Properties

Label 836.2.j.a.685.1
Level $836$
Weight $2$
Character 836.685
Analytic conductor $6.675$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [836,2,Mod(229,836)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(836, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("836.229"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 836 = 2^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 836.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.67549360898\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 9 x^{10} - 11 x^{9} + 52 x^{8} + 45 x^{7} + 155 x^{6} + 472 x^{5} + 1093 x^{4} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 685.1
Root \(-0.895600 + 2.75637i\) of defining polynomial
Character \(\chi\) \(=\) 836.685
Dual form 836.2.j.a.609.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.895600 - 2.75637i) q^{3} +(-1.97741 - 1.43667i) q^{5} +(-0.0757739 + 0.233208i) q^{7} +(-4.36844 + 3.17385i) q^{9} +(0.309017 + 3.30220i) q^{11} +(-3.79382 + 2.75637i) q^{13} +(-2.18903 + 6.73715i) q^{15} +(2.05975 + 1.49650i) q^{17} +(0.309017 + 0.951057i) q^{19} +0.710671 q^{21} +0.746673 q^{23} +(0.301033 + 0.926485i) q^{25} +(5.62656 + 4.08794i) q^{27} +(0.797879 - 2.45562i) q^{29} +(0.765599 - 0.556240i) q^{31} +(8.82533 - 3.80921i) q^{33} +(0.484879 - 0.352285i) q^{35} +(-0.123509 + 0.380122i) q^{37} +(10.9953 + 7.98857i) q^{39} +(-2.62478 - 8.07825i) q^{41} -8.39378 q^{43} +13.1980 q^{45} +(1.43142 + 4.40545i) q^{47} +(5.61447 + 4.07915i) q^{49} +(2.28019 - 7.01769i) q^{51} +(-6.27695 + 4.56047i) q^{53} +(4.13312 - 6.97375i) q^{55} +(2.34471 - 1.70353i) q^{57} +(-3.92228 + 12.0715i) q^{59} +(3.33307 + 2.42162i) q^{61} +(-0.409155 - 1.25925i) q^{63} +11.4619 q^{65} -12.4465 q^{67} +(-0.668720 - 2.05811i) q^{69} +(8.70057 + 6.32133i) q^{71} +(1.64304 - 5.05677i) q^{73} +(2.28413 - 1.65952i) q^{75} +(-0.793515 - 0.178155i) q^{77} +(-13.9778 + 10.1554i) q^{79} +(1.22295 - 3.76384i) q^{81} +(5.54039 + 4.02533i) q^{83} +(-1.92299 - 5.91836i) q^{85} -7.48318 q^{87} +13.5413 q^{89} +(-0.355336 - 1.09361i) q^{91} +(-2.21888 - 1.61211i) q^{93} +(0.755303 - 2.32458i) q^{95} +(2.74649 - 1.99544i) q^{97} +(-11.8306 - 13.4447i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{3} + q^{5} - 2 q^{7} - 8 q^{9} - 3 q^{11} - 3 q^{13} - 6 q^{15} + 7 q^{17} - 3 q^{19} + 10 q^{21} - 24 q^{23} - 16 q^{25} + q^{27} - 11 q^{29} + 14 q^{31} + q^{33} + 8 q^{35} - 17 q^{37} + 41 q^{39}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/836\mathbb{Z}\right)^\times\).

\(n\) \(419\) \(705\) \(761\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.895600 2.75637i −0.517075 1.59139i −0.779475 0.626433i \(-0.784514\pi\)
0.262401 0.964959i \(-0.415486\pi\)
\(4\) 0 0
\(5\) −1.97741 1.43667i −0.884324 0.642499i 0.0500682 0.998746i \(-0.484056\pi\)
−0.934392 + 0.356247i \(0.884056\pi\)
\(6\) 0 0
\(7\) −0.0757739 + 0.233208i −0.0286399 + 0.0881444i −0.964355 0.264613i \(-0.914756\pi\)
0.935715 + 0.352757i \(0.114756\pi\)
\(8\) 0 0
\(9\) −4.36844 + 3.17385i −1.45615 + 1.05795i
\(10\) 0 0
\(11\) 0.309017 + 3.30220i 0.0931721 + 0.995650i
\(12\) 0 0
\(13\) −3.79382 + 2.75637i −1.05222 + 0.764480i −0.972633 0.232348i \(-0.925359\pi\)
−0.0795838 + 0.996828i \(0.525359\pi\)
\(14\) 0 0
\(15\) −2.18903 + 6.73715i −0.565206 + 1.73953i
\(16\) 0 0
\(17\) 2.05975 + 1.49650i 0.499562 + 0.362953i 0.808850 0.588015i \(-0.200091\pi\)
−0.309287 + 0.950969i \(0.600091\pi\)
\(18\) 0 0
\(19\) 0.309017 + 0.951057i 0.0708934 + 0.218187i
\(20\) 0 0
\(21\) 0.710671 0.155081
\(22\) 0 0
\(23\) 0.746673 0.155692 0.0778460 0.996965i \(-0.475196\pi\)
0.0778460 + 0.996965i \(0.475196\pi\)
\(24\) 0 0
\(25\) 0.301033 + 0.926485i 0.0602067 + 0.185297i
\(26\) 0 0
\(27\) 5.62656 + 4.08794i 1.08283 + 0.786724i
\(28\) 0 0
\(29\) 0.797879 2.45562i 0.148162 0.455997i −0.849242 0.528004i \(-0.822940\pi\)
0.997404 + 0.0720073i \(0.0229405\pi\)
\(30\) 0 0
\(31\) 0.765599 0.556240i 0.137506 0.0999037i −0.516906 0.856042i \(-0.672916\pi\)
0.654412 + 0.756138i \(0.272916\pi\)
\(32\) 0 0
\(33\) 8.82533 3.80921i 1.53629 0.663099i
\(34\) 0 0
\(35\) 0.484879 0.352285i 0.0819596 0.0595471i
\(36\) 0 0
\(37\) −0.123509 + 0.380122i −0.0203048 + 0.0624917i −0.960696 0.277604i \(-0.910460\pi\)
0.940391 + 0.340096i \(0.110460\pi\)
\(38\) 0 0
\(39\) 10.9953 + 7.98857i 1.76066 + 1.27920i
\(40\) 0 0
\(41\) −2.62478 8.07825i −0.409922 1.26161i −0.916714 0.399543i \(-0.869169\pi\)
0.506792 0.862068i \(-0.330831\pi\)
\(42\) 0 0
\(43\) −8.39378 −1.28004 −0.640020 0.768358i \(-0.721074\pi\)
−0.640020 + 0.768358i \(0.721074\pi\)
\(44\) 0 0
\(45\) 13.1980 1.96744
\(46\) 0 0
\(47\) 1.43142 + 4.40545i 0.208794 + 0.642601i 0.999536 + 0.0304522i \(0.00969475\pi\)
−0.790742 + 0.612149i \(0.790305\pi\)
\(48\) 0 0
\(49\) 5.61447 + 4.07915i 0.802068 + 0.582736i
\(50\) 0 0
\(51\) 2.28019 7.01769i 0.319290 0.982674i
\(52\) 0 0
\(53\) −6.27695 + 4.56047i −0.862206 + 0.626429i −0.928484 0.371372i \(-0.878887\pi\)
0.0662783 + 0.997801i \(0.478887\pi\)
\(54\) 0 0
\(55\) 4.13312 6.97375i 0.557310 0.940340i
\(56\) 0 0
\(57\) 2.34471 1.70353i 0.310564 0.225638i
\(58\) 0 0
