −0.210573 0.481344i
\(320\) 0 0
\(321\) −21.6748 15.7477i −1.20977 0.878950i
\(322\) 0 0
\(323\) −0.323709 0.996274i −0.0180117 0.0554342i
\(324\) 0 0
\(325\) 24.1238 17.5270i 1.33815 0.972222i
\(326\) 0 0
\(327\) 6.44797 19.8448i 0.356573 1.09742i
\(328\) 0 0
\(329\) 9.98059 0.550247
\(330\) 0 0
\(331\) 21.5948 1.18696 0.593479 0.804849i \(-0.297754\pi\)
0.593479 + 0.804849i \(0.297754\pi\)
\(332\) 0 0
\(333\) −2.95128 + 9.08312i −0.161729 + 0.497752i
\(334\) 0 0
\(335\) 1.46813 1.06666i 0.0802125 0.0582778i
\(336\) 0 0
\(337\) −2.61045 8.03413i −0.142200 0.437647i 0.854440 0.519550i \(-0.173900\pi\)
−0.996640 + 0.0819028i \(0.973900\pi\)
\(338\) 0 0
\(339\) −6.25193 4.54229i −0.339558 0.246704i
\(340\) 0 0
\(341\) 1.50028 + 0.879229i 0.0812448 + 0.0476129i
\(342\) 0 0
\(343\) −14.8635 10.7989i −0.802551 0.583088i
\(344\) 0 0
\(345\) −0.413331 1.27210i −0.0222530 0.0684877i
\(346\) 0 0
\(347\) 28.7993 20.9239i 1.54603 1.12325i 0.599617 0.800287i \(-0.295319\pi\)
0.946410 0.322968i \(-0.104681\pi\)
\(348\) 0 0
\(349\) 5.97764 18.3973i 0.319976 0.984784i −0.653682 0.756769i \(-0.726777\pi\)
0.973658 0.228014i \(-0.0732234\pi\)
\(350\) 0 0
\(351\) −22.9244 −1.22361
\(352\) 0 0
\(353\) −21.9354 −1.16750 −0.583752 0.811932i \(-0.698416\pi\)
−0.583752 + 0.811932i \(0.698416\pi\)
\(354\) 0 0
\(355\) −0.812224 + 2.49977i −0.0431084 + 0.132674i
\(356\) 0 0
\(357\) −4.58703 + 3.33267i −0.242772 + 0.176384i
\(358\) 0 0
\(359\) −3.73528 11.4960i −0.197140 0.606736i −0.999945 0.0104936i \(-0.996660\pi\)
0.802804 0.596242i \(-0.203340\pi\)
\(360\) 0 0
\(361\) −0.809017 0.587785i −0.0425798 0.0309361i
\(362\) 0 0
\(363\) 2.62224 22.1744i 0.137632 1.16385i
\(364\) 0 0
\(365\) −0.0597106 0.0433823i −0.00312540 0.00227073i
\(366\) 0 0
\(367\) 4.53801 + 13.9666i 0.236882 + 0.729049i 0.996866 + 0.0791070i \(0.0252069\pi\)
−0.759984 + 0.649942i \(0.774793\pi\)
\(368\) 0 0
\(369\) −1.94935 + 1.41628i −0.101479 + 0.0737288i
\(370\) 0 0
\(371\) −2.62184 + 8.06921i −0.136119 + 0.418932i
\(372\) 0 0
\(373\) −34.5323 −1.78802 −0.894008 0.448051i \(-0.852118\pi\)
−0.894008 + 0.448051i \(0.852118\pi\)
\(374\) 0 0
\(375\) −3.91057 −0.201941
\(376\) 0 0
\(377\) −5.25340 + 16.1683i −0.270564 + 0.832710i
\(378\) 0 0
\(379\) 23.3608 16.9726i 1.19996 0.871825i 0.205683 0.978619i \(-0.434058\pi\)
0.994281 + 0.106794i \(0.0340585\pi\)
\(380\) 0 0
\(381\) −12.5548 38.6399i −0.643204 1.97958i
\(382\) 0 0
\(383\) −14.7066 10.6849i −0.751471 0.545975i 0.144812 0.989459i \(-0.453742\pi\)
−0.896282 + 0.443484i \(0.853742\pi\)
\(384\) 0 0
\(385\) 1.47539 + 0.864640i 0.0751928 + 0.0440662i
\(386\) 0 0
\(387\) 0.290327 + 0.210935i 0.0147582 + 0.0107224i
\(388\) 0 0
\(389\) −4.64677 14.3013i −0.235601 0.725105i −0.997041 0.0768697i \(-0.975507\pi\)
0.761440 0.648235i \(-0.224493\pi\)
\(390\) 0 0
\(391\) −2.88788 + 2.09816i −0.146046 + 0.106109i
\(392\) 0 0
\(393\) −7.51368 + 23.1247i −0.379015 + 1.16649i
\(394\) 0 0
\(395\) 0.392034 0.0197254
\(396\) 0 0
\(397\) 11.4739 0.575858 0.287929 0.957652i \(-0.407033\pi\)
0.287929 + 0.957652i \(0.407033\pi\)
\(398\) 0 0
\(399\) −1.67257 + 5.14764i −0.0837332 + 0.257704i
\(400\) 0 0
\(401\) 11.9701 8.69681i 0.597760 0.434298i −0.247323 0.968933i \(-0.579551\pi\)
0.845083 + 0.534635i \(0.179551\pi\)
\(402\) 0 0
\(403\) −0.973525 2.99620i −0.0484947 0.149251i
\(404\) 0 0
\(405\) 1.73743 + 1.26232i 0.0863336 + 0.0627250i
\(406\) 0 0
\(407\) −11.3302 25.8995i −0.561619 1.28379i
\(408\) 0 0
\(409\) −8.09094 5.87841i −0.400071 0.290669i 0.369499 0.929231i \(-0.379529\pi\)
−0.769570 + 0.638562i \(0.779529\pi\)
\(410\) 0 0
\(411\) −4.73529 14.5737i −0.233575 0.718869i
\(412\) 0 0
\(413\) 27.8106 20.2056i 1.36847 0.994251i
\(414\) 0 0
\(415\) −0.355664 + 1.09462i −0.0174589 + 0.0537329i
\(416\) 0 0
\(417\) 18.3055 0.896423
\(418\) 0 0
\(419\) −20.1247 −0.983155 −0.491578 0.870834i \(-0.663580\pi\)
−0.491578 + 0.870834i \(0.663580\pi\)
\(420\) 0 0
\(421\) 0.117423 0.361390i 0.00572284 0.0176131i −0.948154 0.317810i \(-0.897052\pi\)
0.953877 + 0.300197i \(0.0970525\pi\)
\(422\) 0 0
\(423\) 3.39308 2.46522i 0.164977 0.119863i
\(424\) 0 0
\(425\) 1.60644 + 4.94412i 0.0779238 + 0.239825i
\(426\) 0 0
\(427\) 3.01341 + 2.18937i 0.145829 + 0.105951i
\(428\) 0 0
\(429\) −30.2375 + 26.8724i −1.45988 + 1.29741i
\(430\) 0 0
\(431\) −16.4025 11.9171i −0.790079 0.574026i 0.117908 0.993025i \(-0.462381\pi\)
−0.907987 + 0.418999i \(0.862381\pi\)
\(432\) 0 0
\(433\) 0.285724 + 0.879367i 0.0137310 + 0.0422597i 0.957687 0.287811i \(-0.0929275\pi\)
−0.943956 + 0.330071i \(0.892927\pi\)
\(434\) 0 0
\(435\) 0.898473 0.652779i 0.0430785 0.0312984i
\(436\) 0 0
\(437\) −1.05301 + 3.24082i −0.0503721 + 0.155029i
\(438\) 0 0
\(439\) 7.21669 0.344434 0.172217 0.985059i \(-0.444907\pi\)
0.172217 + 0.985059i \(0.444907\pi\)
\(440\) 0 0
\(441\) 0.122975 0.00585594
\(442\) 0 0
\(443\) 12.5024 38.4784i 0.594007 1.82817i 0.0344001 0.999408i \(-0.489048\pi\)
0.559607 0.828758i \(-0.310952\pi\)
\(444\) 0 0
\(445\) 1.32981 0.966166i 0.0630392 0.0458006i
\(446\) 0 0
\(447\) −8.70355 26.7868i −0.411664 1.26697i
\(448\) 0 0
\(449\) 6.60878 + 4.80156i 0.311888 + 0.226600i 0.732706 0.680545i \(-0.238257\pi\)
−0.420818 + 0.907145i \(0.638257\pi\)
\(450\) 0 0
\(451\) 1.52813 6.96651i 0.0719569 0.328040i
\(452\) 0 0
\(453\) −13.0976 9.51599i −0.615381 0.447100i
\(454\) 0 0
\(455\) −0.957372 2.94649i −0.0448823 0.138134i
\(456\) 0 0
\(457\) −16.9312 + 12.3013i −0.792009 + 0.575428i −0.908559 0.417757i \(-0.862816\pi\)
0.116550 + 0.993185i \(0.462816\pi\)
\(458\) 0 0
\(459\) 1.23502 3.80100i 0.0576458 0.177416i
\(460\) 0 0
\(461\) −18.6651 −0.869321 −0.434660 0.900594i \(-0.643132\pi\)
−0.434660 + 0.900594i \(0.643132\pi\)
\(462\) 0 0
\(463\) 25.1689 1.16970 0.584849 0.811142i \(-0.301154\pi\)
0.584849 + 0.811142i \(0.301154\pi\)
\(464\) 0 0
\(465\) −0.0635970 + 0.195731i −0.00294924 + 0.00907682i
\(466\) 0 0
\(467\) −1.62156 + 1.17813i −0.0750369 + 0.0545175i −0.624671 0.780888i \(-0.714767\pi\)
0.549634 + 0.835405i \(0.314767\pi\)
\(468\) 0 0
\(469\) 7.73256 + 23.7984i 0.357057 + 1.09891i
\(470\) 0 0
\(471\) −3.56267 2.58843i −0.164159 0.119268i
\(472\) 0 0
\(473\) −1.05711 + 0.104170i −0.0486059 + 0.00478974i
\(474\) 0 0
\(475\) 4.01483 + 2.91695i 0.184213 + 0.133839i
\(476\) 0 0
\(477\) 1.10176 + 3.39087i 0.0504462 + 0.155257i
\(478\) 0 0
\(479\) −12.4528 + 9.04745i −0.568981 + 0.413389i −0.834735 0.550652i \(-0.814379\pi\)
0.265754 + 0.964041i \(0.414379\pi\)
\(480\) 0 0
\(481\) −15.8264 + 48.7086i −0.721620 + 2.22092i
\(482\) 0 0
\(483\) 18.4438 0.839221
\(484\) 0 0
\(485\) −2.30956 −0.104872
\(486\) 0 0
\(487\) −5.87316 + 18.0757i −0.266138 + 0.819089i 0.725291 + 0.688442i \(0.241705\pi\)
−0.991429 + 0.130646i \(0.958295\pi\)
\(488\) 0 0