\(59\) −3.92228 + 12.0715i −0.510637 + 1.57158i 0.280446 + 0.959870i \(0.409518\pi\)
−0.791083 + 0.611709i \(0.790482\pi\)
\(60\) 0 0
\(61\) 3.33307 + 2.42162i 0.426756 + 0.310057i 0.780351 0.625342i \(-0.215041\pi\)
−0.353594 + 0.935399i \(0.615041\pi\)
\(62\) 0 0
\(63\) −0.409155 1.25925i −0.0515487 0.158651i
\(64\) 0 0
\(65\) 11.4619 1.42168
\(66\) 0 0
\(67\) −12.4465 −1.52058 −0.760290 0.649584i \(-0.774943\pi\)
−0.760290 + 0.649584i \(0.774943\pi\)
\(68\) 0 0
\(69\) −0.668720 2.05811i −0.0805044 0.247767i
\(70\) 0 0
\(71\) 8.70057 + 6.32133i 1.03257 + 0.750204i 0.968821 0.247762i \(-0.0796950\pi\)
0.0637468 + 0.997966i \(0.479695\pi\)
\(72\) 0 0
\(73\) 1.64304 5.05677i 0.192304 0.591850i −0.807694 0.589602i \(-0.799284\pi\)
0.999997 0.00224784i \(-0.000715511\pi\)
\(74\) 0 0
\(75\) 2.28413 1.65952i 0.263749 0.191625i
\(76\) 0 0
\(77\) −0.793515 0.178155i −0.0904294 0.0203027i
\(78\) 0 0
\(79\) −13.9778 + 10.1554i −1.57262 + 1.14258i −0.648031 + 0.761614i \(0.724407\pi\)
−0.924591 + 0.380962i \(0.875593\pi\)
\(80\) 0 0
\(81\) 1.22295 3.76384i 0.135883 0.418205i
\(82\) 0 0
\(83\) 5.54039 + 4.02533i 0.608137 + 0.441837i 0.848758 0.528782i \(-0.177351\pi\)
−0.240621 + 0.970619i \(0.577351\pi\)
\(84\) 0 0
\(85\) −1.92299 5.91836i −0.208578 0.641936i
\(86\) 0 0
\(87\) −7.48318 −0.802281
\(88\) 0 0
\(89\) 13.5413 1.43538 0.717688 0.696365i \(-0.245201\pi\)
0.717688 + 0.696365i \(0.245201\pi\)
\(90\) 0 0
\(91\) −0.355336 1.09361i −0.0372493 0.114642i
\(92\) 0 0
\(93\) −2.21888 1.61211i −0.230087 0.167168i
\(94\) 0 0
\(95\) 0.755303 2.32458i 0.0774924 0.238497i
\(96\) 0 0
\(97\) 2.74649 1.99544i 0.278864 0.202606i −0.439558 0.898214i \(-0.644865\pi\)
0.718422 + 0.695608i \(0.244865\pi\)
\(98\) 0 0
\(99\) −11.8306 13.4447i −1.18902 1.35124i
\(100\) 0 0
\(101\) 1.86656 1.35614i 0.185730 0.134941i −0.491035 0.871140i \(-0.663381\pi\)
0.676765 + 0.736199i \(0.263381\pi\)
\(102\) 0 0
\(103\) −6.02034 + 18.5287i −0.593202 + 1.82569i −0.0297205 + 0.999558i \(0.509462\pi\)
−0.563481 + 0.826129i \(0.690538\pi\)
\(104\) 0 0
\(105\) −1.40529 1.02100i −0.137142 0.0996395i
\(106\) 0 0
\(107\) −3.63043 11.1733i −0.350967 1.08017i −0.958311 0.285727i \(-0.907765\pi\)
0.607344 0.794439i \(-0.292235\pi\)
\(108\) 0 0
\(109\) −8.50246 −0.814388 −0.407194 0.913342i \(-0.633493\pi\)
−0.407194 + 0.913342i \(0.633493\pi\)
\(110\) 0 0
\(111\) 1.15837 0.109948
\(112\) 0 0
\(113\) 0.706159 + 2.17333i 0.0664298 + 0.204450i 0.978762 0.205002i \(-0.0657200\pi\)
−0.912332 + 0.409452i \(0.865720\pi\)
\(114\) 0 0
\(115\) −1.47648 1.07272i −0.137682 0.100032i
\(116\) 0 0
\(117\) 7.82474 24.0821i 0.723397 2.22639i
\(118\) 0 0
\(119\) −0.505070 + 0.366955i −0.0462997 + 0.0336387i
\(120\) 0 0
\(121\) −10.8090 + 2.04087i −0.982638 + 0.185534i
\(122\) 0 0
\(123\) −19.9159 + 14.4698i −1.79576 + 1.30469i
\(124\) 0 0
\(125\) −3.04072 + 9.35839i −0.271971 + 0.837039i
\(126\) 0 0
\(127\) −7.17978 5.21641i −0.637102 0.462882i 0.221751 0.975103i \(-0.428823\pi\)
−0.858853 + 0.512221i \(0.828823\pi\)
\(128\) 0 0
\(129\) 7.51747 + 23.1364i 0.661876 + 2.03705i
\(130\) 0 0
\(131\) 1.53773 0.134352 0.0671762 0.997741i \(-0.478601\pi\)
0.0671762 + 0.997741i \(0.478601\pi\)
\(132\) 0 0
\(133\) −0.245210 −0.0212624
\(134\) 0 0
\(135\) −5.25299 16.1670i −0.452105 1.39144i
\(136\) 0 0
\(137\) 0.684374 + 0.497226i 0.0584700 + 0.0424809i 0.616636 0.787248i \(-0.288495\pi\)
−0.558166 + 0.829729i \(0.688495\pi\)
\(138\) 0 0
\(139\) −1.58965 + 4.89243i −0.134832 + 0.414970i −0.995564 0.0940884i \(-0.970006\pi\)
0.860732 + 0.509059i \(0.170006\pi\)
\(140\) 0 0
\(141\) 10.8611 7.89104i 0.914669 0.664546i
\(142\) 0 0
\(143\) −10.2744 11.6762i −0.859192 0.976411i
\(144\) 0 0
\(145\) −5.10565 + 3.70947i −0.424001 + 0.308055i
\(146\) 0 0
\(147\) 6.21535 19.1289i 0.512633 1.57772i
\(148\) 0 0
\(149\) 1.57812 + 1.14657i 0.129285 + 0.0939309i 0.650548 0.759465i \(-0.274539\pi\)
−0.521264 + 0.853396i \(0.674539\pi\)
\(150\) 0 0
\(151\) −2.35175 7.23794i −0.191383 0.589015i −1.00000 0.000680102i \(-0.999784\pi\)
0.808617 0.588335i \(-0.200216\pi\)
\(152\) 0 0
\(153\) −13.7475 −1.11142
\(154\) 0 0
\(155\) −2.31304 −0.185787
\(156\) 0 0
\(157\) −0.230082 0.708119i −0.0183625 0.0565140i 0.941455 0.337138i \(-0.109459\pi\)
−0.959818 + 0.280624i \(0.909459\pi\)
\(158\) 0 0
\(159\) 18.1920 + 13.2173i 1.44272 + 1.04820i
\(160\) 0 0
\(161\) −0.0565783 + 0.174130i −0.00445900 + 0.0137234i
\(162\) 0 0
\(163\) 0.275083 0.199860i 0.0215462 0.0156542i −0.576960 0.816772i \(-0.695761\pi\)
0.598506 + 0.801118i \(0.295761\pi\)
\(164\) 0 0
\(165\) −22.9239 5.14673i −1.78462 0.400672i
\(166\) 0 0
\(167\) −7.87093 + 5.71857i −0.609071 + 0.442516i −0.849087 0.528253i \(-0.822847\pi\)
0.240016 + 0.970769i \(0.422847\pi\)
\(168\) 0 0
\(169\) 2.77827 8.55063i 0.213713 0.657740i
\(170\) 0 0
\(171\) −4.36844 3.17385i −0.334063 0.242711i
\(172\) 0 0
\(173\) −4.04323 12.4438i −0.307401 0.946084i −0.978770 0.204961i \(-0.934293\pi\)
0.671369 0.741123i \(-0.265707\pi\)
\(174\) 0 0
\(175\) −0.238874 −0.0180572
\(176\) 0 0
\(177\) 36.7864 2.76504
\(178\) 0 0
\(179\) 6.10046 + 18.7753i 0.455970 + 1.40333i 0.869993 + 0.493065i \(0.164123\pi\)