\(489\) 30.9377 22.4776i 1.39905 1.01647i
\(490\) 0 0
\(491\) 10.6810 + 32.8727i 0.482026 + 1.48352i 0.836243 + 0.548360i \(0.184747\pi\)
−0.354217 + 0.935163i \(0.615253\pi\)
\(492\) 0 0
\(493\) −2.39779 1.74209i −0.107991 0.0784599i
\(494\) 0 0
\(495\) 0.715153 0.0704728i 0.0321437 0.00316752i
\(496\) 0 0
\(497\) −29.3214 21.3033i −1.31525 0.955582i
\(498\) 0 0
\(499\) −5.65798 17.4135i −0.253286 0.779534i −0.994163 0.107893i \(-0.965590\pi\)
0.740876 0.671641i \(-0.234410\pi\)
\(500\) 0 0
\(501\) 17.6238 12.8045i 0.787374 0.572061i
\(502\) 0 0
\(503\) 1.11408 3.42879i 0.0496744 0.152882i −0.923142 0.384458i \(-0.874388\pi\)
0.972817 + 0.231576i \(0.0743883\pi\)
\(504\) 0 0
\(505\) −1.18152 −0.0525767
\(506\) 0 0
\(507\) 46.8990 2.08286
\(508\) 0 0
\(509\) −10.6577 + 32.8011i −0.472396 + 1.45388i 0.377043 + 0.926196i \(0.376941\pi\)
−0.849438 + 0.527688i \(0.823059\pi\)
\(510\) 0 0
\(511\) 0.823353 0.598201i 0.0364230 0.0264628i
\(512\) 0 0
\(513\) −1.17897 3.62849i −0.0520526 0.160202i
\(514\) 0 0
\(515\) −2.68980 1.95426i −0.118527 0.0861148i
\(516\) 0 0
\(517\) −2.65990 + 12.1261i −0.116982 + 0.533304i
\(518\) 0 0
\(519\) −37.3260 27.1190i −1.63843 1.19039i
\(520\) 0 0
\(521\) −9.19452 28.2978i −0.402819 1.23975i −0.922703 0.385513i \(-0.874025\pi\)
0.519884 0.854237i \(-0.325975\pi\)
\(522\) 0 0
\(523\) 5.38812 3.91470i 0.235606 0.171178i −0.463717 0.885983i \(-0.653485\pi\)
0.699323 + 0.714805i \(0.253485\pi\)
\(524\) 0 0
\(525\) 8.30030 25.5457i 0.362255 1.11491i
\(526\) 0 0
\(527\) 0.549236 0.0239251
\(528\) 0 0
\(529\) −11.3883 −0.495143
\(530\) 0 0
\(531\) 4.46391 13.7385i 0.193717 0.596201i
\(532\) 0 0
\(533\) −10.4534 + 7.59487i −0.452789 + 0.328971i
\(534\) 0 0
\(535\) 0.788676 + 2.42730i 0.0340974 + 0.104941i
\(536\) 0 0
\(537\) −0.537994 0.390875i −0.0232161 0.0168675i
\(538\) 0 0
\(539\) −0.272083 + 0.241803i −0.0117194 + 0.0104152i
\(540\) 0 0
\(541\) −30.8249 22.3956i −1.32527 0.962863i −0.999850 0.0172920i \(-0.994496\pi\)
−0.325416 0.945571i \(-0.605504\pi\)
\(542\) 0 0
\(543\) 2.11493 + 6.50908i 0.0907602 + 0.279331i
\(544\) 0 0
\(545\) −1.60811 + 1.16836i −0.0688840 + 0.0500472i
\(546\) 0 0
\(547\) −7.08243 + 21.7975i −0.302823 + 0.931993i 0.677658 + 0.735377i \(0.262995\pi\)
−0.980481 + 0.196615i \(0.937005\pi\)
\(548\) 0 0
\(549\) 1.56524 0.0668030
\(550\) 0 0
\(551\) −2.82931 −0.120533
\(552\) 0 0
\(553\) −1.67048 + 5.14120i −0.0710359 + 0.218626i
\(554\) 0 0
\(555\) 2.70673 1.96656i 0.114895 0.0834757i
\(556\) 0 0
\(557\) 7.64413 + 23.5262i 0.323892 + 0.996838i 0.971938 + 0.235237i \(0.0755865\pi\)
−0.648046 + 0.761601i \(0.724413\pi\)
\(558\) 0 0
\(559\) 1.55689 + 1.13115i 0.0658494 + 0.0478424i
\(560\) 0 0
\(561\) −2.82661 6.46128i −0.119340 0.272795i
\(562\) 0 0
\(563\) 8.11393 + 5.89511i 0.341961 + 0.248449i 0.745489 0.666518i \(-0.232216\pi\)
−0.403528 + 0.914967i \(0.632216\pi\)
\(564\) 0 0
\(565\) 0.227487 + 0.700134i 0.00957047 + 0.0294549i
\(566\) 0 0
\(567\) −23.9575 + 17.4061i −1.00612 + 0.730989i
\(568\) 0 0
\(569\) −4.95808 + 15.2594i −0.207854 + 0.639707i 0.791731 + 0.610870i \(0.209180\pi\)
−0.999584 + 0.0288370i \(0.990820\pi\)
\(570\) 0 0
\(571\) −2.07588 −0.0868730 −0.0434365 0.999056i \(-0.513831\pi\)
−0.0434365 + 0.999056i \(0.513831\pi\)
\(572\) 0 0
\(573\) 8.03636 0.335724
\(574\) 0 0
\(575\) 5.22565 16.0829i 0.217925 0.670704i
\(576\) 0 0