−0.414023 + 0.910267i \(0.635877\pi\)
\(180\) 0 0
\(181\) −18.4755 13.4232i −1.37327 0.997739i −0.997474 0.0710364i \(-0.977369\pi\)
−0.375796 0.926702i \(-0.622631\pi\)
\(182\) 0 0
\(183\) 3.68978 11.3560i 0.272757 0.839459i
\(184\) 0 0
\(185\) 0.790339 0.574215i 0.0581069 0.0422171i
\(186\) 0 0
\(187\) −4.30522 + 7.26414i −0.314829 + 0.531206i
\(188\) 0 0
\(189\) −1.37969 + 1.00240i −0.100357 + 0.0729140i
\(190\) 0 0
\(191\) −4.51907 + 13.9083i −0.326988 + 1.00637i 0.643547 + 0.765407i \(0.277462\pi\)
−0.970535 + 0.240960i \(0.922538\pi\)
\(192\) 0 0
\(193\) −15.9427 11.5831i −1.14758 0.833768i −0.159425 0.987210i \(-0.550964\pi\)
−0.988158 + 0.153442i \(0.950964\pi\)
\(194\) 0 0
\(195\) −10.2653 31.5933i −0.735113 2.26245i
\(196\) 0 0
\(197\) −10.2015 −0.726828 −0.363414 0.931628i \(-0.618389\pi\)
−0.363414 + 0.931628i \(0.618389\pi\)
\(198\) 0 0
\(199\) −2.22847 −0.157972 −0.0789860 0.996876i \(-0.525168\pi\)
−0.0789860 + 0.996876i \(0.525168\pi\)
\(200\) 0 0
\(201\) 11.1471 + 34.3071i 0.786253 + 2.41984i
\(202\) 0 0
\(203\) 0.512212 + 0.372144i 0.0359502 + 0.0261194i
\(204\) 0 0
\(205\) −6.41552 + 19.7450i −0.448080 + 1.37905i
\(206\) 0 0
\(207\) −3.26179 + 2.36983i −0.226710 + 0.164715i
\(208\) 0 0
\(209\) −3.04508 + 1.31433i −0.210633 + 0.0909140i
\(210\) 0 0
\(211\) 12.0746 8.77271i 0.831250 0.603938i −0.0886630 0.996062i \(-0.528259\pi\)
0.919913 + 0.392124i \(0.128259\pi\)
\(212\) 0 0
\(213\) 9.63172 29.6434i 0.659955 2.03113i
\(214\) 0 0
\(215\) 16.5979 + 12.0591i 1.13197 + 0.822424i
\(216\) 0 0
\(217\) 0.0717073 + 0.220692i 0.00486781 + 0.0149816i
\(218\) 0 0
\(219\) −15.4098 −1.04130
\(220\) 0 0
\(221\) −11.9392 −0.803118
\(222\) 0 0
\(223\) −4.96289 15.2742i −0.332339 1.02284i −0.968018 0.250882i \(-0.919280\pi\)
0.635678 0.771954i \(-0.280720\pi\)
\(224\) 0 0
\(225\) −4.25557 3.09186i −0.283705 0.206124i
\(226\) 0 0
\(227\) 4.94001 15.2038i 0.327880 1.00911i −0.642244 0.766501i \(-0.721996\pi\)
0.970124 0.242611i \(-0.0780038\pi\)
\(228\) 0 0
\(229\) −15.3683 + 11.1657i −1.01557 + 0.737853i −0.965370 0.260886i \(-0.915985\pi\)
−0.0501984 + 0.998739i \(0.515985\pi\)
\(230\) 0 0
\(231\) 0.219610 + 2.34678i 0.0144492 + 0.154407i
\(232\) 0 0
\(233\) 10.2247 7.42867i 0.669842 0.486669i −0.200130 0.979769i \(-0.564137\pi\)
0.869972 + 0.493101i \(0.164137\pi\)
\(234\) 0 0
\(235\) 3.49869 10.7679i 0.228229 0.702417i
\(236\) 0 0
\(237\) 40.5107 + 29.4327i 2.63145 + 1.91186i
\(238\) 0 0
\(239\) 6.10415 + 18.7866i 0.394845 + 1.21521i 0.929082 + 0.369873i \(0.120599\pi\)
−0.534238 + 0.845334i \(0.679401\pi\)
\(240\) 0 0
\(241\) 9.93140 0.639738 0.319869 0.947462i \(-0.396361\pi\)
0.319869 + 0.947462i \(0.396361\pi\)
\(242\) 0 0
\(243\) 9.39463 0.602666
\(244\) 0 0
\(245\) −5.24170 16.1323i −0.334880 1.03066i
\(246\) 0 0
\(247\) −3.79382 2.75637i −0.241395 0.175384i
\(248\) 0 0
\(249\) 6.13333 18.8765i 0.388684 1.19625i
\(250\) 0 0
\(251\) 16.9914 12.3449i 1.07249 0.779206i 0.0961281 0.995369i \(-0.469354\pi\)
0.976357 + 0.216163i \(0.0693542\pi\)
\(252\) 0 0
\(253\) 0.230735 + 2.46566i 0.0145062 + 0.155015i
\(254\) 0 0
\(255\) −14.5910 + 10.6010i −0.913722 + 0.663858i
\(256\) 0 0
\(257\) 3.61211 11.1169i 0.225317 0.693455i −0.772942 0.634476i \(-0.781216\pi\)
0.998259 0.0589783i \(-0.0187843\pi\)
\(258\) 0 0
\(259\) −0.0792889 0.0576067i −0.00492677 0.00357951i
\(260\) 0 0
\(261\) 4.30830 + 13.2596i 0.266677 + 0.820747i
\(262\) 0 0
\(263\) −22.2357 −1.37111 −0.685556 0.728020i \(-0.740441\pi\)
−0.685556 + 0.728020i \(0.740441\pi\)
\(264\) 0 0
\(265\) 18.9640 1.16495
\(266\) 0 0
\(267\) −12.1276 37.3249i −0.742196 2.28425i
\(268\) 0 0
\(269\) 2.00220 + 1.45469i 0.122076 + 0.0886937i 0.647148 0.762364i \(-0.275962\pi\)
−0.525072 + 0.851058i \(0.675962\pi\)
\(270\) 0 0
\(271\) 5.09451 15.6793i 0.309469 0.952448i −0.668502 0.743710i \(-0.733064\pi\)
0.977972 0.208738i \(-0.0669357\pi\)
\(272\) 0 0
\(273\) −2.69616 + 1.95887i −0.163179 + 0.118557i
\(274\) 0 0
\(275\) −2.96641 + 1.28037i −0.178881 + 0.0772093i
\(276\) 0 0
\(277\) −9.03711 + 6.56585i −0.542988 + 0.394504i −0.825193 0.564850i \(-0.808934\pi\)
0.282206 + 0.959354i \(0.408934\pi\)
\(278\) 0 0
\(279\) −1.57904 + 4.85980i −0.0945349 + 0.290949i
\(280\) 0 0
\(281\) −4.71551 3.42602i −0.281304 0.204379i 0.438182 0.898886i \(-0.355623\pi\)
−0.719486 + 0.694507i \(0.755623\pi\)
\(282\) 0 0
\(283\) 0.193750 + 0.596301i 0.0115172 + 0.0354464i 0.956650 0.291240i \(-0.0940679\pi\)
−0.945133 + 0.326687i \(0.894068\pi\)
\(284\) 0 0
\(285\) −7.08386 −0.419612
\(286\) 0 0
\(287\) 2.08280 0.122944
\(288\) 0 0
\(289\) −3.25022 10.0032i −0.191189 0.588421i
\(290\) 0 0
\(291\) −7.95994 5.78323i −0.466620 0.339019i
\(292\) 0 0
\(293\) 3.01168 9.26898i 0.175944 0.541500i −0.823731 0.566980i \(-0.808112\pi\)
0.999675 + 0.0254805i \(0.00811157\pi\)
\(294\) 0 0
\(295\) 25.0987 18.2353i 1.46131 1.06170i
\(296\) 0 0
\(297\) −11.7605 + 19.8433i −0.682412 + 1.15142i
\(298\) 0 0
\(299\) −2.83274 + 2.05811i −0.163822 + 0.119023i
\(300\) 0 0
\(301\) 0.636030 1.95750i 0.0366602 0.112828i
\(302\) 0 0
\(303\) −5.40971 3.93039i −0.310780 0.225795i
\(304\) 0 0
\(305\) −3.11177 9.57706i −0.178180 0.548381i
\(306\) 0 0
\(307\) 24.9571 1.42437 0.712187 0.701989i \(-0.247705\pi\)
0.712187 + 0.701989i \(0.247705\pi\)
\(308\) 0 0
\(309\) 56.4638 3.21211
\(310\) 0 0
\(311\) −3.21137 9.88359i −0.182100 0.560447i 0.817786 0.575522i \(-0.195201\pi\)
−0.999886 + 0.0150752i \(0.995201\pi\)
\(312\) 0 0
\(313\) 20.3986 + 14.8204i 1.15300 + 0.837700i 0.988876 0.148740i \(-0.0475219\pi\)
0.164119 + 0.986441i \(0.447522\pi\)
\(314\) 0 0
\(315\) −1.00006 + 3.07787i −0.0563471 + 0.173418i
\(316\) 0 0
\(317\) −8.77163 + 6.37296i −0.492664 + 0.357941i −0.806208 0.591633i \(-0.798484\pi\)
0.313544 + 0.949574i \(0.398484\pi\)
\(318\) 0 0
\(319\) 8.35550 + 1.87593i 0.467818 + 0.105032i
\(320\) 0 0
\(321\) −27.5464 + 20.0137i −1.53749 + 1.11705i
\(322\) 0 0
\(323\) −0.786754 + 2.42138i −0.0437762 + 0.134729i
\(324\) 0 0
\(325\) −3.69580 2.68516i −0.205006 0.148946i
\(326\) 0 0
\(327\) 7.61480 + 23.4359i 0.421099 + 1.29601i
\(328\) 0 0
\(329\) −1.13585 −0.0626215
\(330\) 0 0
\(331\) −24.6664 −1.35579 −0.677893 0.735160i \(-0.737107\pi\)
−0.677893 + 0.735160i \(0.737107\pi\)
\(332\) 0 0
\(333\) −0.666911 2.05254i −0.0365465 0.112479i
\(334\) 0 0
\(335\) 24.6118 + 17.8815i 1.34468 + 0.976970i
\(336\) 0 0
\(337\) −3.01515 + 9.27969i −0.164246 + 0.505497i −0.998980 0.0451565i \(-0.985621\pi\)
0.834734 + 0.550653i \(0.185621\pi\)
\(338\) 0 0
\(339\) 5.35808 3.89287i 0.291011 0.211432i
\(340\) 0 0
\(341\) 2.07340 + 2.35627i 0.112281 + 0.127599i
\(342\) 0 0
\(343\) −2.76537 + 2.00916i −0.149316 + 0.108485i
\(344\) 0 0
\(345\) −1.63449 + 5.03045i −0.0879981 + 0.270830i
\(346\) 0 0
\(347\) −9.18666 6.67450i −0.493166 0.358306i 0.313235 0.949676i \(-0.398587\pi\)
−0.806401 + 0.591370i \(0.798587\pi\)
\(348\) 0 0
\(349\) 6.10663 + 18.7943i 0.326880 + 1.00603i 0.970585 + 0.240760i \(0.0773967\pi\)
−0.643704 + 0.765274i \(0.722603\pi\)
\(350\) 0 0
\(351\) −32.6141 −1.74081
\(352\) 0 0
\(353\) 17.4515 0.928850 0.464425 0.885612i \(-0.346261\pi\)
0.464425 + 0.885612i \(0.346261\pi\)
\(354\) 0 0
\(355\) −8.12290 24.9997i −0.431119 1.32685i
\(356\) 0 0
\(357\) 1.46380 + 1.06352i 0.0774728 + 0.0562873i
\(358\) 0 0
\(359\) −9.23780 + 28.4310i −0.487553 + 1.50053i 0.340697 + 0.940173i \(0.389337\pi\)
−0.828249 + 0.560360i \(0.810663\pi\)
\(360\) 0 0
\(361\) −0.809017 + 0.587785i −0.0425798 + 0.0309361i
\(362\) 0 0
\(363\) 15.3059 + 27.9659i 0.803354 + 1.46783i
\(364\) 0 0
\(365\) −10.5139 + 7.63878i −0.550322 + 0.399832i
\(366\) 0 0
\(367\) −5.23188 + 16.1021i −0.273102 + 0.840522i 0.716613 + 0.697471i \(0.245691\pi\)
−0.989715 + 0.143051i \(0.954309\pi\)
\(368\) 0 0
\(369\) 37.1054 + 26.9587i 1.93163 + 1.40341i
\(370\) 0 0
\(371\) −0.587910 1.80940i −0.0305228 0.0939395i
\(372\) 0 0
\(373\) −24.4999 −1.26856 −0.634278 0.773105i \(-0.718703\pi\)
−0.634278 + 0.773105i \(0.718703\pi\)
\(374\) 0 0
\(375\) 28.5185 1.47269
\(376\) 0 0
\(377\) 3.74159 + 11.5154i 0.192702 + 0.593075i
\(378\) 0 0
\(379\) −10.9784 7.97631i −0.563925 0.409716i 0.268968 0.963149i \(-0.413317\pi\)
−0.832893 + 0.553434i \(0.813317\pi\)
\(380\) 0 0
\(381\) −7.94817 + 24.4620i −0.407197 + 1.25322i
\(382\) 0 0
\(383\) −28.3474 + 20.5956i −1.44848 + 1.05238i −0.462300 + 0.886724i \(0.652976\pi\)
−0.986183 + 0.165660i \(0.947024\pi\)
\(384\) 0 0
\(385\) 1.31315 + 1.49231i 0.0669244 + 0.0760549i
\(386\) 0 0
\(387\) 36.6677 26.6406i 1.86392 1.35422i
\(388\) 0 0
\(389\) 0.718994 2.21284i 0.0364544 0.112195i −0.931173 0.364577i \(-0.881214\pi\)
0.967628 + 0.252381i \(0.0812137\pi\)
\(390\) 0 0
\(391\) 1.53796 + 1.11739i 0.0777779 + 0.0565090i
\(392\) 0 0
\(393\) −1.37719 4.23856i −0.0694702 0.213807i
\(394\) 0 0
\(395\) 42.2298 2.12481
\(396\) 0 0
\(397\) −6.30592 −0.316485 −0.158243 0.987400i \(-0.550583\pi\)
−0.158243 + 0.987400i \(0.550583\pi\)
\(398\) 0 0
\(399\) 0.219610 + 0.675889i 0.0109942 + 0.0338368i
\(400\) 0 0
\(401\) 17.0454 + 12.3842i 0.851209 + 0.618439i 0.925479 0.378799i \(-0.123663\pi\)
−0.0742704 + 0.997238i \(0.523663\pi\)
\(402\) 0 0
\(403\) −1.37134 + 4.22055i −0.0683113 + 0.210241i
\(404\) 0 0
\(405\) −7.82567 + 5.68568i −0.388861 + 0.282524i
\(406\) 0 0
\(407\) −1.29341 0.290388i −0.0641117 0.0143940i
\(408\) 0 0
\(409\) −11.9582 + 8.68813i −0.591294 + 0.429601i −0.842778 0.538261i \(-0.819081\pi\)
0.251484 + 0.967862i \(0.419081\pi\)
\(410\) 0 0
\(411\) 0.757616 2.33170i 0.0373705 0.115014i
\(412\) 0 0
\(413\) −2.51797 1.82941i −0.123901 0.0900196i
\(414\) 0 0
\(415\) −5.17254 15.9194i −0.253910 0.781454i
\(416\) 0 0
\(417\) 14.9090 0.730099
\(418\) 0 0
\(419\) −27.3428 −1.33578 −0.667891 0.744259i \(-0.732803\pi\)
−0.667891 + 0.744259i \(0.732803\pi\)
\(420\) 0 0
\(421\) −9.17036 28.2235i −0.446936 1.37553i −0.880347 0.474331i \(-0.842690\pi\)
0.433411 0.901197i \(-0.357310\pi\)
\(422\) 0 0
\(423\) −20.2353 14.7018i −0.983875 0.714827i
\(424\) 0 0
\(425\) −0.766428 + 2.35882i −0.0371772 + 0.114420i
\(426\) 0 0
\(427\) −0.817301 + 0.593804i −0.0395520 + 0.0287362i
\(428\) 0 0
\(429\) −22.9821 + 38.7774i −1.10959 + 1.87219i
\(430\) 0 0
\(431\) −8.46886 + 6.15298i −0.407930 + 0.296379i −0.772763 0.634694i \(-0.781126\pi\)