\(577\) −30.6945 + 22.3008i −1.27783 + 0.928396i −0.999485 0.0320860i \(-0.989785\pi\)
−0.278342 + 0.960482i \(0.589785\pi\)
\(578\) 0 0
\(579\) 7.56327 + 23.2773i 0.314319 + 0.967373i
\(580\) 0 0
\(581\) −12.8395 9.32847i −0.532674 0.387010i
\(582\) 0 0
\(583\) −9.10508 5.33596i −0.377094 0.220993i
\(584\) 0 0
\(585\) −1.05326 0.765241i −0.0435471 0.0316388i
\(586\) 0 0
\(587\) −3.30866 10.1830i −0.136563 0.420298i 0.859267 0.511528i \(-0.170920\pi\)
−0.995830 + 0.0912297i \(0.970920\pi\)
\(588\) 0 0
\(589\) 0.424174 0.308181i 0.0174778 0.0126984i
\(590\) 0 0
\(591\) 9.26046 28.5008i 0.380924 1.17236i
\(592\) 0 0
\(593\) −15.9385 −0.654515 −0.327257 0.944935i \(-0.606124\pi\)
−0.327257 + 0.944935i \(0.606124\pi\)
\(594\) 0 0
\(595\) 0.540123 0.0221429
\(596\) 0 0
\(597\) 6.99032 21.5140i 0.286095 0.880509i
\(598\) 0 0
\(599\) −8.21285 + 5.96698i −0.335568 + 0.243804i −0.742789 0.669525i \(-0.766498\pi\)
0.407222 + 0.913329i \(0.366498\pi\)
\(600\) 0 0
\(601\) 8.55184 + 26.3199i 0.348837 + 1.07361i 0.959498 + 0.281717i \(0.0909040\pi\)
−0.610661 + 0.791892i \(0.709096\pi\)
\(602\) 0 0
\(603\) 8.50706 + 6.18074i 0.346434 + 0.251699i
\(604\) 0 0
\(605\) −1.44371 + 1.56212i −0.0586952 + 0.0635090i
\(606\) 0 0
\(607\) 5.00247 + 3.63451i 0.203044 + 0.147520i 0.684661 0.728862i \(-0.259950\pi\)
−0.481617 + 0.876382i \(0.659950\pi\)
\(608\) 0 0
\(609\) 4.73221 + 14.5642i 0.191759 + 0.590173i
\(610\) 0 0
\(611\) 18.1955 13.2198i 0.736113 0.534817i
\(612\) 0 0
\(613\) −12.3395 + 37.9771i −0.498389 + 1.53388i 0.313220 + 0.949681i \(0.398592\pi\)
−0.811608 + 0.584202i \(0.801408\pi\)
\(614\) 0 0
\(615\) 0.844094 0.0340372
\(616\) 0 0
\(617\) 22.0143 0.886263 0.443131 0.896457i \(-0.353868\pi\)
0.443131 + 0.896457i \(0.353868\pi\)
\(618\) 0 0
\(619\) −1.33240 + 4.10072i −0.0535539 + 0.164822i −0.974256 0.225444i \(-0.927617\pi\)
0.920702 + 0.390266i \(0.127617\pi\)
\(620\) 0 0
\(621\) −10.5178 + 7.64163i −0.422065 + 0.306648i
\(622\) 0 0
\(623\) 7.00405 + 21.5563i 0.280611 + 0.863633i
\(624\) 0 0
\(625\) −19.7728 14.3658i −0.790911 0.574631i
\(626\) 0 0
\(627\) −5.80846 3.40400i −0.231967 0.135943i
\(628\) 0 0
\(629\) −7.22355 5.24822i −0.288022 0.209260i
\(630\) 0 0
\(631\) 13.0523 + 40.1709i 0.519604 + 1.59918i 0.774745 + 0.632273i \(0.217878\pi\)
−0.255141 + 0.966904i \(0.582122\pi\)
\(632\) 0 0
\(633\) 31.1718 22.6476i 1.23897 0.900161i
\(634\) 0 0
\(635\) −1.19600 + 3.68090i −0.0474617 + 0.146072i
\(636\) 0 0
\(637\) 0.659457 0.0261286
\(638\) 0 0
\(639\) −15.2303 −0.602501
\(640\) 0 0
\(641\) 12.5753 38.7027i 0.496694 1.52867i −0.317607 0.948223i \(-0.602879\pi\)
0.814300 0.580444i \(-0.197121\pi\)
\(642\) 0 0
\(643\) 14.2166 10.3289i 0.560647 0.407334i −0.271049 0.962566i \(-0.587370\pi\)
0.831696 + 0.555232i \(0.187370\pi\)
\(644\) 0 0
\(645\) −0.0388483 0.119563i −0.00152965 0.00470778i
\(646\) 0 0
\(647\) 38.5358 + 27.9979i 1.51500 + 1.10071i 0.963898 + 0.266270i \(0.0857914\pi\)
0.551099 + 0.834440i \(0.314209\pi\)
\(648\) 0 0
\(649\) 17.1374 + 39.1739i 0.672700 + 1.53771i
\(650\) 0 0
\(651\) −2.29586 1.66804i −0.0899819 0.0653757i
\(652\) 0 0
\(653\) −2.77305 8.53458i −0.108518 0.333984i 0.882022 0.471208i \(-0.156182\pi\)
−0.990540 + 0.137224i \(0.956182\pi\)
\(654\) 0 0
\(655\) 1.87390 1.36147i 0.0732193 0.0531970i
\(656\) 0 0
\(657\) 0.132157 0.406739i 0.00515595 0.0158684i
\(658\) 0 0
\(659\) 22.8623 0.890589 0.445294 0.895384i \(-0.353099\pi\)