0.364833 + 0.931073i \(0.381126\pi\)
\(432\) 0 0
\(433\) −1.80562 + 5.55714i −0.0867728 + 0.267059i −0.985022 0.172426i \(-0.944839\pi\)
0.898250 + 0.439486i \(0.144839\pi\)
\(434\) 0 0
\(435\) 14.7973 + 10.7509i 0.709476 + 0.515465i
\(436\) 0 0
\(437\) 0.230735 + 0.710128i 0.0110375 + 0.0339700i
\(438\) 0 0
\(439\) 34.1518 1.62998 0.814988 0.579478i \(-0.196743\pi\)
0.814988 + 0.579478i \(0.196743\pi\)
\(440\) 0 0
\(441\) −37.4731 −1.78443
\(442\) 0 0
\(443\) 5.74940 + 17.6948i 0.273162 + 0.840707i 0.989700 + 0.143158i \(0.0457258\pi\)
−0.716538 + 0.697548i \(0.754274\pi\)
\(444\) 0 0
\(445\) −26.7767 19.4544i −1.26934 0.922227i
\(446\) 0 0
\(447\) 1.74701 5.37676i 0.0826310 0.254312i
\(448\) 0 0
\(449\) 26.8588 19.5141i 1.26755 0.920925i 0.268443 0.963296i \(-0.413491\pi\)
0.999102 + 0.0423701i \(0.0134909\pi\)
\(450\) 0 0
\(451\) 25.8649 11.1639i 1.21793 0.525686i
\(452\) 0 0
\(453\) −17.8442 + 12.9646i −0.838395 + 0.609130i
\(454\) 0 0
\(455\) −0.868515 + 2.67302i −0.0407166 + 0.125313i
\(456\) 0 0
\(457\) −30.2670 21.9902i −1.41583 1.02866i −0.992442 0.122711i \(-0.960841\pi\)
−0.423387 0.905949i \(-0.639159\pi\)
\(458\) 0 0
\(459\) 5.47173 + 16.8403i 0.255398 + 0.786036i
\(460\) 0 0
\(461\) −26.7838 −1.24744 −0.623722 0.781646i \(-0.714380\pi\)
−0.623722 + 0.781646i \(0.714380\pi\)
\(462\) 0 0
\(463\) −18.0638 −0.839494 −0.419747 0.907641i \(-0.637881\pi\)
−0.419747 + 0.907641i \(0.637881\pi\)
\(464\) 0 0
\(465\) 2.07155 + 6.37559i 0.0960660 + 0.295661i
\(466\) 0 0
\(467\) −0.577782 0.419783i −0.0267366 0.0194252i 0.574337 0.818619i \(-0.305260\pi\)
−0.601073 + 0.799194i \(0.705260\pi\)
\(468\) 0 0
\(469\) 0.943119 2.90262i 0.0435492 0.134031i
\(470\) 0 0
\(471\) −1.74578 + 1.26838i −0.0804412 + 0.0584439i
\(472\) 0 0
\(473\) −2.59382 27.7179i −0.119264 1.27447i
\(474\) 0 0
\(475\) −0.788115 + 0.572599i −0.0361612 + 0.0262727i
\(476\) 0 0
\(477\) 12.9462 39.8443i 0.592765 1.82434i
\(478\) 0 0
\(479\) 26.0992 + 18.9622i 1.19250 + 0.866405i 0.993527 0.113599i \(-0.0362380\pi\)
0.198977 + 0.980004i \(0.436238\pi\)
\(480\) 0 0
\(481\) −0.579187 1.78255i −0.0264086 0.0812775i
\(482\) 0 0
\(483\) 0.530639 0.0241449
\(484\) 0 0
\(485\) −8.29772 −0.376780
\(486\) 0 0
\(487\) 1.43658 + 4.42133i 0.0650975 + 0.200349i 0.978315 0.207123i \(-0.0664101\pi\)
−0.913217 + 0.407473i \(0.866410\pi\)
\(488\) 0 0
\(489\) −0.797252 0.579238i −0.0360530 0.0261940i
\(490\) 0 0
\(491\) −10.4347 + 32.1148i −0.470912 + 1.44932i 0.380480 + 0.924789i \(0.375759\pi\)
−0.851392 + 0.524530i \(0.824241\pi\)
\(492\) 0 0
\(493\) 5.31825 3.86394i 0.239522 0.174023i
\(494\) 0 0
\(495\) 4.07840 + 43.5823i 0.183310 + 1.95888i
\(496\) 0 0
\(497\) −2.13346 + 1.55005i −0.0956989 + 0.0695293i
\(498\) 0 0
\(499\) −8.40010 + 25.8529i −0.376040 + 1.15733i 0.566734 + 0.823901i \(0.308207\pi\)
−0.942774 + 0.333432i \(0.891793\pi\)
\(500\) 0 0
\(501\) 22.8117 + 16.5737i 1.01915 + 0.740457i
\(502\) 0 0
\(503\) −13.0527 40.1721i −0.581991 1.79118i −0.611031 0.791606i \(-0.709245\pi\)
0.0290401 0.999578i \(-0.490755\pi\)
\(504\) 0 0
\(505\) −5.63928 −0.250945
\(506\) 0 0
\(507\) −26.0569 −1.15723
\(508\) 0 0
\(509\) −9.05662 27.8734i −0.401428 1.23547i −0.923842 0.382775i \(-0.874968\pi\)
0.522414 0.852692i \(-0.325032\pi\)
\(510\) 0 0
\(511\) 1.05478 + 0.766343i 0.0466607 + 0.0339010i
\(512\) 0 0
\(513\) −2.14916 + 6.61442i −0.0948876 + 0.292034i
\(514\) 0 0
\(515\) 38.5243 27.9895i 1.69758 1.23337i
\(516\) 0 0
\(517\) −14.1053 + 6.08819i −0.620352 + 0.267758i
\(518\) 0 0
\(519\) −30.6786 + 22.2893i −1.34664 + 0.978392i
\(520\) 0 0
\(521\) 1.06580 3.28019i 0.0466935 0.143708i −0.924992 0.379988i \(-0.875928\pi\)
0.971685 + 0.236280i \(0.0759282\pi\)
\(522\) 0 0
\(523\) 21.2348 + 15.4280i 0.928534 + 0.674619i 0.945633 0.325234i \(-0.105443\pi\)
−0.0170996 + 0.999854i \(0.505443\pi\)
\(524\) 0 0
\(525\) 0.213936 + 0.658427i 0.00933692 + 0.0287361i
\(526\) 0 0
\(527\) 2.40935 0.104953
\(528\) 0 0
\(529\) −22.4425 −0.975760
\(530\) 0 0
\(531\) −21.1791 65.1824i −0.919093 2.82868i
\(532\) 0 0
\(533\) 32.2246 + 23.4126i 1.39580 + 1.01411i
\(534\) 0 0
\(535\) −8.87354 + 27.3100i −0.383637 + 1.18071i
\(536\) 0 0
\(537\) 46.2881 33.6303i 1.99748 1.45125i
\(538\) 0 0
\(539\) −11.7352 + 19.8006i −0.505471 + 0.852874i
\(540\) 0 0
\(541\) 22.4023 16.2762i 0.963149 0.699768i 0.00926880 0.999957i \(-0.497050\pi\)
0.953880 + 0.300189i \(0.0970496\pi\)
\(542\) 0 0
\(543\) −20.4527 + 62.9470i −0.877711 + 2.70132i
\(544\) 0 0
\(545\) 16.8128 + 12.2152i 0.720183 + 0.523243i
\(546\) 0 0
\(547\) 9.79361 + 30.1416i 0.418745 + 1.28876i 0.908858 + 0.417105i \(0.136955\pi\)
−0.490114 + 0.871658i \(0.663045\pi\)
\(548\) 0 0
\(549\) −22.2462 −0.949444
\(550\) 0 0
\(551\) 2.58199 0.109997
\(552\) 0 0
\(553\) −1.30918 4.02925i −0.0556721 0.171341i
\(554\) 0 0
\(555\) −2.29058 1.66420i −0.0972296 0.0706414i
\(556\) 0 0
\(557\) 9.65360 29.7107i 0.409036 1.25888i −0.508441 0.861097i \(-0.669778\pi\)
0.917478 0.397788i \(-0.130222\pi\)
\(558\) 0 0
\(559\) 31.8445 23.1364i 1.34688 0.978565i
\(560\) 0 0
\(561\) 23.8784 + 5.36104i 1.00815 + 0.226343i
\(562\) 0 0
\(563\) 31.5220 22.9021i 1.32850 0.965209i 0.328712 0.944430i \(-0.393385\pi\)