0.445294 + 0.895384i \(0.353099\pi\)
\(660\) 0 0
\(661\) −19.7189 −0.766977 −0.383489 0.923546i \(-0.625277\pi\)
−0.383489 + 0.923546i \(0.625277\pi\)
\(662\) 0 0
\(663\) −3.94828 + 12.1516i −0.153338 + 0.471927i
\(664\) 0 0
\(665\) 0.417136 0.303067i 0.0161758 0.0117524i
\(666\) 0 0
\(667\) 2.97928 + 9.16927i 0.115358 + 0.355035i
\(668\) 0 0
\(669\) 30.7581 + 22.3471i 1.18918 + 0.863989i
\(670\) 0 0
\(671\) −3.46311 + 3.07771i −0.133692 + 0.118814i
\(672\) 0 0
\(673\) −28.3357 20.5871i −1.09226 0.793574i −0.112481 0.993654i \(-0.535880\pi\)
−0.979779 + 0.200080i \(0.935880\pi\)
\(674\) 0 0
\(675\) 5.85075 + 18.0067i 0.225195 + 0.693080i
\(676\) 0 0
\(677\) 5.12336 3.72234i 0.196907 0.143061i −0.484963 0.874535i \(-0.661167\pi\)
0.681870 + 0.731473i \(0.261167\pi\)
\(678\) 0 0
\(679\) 9.84116 30.2880i 0.377669 1.16235i
\(680\) 0 0
\(681\) −3.12343 −0.119690
\(682\) 0 0
\(683\) 28.9755 1.10872 0.554359 0.832278i \(-0.312963\pi\)
0.554359 + 0.832278i \(0.312963\pi\)
\(684\) 0 0
\(685\) −0.451092 + 1.38832i −0.0172354 + 0.0530450i
\(686\) 0 0
\(687\) 19.8037 14.3882i 0.755557 0.548944i
\(688\) 0 0
\(689\) 5.90824 + 18.1837i 0.225086 + 0.692743i
\(690\) 0 0
\(691\) 13.1761 + 9.57298i 0.501242 + 0.364173i 0.809491 0.587132i \(-0.199743\pi\)
−0.308249 + 0.951306i \(0.599743\pi\)
\(692\) 0 0
\(693\) −2.12311 + 9.67892i −0.0806503 + 0.367672i
\(694\) 0 0
\(695\) −1.41077 1.02499i −0.0535137 0.0388800i
\(696\) 0 0
\(697\) −0.696111 2.14241i −0.0263671 0.0811495i
\(698\) 0 0
\(699\) −19.6407 + 14.2698i −0.742880 + 0.539734i
\(700\) 0 0
\(701\) −9.97055 + 30.6862i −0.376583 + 1.15900i 0.565822 + 0.824527i \(0.308559\pi\)
−0.942405 + 0.334475i \(0.891441\pi\)
\(702\) 0 0
\(703\) −8.52355 −0.321472
\(704\) 0 0
\(705\) −1.46925 −0.0553352
\(706\) 0 0
\(707\) 5.03450 15.4946i 0.189342 0.582734i
\(708\) 0 0
\(709\) −33.5000 + 24.3391i −1.25812 + 0.914076i −0.998664 0.0516799i \(-0.983542\pi\)
−0.259454 + 0.965756i \(0.583542\pi\)
\(710\) 0 0
\(711\) 0.701974 + 2.16045i 0.0263261 + 0.0810234i
\(712\) 0 0
\(713\) −1.44541 1.05016i −0.0541312 0.0393286i
\(714\) 0 0
\(715\) 3.83503 0.377913i 0.143422 0.0141332i
\(716\) 0 0
\(717\) 40.2155 + 29.2183i 1.50188 + 1.09118i
\(718\) 0 0
\(719\) 1.80346 + 5.55048i 0.0672577 + 0.206998i 0.979037 0.203683i \(-0.0652911\pi\)
−0.911779 + 0.410681i \(0.865291\pi\)
\(720\) 0 0
\(721\) 37.0898 26.9473i 1.38130 1.00357i
\(722\) 0 0
\(723\) −4.45700 + 13.7172i −0.165758 + 0.510149i
\(724\) 0 0
\(725\) 14.0407 0.521460
\(726\) 0 0
\(727\) 45.2851 1.67953 0.839766 0.542948i \(-0.182692\pi\)
0.839766 + 0.542948i \(0.182692\pi\)
\(728\) 0 0
\(729\) 3.33410 10.2613i 0.123485 0.380048i
\(730\) 0 0
\(731\) −0.271427 + 0.197203i −0.0100391 + 0.00729381i
\(732\) 0 0
\(733\) 6.61365 + 20.3547i 0.244281 + 0.751818i 0.995754 + 0.0920549i \(0.0293435\pi\)
−0.751473 + 0.659763i \(0.770656\pi\)
\(734\) 0 0
\(735\) −0.0348524 0.0253218i −0.00128555 0.000934008i
\(736\) 0 0
\(737\) −30.9750 + 3.05235i −1.14098 + 0.112435i
\(738\) 0 0
\(739\) −17.1932 12.4916i −0.632462 0.459510i 0.224790 0.974407i \(-0.427830\pi\)
−0.857252 + 0.514897i \(0.827830\pi\)
\(740\) 0 0
\(741\) 3.76908 + 11.6000i 0.138461 + 0.426138i
\(742\) 0 0
\(743\) −31.2172 + 22.6806i −1.14525 + 0.832072i −0.987842 0.155462i \(-0.950313\pi\)
−0.157407 + 0.987534i \(0.550313\pi\)
\(744\) 0 0
\(745\) −0.829116 + 2.55176i −0.0303764 + 0.0934891i
\(746\) 0 0
\(747\) −6.66918 −0.244013
\(748\) 0 0
\(749\) −35.1925 −1.28591
\(750\) 0 0
\(751\) −3.98126 + 12.2530i −0.145278 + 0.447120i −0.997047 0.0767982i \(-0.975530\pi\)
0.851769 + 0.523918i \(0.175530\pi\)
\(752\) 0 0
\(753\) 18.6886 13.5781i 0.681051 0.494812i
\(754\) 0 0
\(755\) 0.476580 + 1.46676i 0.0173445 + 0.0533810i
\(756\) 0 0
\(757\) −5.88578 4.27627i −0.213922 0.155424i 0.475664 0.879627i \(-0.342208\pi\)
−0.689587 + 0.724203i \(0.742208\pi\)
\(758\) 0 0
\(759\) −4.91541 + 22.4086i −0.178418 + 0.813380i
\(760\) 0 0
\(761\) −39.3375 28.5804i −1.42598 1.03604i −0.990747 0.135723i \(-0.956664\pi\)
−0.435238 0.900316i \(-0.643336\pi\)
\(762\) 0 0
\(763\) −8.46985 26.0675i −0.306629 0.943707i
\(764\) 0 0
\(765\) 0.183625 0.133411i 0.00663897 0.00482349i
\(766\) 0 0
\(767\) 23.9379 73.6733i 0.864347 2.66019i
\(768\) 0 0
\(769\) −13.3111 −0.480011 −0.240005 0.970772i \(-0.577149\pi\)
−0.240005 + 0.970772i \(0.577149\pi\)
\(770\) 0 0
\(771\) −19.4520 −0.700545
\(772\) 0 0
\(773\) −5.88813 + 18.1218i −0.211781 + 0.651796i 0.787585 + 0.616206i \(0.211331\pi\)
−0.999366 + 0.0355901i \(0.988669\pi\)
\(774\) 0 0
\(775\) −2.10501 + 1.52938i −0.0756142 + 0.0549369i
\(776\) 0 0
\(777\) 14.2562 + 43.8762i 0.511439 + 1.57405i
\(778\) 0 0
\(779\) −1.73973 1.26399i −0.0623322 0.0452870i
\(780\) 0 0
\(781\) 33.6972 29.9471i 1.20578 1.07159i
\(782\) 0 0
\(783\) −8.73286 6.34480i −0.312087 0.226745i
\(784\) 0 0
\(785\) 0.129634 + 0.398972i 0.00462683 + 0.0142399i
\(786\) 0 0
\(787\) 34.0606 24.7465i 1.21413 0.882117i 0.218531 0.975830i \(-0.429874\pi\)
0.995599 + 0.0937130i \(0.0298736\pi\)
\(788\) 0 0
\(789\) −16.1732 + 49.7759i −0.575780 + 1.77207i
\(790\) 0 0
\(791\) −10.1510 −0.360928
\(792\) 0 0
\(793\) 8.39368 0.298068
\(794\) 0 0
\(795\) 0.385964 1.18788i 0.0136887 0.0421296i
\(796\) 0 0
\(797\) 22.6671 16.4686i 0.802909 0.583347i −0.108857 0.994057i \(-0.534719\pi\)
0.911766 + 0.410710i \(0.134719\pi\)
\(798\) 0 0
\(799\) 1.21167 + 3.72913i 0.0428657 + 0.131927i
\(800\) 0 0
\(801\) 7.70558 + 5.59843i 0.272263 + 0.197811i
\(802\) 0 0
\(803\) 0.507364 + 1.15977i 0.0179045 + 0.0409274i
\(804\) 0 0
\(805\) −1.42143 1.03273i −0.0500989 0.0363990i
\(806\) 0 0
\(807\) −7.02996 21.6360i −0.247466 0.761623i
\(808\) 0 0
\(809\) −15.4284 + 11.2094i −0.542433 + 0.394101i −0.824988 0.565151i \(-0.808818\pi\)
0.282555 + 0.959251i \(0.408818\pi\)
\(810\) 0 0
\(811\) 10.3439 31.8353i 0.363224 1.11789i −0.587862 0.808961i \(-0.700030\pi\)
0.951086 0.308926i \(-0.0999696\pi\)
\(812\) 0 0
\(813\) −11.0317 −0.386897
\(814\) 0 0
\(815\) −3.64291 −0.127606
\(816\) 0 0
\(817\) −0.0989702 + 0.304599i −0.00346253 + 0.0106566i
\(818\) 0 0
\(819\) 14.5235 10.5519i 0.507492 0.368715i
\(820\) 0 0
\(821\) 1.22370 + 3.76615i 0.0427073 + 0.131440i 0.970137 0.242558i \(-0.0779866\pi\)
−0.927429 + 0.373998i \(0.877987\pi\)
\(822\) 0 0
\(823\) −23.0882 16.7745i −0.804803 0.584724i 0.107516 0.994203i \(-0.465710\pi\)
−0.912319 + 0.409479i \(0.865710\pi\)
\(824\) 0 0
\(825\) 28.8251 + 16.8927i 1.00356 + 0.588129i
\(826\) 0 0
\(827\) 35.6548 + 25.9047i 1.23984 + 0.900795i 0.997588 0.0694188i \(-0.0221145\pi\)
0.242250 + 0.970214i \(0.422114\pi\)
\(828\) 0 0
\(829\) −0.999027 3.07469i −0.0346976 0.106788i 0.932208 0.361924i \(-0.117880\pi\)
−0.966905 + 0.255135i \(0.917880\pi\)
\(830\) 0 0
\(831\) 14.1216 10.2599i 0.489873 0.355913i