0.999784 0.0207786i \(-0.00661451\pi\)
\(564\) 0 0
\(565\) 1.72600 5.31208i 0.0726134 0.223481i
\(566\) 0 0
\(567\) 0.785091 + 0.570402i 0.0329707 + 0.0239546i
\(568\) 0 0
\(569\) −3.66189 11.2701i −0.153514 0.472469i 0.844493 0.535567i \(-0.179902\pi\)
−0.998007 + 0.0630978i \(0.979902\pi\)
\(570\) 0 0
\(571\) 37.4316 1.56646 0.783231 0.621731i \(-0.213570\pi\)
0.783231 + 0.621731i \(0.213570\pi\)
\(572\) 0 0
\(573\) 42.3836 1.77060
\(574\) 0 0
\(575\) 0.224773 + 0.691782i 0.00937370 + 0.0288493i
\(576\) 0 0
\(577\) 3.18749 + 2.31585i 0.132697 + 0.0964100i 0.652154 0.758087i \(-0.273866\pi\)
−0.519457 + 0.854497i \(0.673866\pi\)
\(578\) 0 0
\(579\) −17.6490 + 54.3179i −0.733465 + 2.25737i
\(580\) 0 0
\(581\) −1.35856 + 0.987049i −0.0563624 + 0.0409497i
\(582\) 0 0
\(583\) −16.9993 19.3185i −0.704038 0.800090i
\(584\) 0 0
\(585\) −50.0707 + 36.3785i −2.07017 + 1.50407i
\(586\) 0 0
\(587\) −0.187232 + 0.576240i −0.00772788 + 0.0237840i −0.954846 0.297101i \(-0.903980\pi\)
0.947118 + 0.320885i \(0.103980\pi\)
\(588\) 0 0
\(589\) 0.765599 + 0.556240i 0.0315460 + 0.0229195i
\(590\) 0 0
\(591\) 9.13648 + 28.1192i 0.375824 + 1.15667i
\(592\) 0 0
\(593\) 35.8849 1.47362 0.736809 0.676101i \(-0.236332\pi\)
0.736809 + 0.676101i \(0.236332\pi\)
\(594\) 0 0
\(595\) 1.52592 0.0625567
\(596\) 0 0
\(597\) 1.99582 + 6.14249i 0.0816833 + 0.251395i
\(598\) 0 0
\(599\) 3.59807 + 2.61415i 0.147013 + 0.106811i 0.658861 0.752265i \(-0.271039\pi\)
−0.511847 + 0.859076i \(0.671039\pi\)
\(600\) 0 0
\(601\) −9.55433 + 29.4052i −0.389729 + 1.19946i 0.543262 + 0.839563i \(0.317189\pi\)
−0.932991 + 0.359900i \(0.882811\pi\)
\(602\) 0 0
\(603\) 54.3717 39.5033i 2.21418 1.60870i
\(604\) 0 0
\(605\) 24.3059 + 11.4934i 0.988175 + 0.467272i
\(606\) 0 0
\(607\) 24.8567 18.0594i 1.00890 0.733010i 0.0449229 0.998990i \(-0.485696\pi\)
0.963978 + 0.265981i \(0.0856958\pi\)
\(608\) 0 0
\(609\) 0.567030 1.74514i 0.0229772 0.0707166i
\(610\) 0 0
\(611\) −17.5736 12.7680i −0.710952 0.516537i
\(612\) 0 0
\(613\) −5.90798 18.1829i −0.238621 0.734400i −0.996620 0.0821449i \(-0.973823\pi\)
0.757999 0.652255i \(-0.226177\pi\)
\(614\) 0 0
\(615\) 60.1702 2.42630
\(616\) 0 0
\(617\) −24.1217 −0.971102 −0.485551 0.874208i \(-0.661381\pi\)
−0.485551 + 0.874208i \(0.661381\pi\)
\(618\) 0 0
\(619\) −10.7776 33.1700i −0.433187 1.33321i −0.894933 0.446201i \(-0.852777\pi\)
0.461745 0.887013i \(-0.347223\pi\)
\(620\) 0 0
\(621\) 4.20120 + 3.05235i 0.168588 + 0.122487i
\(622\) 0 0
\(623\) −1.02608 + 3.15794i −0.0411089 + 0.126520i
\(624\) 0 0
\(625\) 23.3982 16.9998i 0.935930 0.679993i
\(626\) 0 0
\(627\) 6.34995 + 7.21628i 0.253593 + 0.288190i
\(628\) 0 0
\(629\) −0.823249 + 0.598126i −0.0328251 + 0.0238488i
\(630\) 0 0
\(631\) 9.49259 29.2152i 0.377894 1.16304i −0.563611 0.826040i \(-0.690588\pi\)
0.941505 0.336998i \(-0.109412\pi\)
\(632\) 0 0
\(633\) −34.9948 25.4252i −1.39092 1.01056i
\(634\) 0 0
\(635\) 6.70308 + 20.6300i 0.266004 + 0.818675i
\(636\) 0 0
\(637\) −32.5440 −1.28944
\(638\) 0 0
\(639\) −58.0709 −2.29725
\(640\) 0 0
\(641\) −12.5569 38.6460i −0.495966 1.52643i −0.815446 0.578834i \(-0.803508\pi\)
0.319480 0.947593i \(-0.396492\pi\)
\(642\) 0 0
\(643\) −9.71973 7.06180i −0.383309 0.278490i 0.379399 0.925233i \(-0.376131\pi\)
−0.762708 + 0.646743i \(0.776131\pi\)
\(644\) 0 0
\(645\) 18.3743 56.5502i 0.723486 2.22666i
\(646\) 0 0
\(647\) 3.86706 2.80958i 0.152030 0.110456i −0.509170 0.860666i \(-0.670048\pi\)
0.661200 + 0.750210i \(0.270048\pi\)
\(648\) 0 0
\(649\) −41.0746 9.22183i −1.61232 0.361988i
\(650\) 0 0
\(651\) 0.544089 0.395304i 0.0213245 0.0154932i
\(652\) 0 0
\(653\) 5.14169 15.8245i 0.201210 0.619260i −0.798638 0.601812i \(-0.794446\pi\)
0.999848 0.0174482i \(-0.00555422\pi\)
\(654\) 0 0
\(655\) −3.04072 2.20922i −0.118811 0.0863212i
\(656\) 0 0
\(657\) 8.87192 + 27.3050i 0.346127 + 1.06527i
\(658\) 0 0
\(659\) 44.4696 1.73229 0.866145 0.499792i \(-0.166590\pi\)
0.866145 + 0.499792i \(0.166590\pi\)
\(660\) 0 0
\(661\) −6.28473 −0.244448 −0.122224 0.992503i \(-0.539003\pi\)
−0.122224 + 0.992503i \(0.539003\pi\)
\(662\) 0 0
\(663\) 10.6928 + 32.9089i 0.415272 + 1.27808i
\(664\) 0 0
\(665\) 0.484879 + 0.352285i 0.0188028 + 0.0136610i
\(666\) 0 0
\(667\) 0.595755 1.83354i 0.0230677 0.0709951i
\(668\) 0 0
\(669\) −37.6566 + 27.3591i −1.45589 + 1.05776i
\(670\) 0 0
\(671\) −6.96669 + 11.7548i −0.268946 + 0.453788i
\(672\) 0 0
\(673\) 3.88033 2.81922i 0.149576 0.108673i −0.510481 0.859889i \(-0.670532\pi\)
0.660056 + 0.751216i \(0.270532\pi\)
\(674\) 0 0
\(675\) −2.09363 + 6.44353i −0.0805839 + 0.248012i
\(676\) 0 0
\(677\) 18.9326 + 13.7553i 0.727638 + 0.528660i 0.888815 0.458265i \(-0.151529\pi\)
−0.161177 + 0.986925i \(0.551529\pi\)
\(678\) 0 0
\(679\) 0.257241 + 0.791706i 0.00987200 + 0.0303829i
\(680\) 0 0
\(681\) −46.3316 −1.77543
\(682\) 0 0
\(683\) 17.8739 0.683926 0.341963 0.939713i \(-0.388908\pi\)
0.341963 + 0.939713i \(0.388908\pi\)
\(684\) 0 0
\(685\) −0.638935 1.96644i −0.0244124 0.0751338i
\(686\) 0 0
\(687\) 44.5408 + 32.3608i 1.69934 + 1.23464i
\(688\) 0 0
\(689\) 11.2433 34.6032i 0.428335 1.31828i