\(832\) 0 0
\(833\) −0.0355274 + 0.109342i −0.00123095 + 0.00378848i
\(834\) 0 0
\(835\) −2.07521 −0.0718154
\(836\) 0 0
\(837\) 2.00035 0.0691421
\(838\) 0 0
\(839\) −1.05035 + 3.23264i −0.0362621 + 0.111603i −0.967549 0.252683i \(-0.918687\pi\)
0.931287 + 0.364286i \(0.118687\pi\)
\(840\) 0 0
\(841\) 16.9853 12.3406i 0.585701 0.425537i
\(842\) 0 0
\(843\) −7.89756 24.3062i −0.272007 0.837150i
\(844\) 0 0
\(845\) −3.61443 2.62604i −0.124340 0.0903384i
\(846\) 0 0
\(847\) −14.3341 25.5893i −0.492526 0.879260i
\(848\) 0 0
\(849\) −8.33204 6.05358i −0.285955 0.207758i
\(850\) 0 0
\(851\) 8.97535 + 27.6233i 0.307671 + 0.946914i
\(852\) 0 0
\(853\) −10.2308 + 7.43311i −0.350296 + 0.254505i −0.748993 0.662578i \(-0.769462\pi\)
0.398697 + 0.917083i \(0.369462\pi\)
\(854\) 0 0
\(855\) 0.0669551 0.206066i 0.00228981 0.00704732i
\(856\) 0 0
\(857\) 49.2552 1.68252 0.841262 0.540628i \(-0.181813\pi\)
0.841262 + 0.540628i \(0.181813\pi\)
\(858\) 0 0
\(859\) 8.70687 0.297075 0.148537 0.988907i \(-0.452543\pi\)
0.148537 + 0.988907i \(0.452543\pi\)
\(860\) 0 0
\(861\) −3.59673 + 11.0696i −0.122576 + 0.377251i
\(862\) 0 0
\(863\) 16.0602 11.6684i 0.546694 0.397197i −0.279871 0.960038i \(-0.590292\pi\)
0.826565 + 0.562841i \(0.190292\pi\)
\(864\) 0 0
\(865\) 1.35817 + 4.18003i 0.0461793 + 0.142125i
\(866\) 0 0
\(867\) 26.1157 + 18.9742i 0.886935 + 0.644396i
\(868\) 0 0
\(869\) −5.80119 3.39974i −0.196792 0.115328i
\(870\) 0 0
\(871\) 45.6194 + 33.1445i 1.54576 + 1.12306i
\(872\) 0 0
\(873\) −4.13549 12.7277i −0.139965 0.430768i
\(874\) 0 0
\(875\) −4.15576 + 3.01934i −0.140490 + 0.102072i
\(876\) 0 0
\(877\) −6.91405 + 21.2793i −0.233471 + 0.718549i 0.763850 + 0.645394i \(0.223307\pi\)
−0.997321 + 0.0731552i \(0.976693\pi\)
\(878\) 0 0
\(879\) 52.6945 1.77734
\(880\) 0 0
\(881\) 48.1713 1.62293 0.811466 0.584400i \(-0.198670\pi\)
0.811466 + 0.584400i \(0.198670\pi\)
\(882\) 0 0
\(883\) −2.77127 + 8.52909i −0.0932606 + 0.287027i −0.986796 0.161965i \(-0.948217\pi\)
0.893536 + 0.448992i \(0.148217\pi\)
\(884\) 0 0
\(885\) −4.09402 + 2.97448i −0.137619 + 0.0999861i
\(886\) 0 0
\(887\) −3.84797 11.8428i −0.129202 0.397643i 0.865441 0.501011i \(-0.167038\pi\)
−0.994643 + 0.103367i \(0.967038\pi\)
\(888\) 0 0
\(889\) −43.1757 31.3690i −1.44807 1.05208i
\(890\) 0 0
\(891\) −14.7630 33.7464i −0.494580 1.13055i
\(892\) 0 0
\(893\) 3.02821 + 2.20013i 0.101335 + 0.0736244i
\(894\) 0 0
\(895\) 0.0195758 + 0.0602483i 0.000654348 + 0.00201388i
\(896\) 0 0
\(897\) 33.6247 24.4298i 1.12270 0.815687i
\(898\) 0 0
\(899\) 0.458405 1.41082i 0.0152886 0.0470536i
\(900\) 0 0
\(901\) −3.33327 −0.111047
\(902\) 0 0
\(903\) 1.73350 0.0576872
\(904\) 0 0
\(905\) 0.201472 0.620066i 0.00669715 0.0206117i
\(906\) 0 0
\(907\) 44.5329 32.3550i 1.47869 1.07433i 0.500714 0.865613i \(-0.333071\pi\)
0.977976 0.208718i \(-0.0669290\pi\)
\(908\) 0 0
\(909\) −2.11562 6.51120i −0.0701705 0.215963i
\(910\) 0 0
\(911\) 32.4999 + 23.6126i 1.07677 + 0.782319i 0.977117 0.212703i \(-0.0682267\pi\)
0.0996530 + 0.995022i \(0.468227\pi\)
\(912\) 0 0
\(913\) 14.7556 13.1135i 0.488340 0.433994i
\(914\) 0 0
\(915\) −0.443608 0.322300i −0.0146652 0.0106549i
\(916\) 0 0
\(917\) 9.86973 + 30.3759i 0.325927 + 1.00310i
\(918\) 0 0
\(919\) −33.9805 + 24.6883i −1.12091 + 0.814392i −0.984347 0.176239i \(-0.943607\pi\)
−0.136567 + 0.990631i \(0.543607\pi\)
\(920\) 0 0