\(690\) 0 0
\(691\) −3.40057 + 2.47066i −0.129364 + 0.0939883i −0.650586 0.759433i \(-0.725476\pi\)
0.521222 + 0.853421i \(0.325476\pi\)
\(692\) 0 0
\(693\) 4.03186 1.74024i 0.153158 0.0661063i
\(694\) 0 0
\(695\) 10.1722 7.39053i 0.385853 0.280339i
\(696\) 0 0
\(697\) 6.68267 20.5671i 0.253124 0.779036i
\(698\) 0 0
\(699\) −29.6334 21.5299i −1.12084 0.814337i
\(700\) 0 0
\(701\) 12.2949 + 37.8398i 0.464372 + 1.42919i 0.859771 + 0.510680i \(0.170606\pi\)
−0.395399 + 0.918509i \(0.629394\pi\)
\(702\) 0 0
\(703\) −0.399684 −0.0150744
\(704\) 0 0
\(705\) −32.8136 −1.23583
\(706\) 0 0
\(707\) 0.174825 + 0.538058i 0.00657499 + 0.0202357i
\(708\) 0 0
\(709\) 39.5351 + 28.7239i 1.48477 + 1.07875i 0.975980 + 0.217861i \(0.0699081\pi\)
0.508793 + 0.860889i \(0.330092\pi\)
\(710\) 0 0
\(711\) 28.8291 88.7268i 1.08118 3.32751i
\(712\) 0 0
\(713\) 0.571652 0.415330i 0.0214085 0.0155542i
\(714\) 0 0
\(715\) 3.54193 + 37.8496i 0.132461 + 1.41549i
\(716\) 0 0
\(717\) 46.3161 33.6506i 1.72971 1.25671i
\(718\) 0 0
\(719\) −9.55235 + 29.3991i −0.356242 + 1.09640i 0.599043 + 0.800717i \(0.295548\pi\)
−0.955286 + 0.295685i \(0.904452\pi\)
\(720\) 0 0
\(721\) −3.86486 2.80798i −0.143935 0.104575i
\(722\) 0 0
\(723\) −8.89456 27.3746i −0.330792 1.01807i
\(724\) 0 0
\(725\) 2.51528 0.0934153
\(726\) 0 0
\(727\) −32.1977 −1.19415 −0.597074 0.802186i \(-0.703670\pi\)
−0.597074 + 0.802186i \(0.703670\pi\)
\(728\) 0 0
\(729\) −12.0827 37.1866i −0.447506 1.37728i
\(730\) 0 0
\(731\) −17.2891 12.5613i −0.639460 0.464595i
\(732\) 0 0
\(733\) 8.99064 27.6703i 0.332077 1.02203i −0.636067 0.771633i \(-0.719440\pi\)
0.968144 0.250394i \(-0.0805600\pi\)
\(734\) 0 0
\(735\) −39.7722 + 28.8962i −1.46702 + 1.06585i
\(736\) 0 0
\(737\) −3.84617 41.1007i −0.141676 1.51396i
\(738\) 0 0
\(739\) −25.9035 + 18.8200i −0.952876 + 0.692305i −0.951485 0.307694i \(-0.900443\pi\)
−0.00139086 + 0.999999i \(0.500443\pi\)
\(740\) 0 0
\(741\) −4.19984 + 12.9258i −0.154285 + 0.474841i
\(742\) 0 0
\(743\) −27.5600 20.0235i −1.01108 0.734592i −0.0466437 0.998912i \(-0.514853\pi\)
−0.964435 + 0.264320i \(0.914853\pi\)
\(744\) 0 0
\(745\) −1.47334 4.53448i −0.0539791 0.166131i
\(746\) 0 0
\(747\) −36.9787 −1.35298
\(748\) 0 0
\(749\) 2.88080 0.105262
\(750\) 0 0
\(751\) 9.59095 + 29.5179i 0.349979 + 1.07712i 0.958864 + 0.283865i \(0.0916168\pi\)
−0.608886 + 0.793258i \(0.708383\pi\)
\(752\) 0 0
\(753\) −49.2447 35.7784i −1.79458 1.30384i
\(754\) 0 0
\(755\) −5.74817 + 17.6911i −0.209197 + 0.643843i
\(756\) 0 0
\(757\) 30.6831 22.2926i 1.11520 0.810237i 0.131721 0.991287i \(-0.457950\pi\)
0.983474 + 0.181050i \(0.0579496\pi\)
\(758\) 0 0
\(759\) 6.58964 2.84424i 0.239189 0.103239i
\(760\) 0 0
\(761\) 10.1833 7.39861i 0.369145 0.268199i −0.387711 0.921781i \(-0.626734\pi\)
0.756856 + 0.653581i \(0.226734\pi\)
\(762\) 0 0
\(763\) 0.644265 1.98284i 0.0233240 0.0717838i
\(764\) 0 0
\(765\) 27.1845 + 19.7507i 0.982857 + 0.714088i
\(766\) 0 0
\(767\) −18.3932 56.6085i −0.664140 2.04401i
\(768\) 0 0
\(769\) −41.2934 −1.48908 −0.744540 0.667578i \(-0.767331\pi\)
−0.744540 + 0.667578i \(0.767331\pi\)
\(770\) 0 0
\(771\) −33.8774 −1.22006
\(772\) 0 0
\(773\) 4.51180 + 13.8859i 0.162278 + 0.499441i 0.998825 0.0484540i \(-0.0154294\pi\)
−0.836547 + 0.547895i \(0.815429\pi\)
\(774\) 0 0
\(775\) 0.745819 + 0.541869i 0.0267906 + 0.0194645i
\(776\) 0 0
\(777\) −0.0877745 + 0.270142i −0.00314889 + 0.00969130i
\(778\) 0 0
\(779\) 6.87177 4.99264i 0.246207 0.178880i
\(780\) 0 0
\(781\) −18.1857 + 30.6844i −0.650735 + 1.09797i
\(782\) 0 0
\(783\) 14.5277 10.5550i 0.519179 0.377206i
\(784\) 0 0
\(785\) −0.562368 + 1.73079i −0.0200718 + 0.0617746i
\(786\) 0 0
\(787\) −38.7976 28.1881i −1.38299 1.00480i −0.996594 0.0824641i \(-0.973721\pi\)
−0.386393 0.922334i \(-0.626279\pi\)
\(788\) 0 0
\(789\) 19.9143 + 61.2899i 0.708968 + 2.18198i
\(790\) 0 0
\(791\) −0.560348 −0.0199237
\(792\) 0 0
\(793\) −19.3200 −0.686072
\(794\) 0 0
\(795\) −16.9841 52.2718i −0.602366 1.85389i
\(796\) 0 0
\(797\) 18.5296 + 13.4625i 0.656351 + 0.476867i 0.865429 0.501032i \(-0.167046\pi\)
−0.209078 + 0.977899i \(0.567046\pi\)
\(798\) 0 0
\(799\) −3.64438 + 11.2162i −0.128929 + 0.396802i
\(800\) 0 0
\(801\) −59.1543 + 42.9781i −2.09012 + 1.51856i
\(802\) 0 0
\(803\) 17.2062 + 3.86303i 0.607193 + 0.136323i
\(804\) 0 0
\(805\) 0.362046 0.263042i 0.0127605 0.00927101i
\(806\) 0 0
\(807\) 2.21648 6.82163i 0.0780239 0.240133i
\(808\) 0 0
\(809\) −33.0158 23.9874i −1.16077 0.843351i −0.170898 0.985289i \(-0.554667\pi\)
−0.989876 + 0.141937i \(0.954667\pi\)
\(810\) 0 0
\(811\) 6.50298 + 20.0141i 0.228351 + 0.702791i 0.997934 + 0.0642448i \(0.0204638\pi\)
−0.769584 + 0.638546i \(0.779536\pi\)
\(812\) 0 0
\(813\) −47.7806 −1.67574
\(814\) 0 0
\(815\) −0.831084 −0.0291116
\(816\) 0 0
\(817\) −2.59382 7.98296i −0.0907463 0.279288i
\(818\) 0 0
\(819\) 5.02322 + 3.64959i 0.175526 + 0.127527i
\(820\) 0 0
\(821\) 0.401692 1.23628i 0.0140192 0.0431465i −0.943802 0.330511i \(-0.892779\pi\)
0.957821 + 0.287364i \(0.0927790\pi\)
\(822\) 0 0
\(823\) 10.7280 7.79432i 0.373953 0.271693i −0.384895 0.922960i \(-0.625762\pi\)