\(921\) −17.8211 + 54.8478i −0.587226 + 1.80730i
\(922\) 0 0
\(923\) −81.6730 −2.68830
\(924\) 0 0
\(925\) 42.2990 1.39078
\(926\) 0 0
\(927\) 5.95334 18.3225i 0.195533 0.601789i
\(928\) 0 0
\(929\) 8.03420 5.83719i 0.263594 0.191512i −0.448136 0.893965i \(-0.647912\pi\)
0.711730 + 0.702453i \(0.247912\pi\)
\(930\) 0 0
\(931\) 0.0339149 + 0.104379i 0.00111152 + 0.00342089i
\(932\) 0 0
\(933\) 36.3669 + 26.4221i 1.19060 + 0.865022i
\(934\) 0 0
\(935\) −0.143947 + 0.656232i −0.00470757 + 0.0214611i
\(936\) 0 0
\(937\) −14.6402 10.6367i −0.478273 0.347486i 0.322384 0.946609i \(-0.395516\pi\)
−0.800657 + 0.599123i \(0.795516\pi\)
\(938\) 0 0
\(939\) 16.1859 + 49.8152i 0.528208 + 1.62566i
\(940\) 0 0
\(941\) 3.08831 2.24379i 0.100676 0.0731455i −0.536308 0.844022i \(-0.680182\pi\)
0.636984 + 0.770877i \(0.280182\pi\)
\(942\) 0 0
\(943\) −2.26441 + 6.96912i −0.0737392 + 0.226946i
\(944\) 0 0
\(945\) 1.96716 0.0639917
\(946\) 0 0
\(947\) 17.5947 0.571752 0.285876 0.958267i \(-0.407715\pi\)
0.285876 + 0.958267i \(0.407715\pi\)
\(948\) 0 0
\(949\) 0.708699 2.18115i 0.0230053 0.0708032i
\(950\) 0 0
\(951\) −50.5651 + 36.7377i −1.63969 + 1.19130i
\(952\) 0 0
\(953\) 17.0578 + 52.4986i 0.552557 + 1.70060i 0.702309 + 0.711873i \(0.252153\pi\)
−0.149752 + 0.988724i \(0.547847\pi\)
\(954\) 0 0
\(955\) −0.619350 0.449984i −0.0200417 0.0145611i
\(956\) 0 0
\(957\) −18.9562 + 1.86799i −0.612768 + 0.0603836i
\(958\) 0 0
\(959\) −16.2845 11.8314i −0.525855 0.382056i
\(960\) 0 0
\(961\) −9.49458 29.2213i −0.306277 0.942623i
\(962\) 0 0
\(963\) −11.9643 + 8.69261i −0.385546 + 0.280115i
\(964\) 0 0
\(965\) 0.720490 2.21744i 0.0231934 0.0713819i
\(966\) 0 0
\(967\) 57.3979 1.84579 0.922897 0.385048i \(-0.125815\pi\)
0.922897 + 0.385048i \(0.125815\pi\)
\(968\) 0 0
\(969\) −2.12641 −0.0683101
\(970\) 0 0
\(971\) −7.53038 + 23.1761i −0.241662 + 0.743758i 0.754506 + 0.656293i \(0.227876\pi\)
−0.996168 + 0.0874647i \(0.972124\pi\)
\(972\) 0 0
\(973\) 19.4532 14.1336i 0.623642 0.453102i
\(974\) 0 0
\(975\) −18.7045 57.5664i −0.599022 1.84360i
\(976\) 0 0
\(977\) −22.1209 16.0718i −0.707712 0.514183i 0.174723 0.984618i \(-0.444097\pi\)
−0.882435 + 0.470435i \(0.844097\pi\)
\(978\) 0 0
\(979\) −28.0568 + 2.76478i −0.896699 + 0.0883628i
\(980\) 0 0
\(981\) −9.31819 6.77006i −0.297507 0.216151i
\(982\) 0 0
\(983\) −7.78741 23.9672i −0.248380 0.764435i −0.995062 0.0992538i \(-0.968354\pi\)
0.746682 0.665181i \(-0.231646\pi\)
\(984\) 0 0
\(985\) −2.30954 + 1.67798i −0.0735882 + 0.0534650i
\(986\) 0 0
\(987\) 6.26055 19.2680i 0.199276 0.613307i
\(988\) 0 0
\(989\) 1.09137 0.0347034
\(990\) 0 0
\(991\) −17.2779 −0.548851 −0.274425 0.961608i \(-0.588488\pi\)
−0.274425 + 0.961608i \(0.588488\pi\)
\(992\) 0 0
\(993\) 13.5459 41.6899i 0.429865 1.32299i
\(994\) 0 0
\(995\) −1.74338 + 1.26664i −0.0552687 + 0.0401551i
\(996\) 0 0
\(997\) 1.98784 + 6.11795i 0.0629556 + 0.193757i 0.977587 0.210531i \(-0.0675193\pi\)
−0.914632 + 0.404288i \(0.867519\pi\)
\(998\) 0 0
\(999\) −26.3086 19.1143i −0.832367 0.604750i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 836.2.j.b.609.5 20
11.3 even 5 inner 836.2.j.b.685.5 yes 20
11.5 even 5 9196.2.a.s.1.8 10
11.6 odd 10 9196.2.a.t.1.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.j.b.609.5 20 1.1 even 1 trivial
836.2.j.b.685.5 yes 20 11.3 even 5 inner
9196.2.a.s.1.8 10 11.5 even 5
9196.2.a.t.1.8 10 11.6 odd 10