0.758848 + 0.651267i \(0.225762\pi\)
\(824\) 0 0
\(825\) 6.18590 + 7.02984i 0.215365 + 0.244748i
\(826\) 0 0
\(827\) −9.33734 + 6.78398i −0.324691 + 0.235902i −0.738175 0.674610i \(-0.764312\pi\)
0.413483 + 0.910512i \(0.364312\pi\)
\(828\) 0 0
\(829\) 1.61566 4.97248i 0.0561141 0.172701i −0.919071 0.394091i \(-0.871059\pi\)
0.975185 + 0.221390i \(0.0710593\pi\)
\(830\) 0 0
\(831\) 26.1916 + 19.0293i 0.908575 + 0.660118i
\(832\) 0 0
\(833\) 5.45997 + 16.8041i 0.189177 + 0.582226i
\(834\) 0 0
\(835\) 23.7797 0.822932
\(836\) 0 0
\(837\) 6.58157 0.227492
\(838\) 0 0
\(839\) −11.2800 34.7164i −0.389430 1.19854i −0.933215 0.359317i \(-0.883010\pi\)
0.543786 0.839224i \(-0.316990\pi\)
\(840\) 0 0
\(841\) 18.0680 + 13.1272i 0.623036 + 0.452662i
\(842\) 0 0
\(843\) −5.22018 + 16.0661i −0.179792 + 0.553344i
\(844\) 0 0
\(845\) −17.7782 + 12.9166i −0.611589 + 0.444345i
\(846\) 0 0
\(847\) 0.343094 2.67540i 0.0117889 0.0919277i
\(848\) 0 0
\(849\) 1.47011 1.06809i 0.0504539 0.0366569i
\(850\) 0 0
\(851\) −0.0922210 + 0.283827i −0.00316130 + 0.00972947i
\(852\) 0 0
\(853\) −11.8535 8.61208i −0.405857 0.294872i 0.366066 0.930589i \(-0.380705\pi\)
−0.771922 + 0.635717i \(0.780705\pi\)
\(854\) 0 0
\(855\) 4.07840 + 12.5520i 0.139478 + 0.429270i
\(856\) 0 0
\(857\) −40.3772 −1.37926 −0.689630 0.724162i \(-0.742227\pi\)
−0.689630 + 0.724162i \(0.742227\pi\)
\(858\) 0 0
\(859\) −4.57561 −0.156118 −0.0780589 0.996949i \(-0.524872\pi\)
−0.0780589 + 0.996949i \(0.524872\pi\)
\(860\) 0 0
\(861\) −1.86536 5.74098i −0.0635713 0.195652i
\(862\) 0 0
\(863\) −7.58174 5.50845i −0.258085 0.187510i 0.451217 0.892414i \(-0.350990\pi\)
−0.709302 + 0.704904i \(0.750990\pi\)
\(864\) 0 0
\(865\) −9.88252 + 30.4153i −0.336016 + 1.03415i
\(866\) 0 0
\(867\) −24.6615 + 17.9176i −0.837549 + 0.608515i
\(868\) 0 0
\(869\) −37.8546 43.0191i −1.28413 1.45932i
\(870\) 0 0
\(871\) 47.2197 34.3071i 1.59998 1.16245i
\(872\) 0 0
\(873\) −5.66462 + 17.4339i −0.191719 + 0.590049i
\(874\) 0 0
\(875\) −1.95204 1.41824i −0.0659911 0.0479454i
\(876\) 0 0
\(877\) 14.2413 + 43.8301i 0.480893 + 1.48004i 0.837842 + 0.545913i \(0.183817\pi\)
−0.356949 + 0.934124i \(0.616183\pi\)
\(878\) 0 0
\(879\) −28.2460 −0.952715
\(880\) 0 0
\(881\) −37.4304 −1.26106 −0.630532 0.776163i \(-0.717163\pi\)
−0.630532 + 0.776163i \(0.717163\pi\)
\(882\) 0 0
\(883\) 9.07163 + 27.9196i 0.305285 + 0.939569i 0.979571 + 0.201099i \(0.0644514\pi\)
−0.674286 + 0.738470i \(0.735549\pi\)
\(884\) 0 0
\(885\) −72.7417 52.8500i −2.44519 1.77653i
\(886\) 0 0
\(887\) 7.68105 23.6398i 0.257904 0.793748i −0.735339 0.677699i \(-0.762977\pi\)
0.993244 0.116049i \(-0.0370228\pi\)
\(888\) 0 0
\(889\) 1.76055 1.27911i 0.0590470 0.0429001i
\(890\) 0 0
\(891\) 12.8069 + 2.87532i 0.429046 + 0.0963268i
\(892\) 0 0
\(893\) −3.74750 + 2.72272i −0.125405 + 0.0911123i
\(894\) 0 0
\(895\) 14.9108 45.8908i 0.498413 1.53396i
\(896\) 0 0
\(897\) 8.20992 + 5.96485i 0.274121 + 0.199161i
\(898\) 0 0
\(899\) −0.755059 2.32383i −0.0251826 0.0775041i
\(900\) 0 0
\(901\) −19.7537 −0.658090
\(902\) 0 0
\(903\) −5.96522 −0.198510
\(904\) 0 0
\(905\) 17.2488 + 53.0863i 0.573369 + 1.76465i
\(906\) 0 0
\(907\) −31.6035 22.9613i −1.04938 0.762416i −0.0772824 0.997009i \(-0.524624\pi\)
−0.972094 + 0.234593i \(0.924624\pi\)
\(908\) 0 0
\(909\) −3.84978 + 11.8484i −0.127689 + 0.392987i
\(910\) 0 0
\(911\) 19.6743 14.2942i 0.651839 0.473589i −0.212058 0.977257i \(-0.568017\pi\)
0.863897 + 0.503668i \(0.168017\pi\)
\(912\) 0 0
\(913\) −11.5804 + 19.5394i −0.383254 + 0.646659i
\(914\) 0 0
\(915\) −23.6110 + 17.1544i −0.780556 + 0.567107i
\(916\) 0 0
\(917\) −0.116520 + 0.358612i −0.00384783 + 0.0118424i
\(918\) 0 0
\(919\) −4.33416 3.14895i −0.142971 0.103874i 0.514001 0.857790i \(-0.328163\pi\)
−0.656972 + 0.753915i \(0.728163\pi\)
\(920\) 0 0
\(921\) −22.3515 68.7910i −0.736508 2.26674i
\(922\) 0 0
\(923\) −50.4324 −1.66000
\(924\) 0 0
\(925\) −0.389358 −0.0128020
\(926\) 0 0
\(927\) −32.5079 100.049i −1.06770 3.28604i
\(928\) 0 0
\(929\) 46.0380 + 33.4486i 1.51046 + 1.09741i 0.965973 + 0.258642i \(0.0832751\pi\)
0.544486 + 0.838770i \(0.316725\pi\)
\(930\) 0 0
\(931\) −2.14454 + 6.60021i −0.0702844 + 0.216313i
\(932\) 0 0
\(933\) −24.3668 + 17.7035i −0.797732 + 0.579586i
\(934\) 0 0
\(935\) 18.9494 8.17897i 0.619710 0.267481i
\(936\) 0 0
\(937\) 16.7167 12.1454i 0.546110 0.396772i −0.280240 0.959930i \(-0.590414\pi\)
0.826349 + 0.563158i \(0.190414\pi\)
\(938\) 0 0
\(939\) 22.5817 69.4992i 0.736925 2.26802i
\(940\) 0 0
\(941\) −21.8030 15.8408i −0.710757 0.516395i 0.172661 0.984981i \(-0.444763\pi\)
−0.883418 + 0.468586i \(0.844763\pi\)
\(942\) 0 0
\(943\) −1.95986 6.03181i −0.0638217 0.196423i
\(944\) 0 0
\(945\) 4.16833 0.135596
\(946\) 0 0
\(947\) 43.3235 1.40782 0.703912 0.710287i \(-0.251435\pi\)
0.703912 + 0.710287i \(0.251435\pi\)
\(948\) 0 0
\(949\) 7.70492 + 23.7133i 0.250112 + 0.769767i
\(950\) 0 0
\(951\) 25.4221 + 18.4702i 0.824368 + 0.598939i
\(952\) 0 0
\(953\) 6.94336 21.3695i 0.224918 0.692225i −0.773382 0.633940i \(-0.781437\pi\)
0.998300 0.0582852i \(-0.0185633\pi\)
\(954\) 0 0
\(955\) 28.9177 21.0099i 0.935753 0.679864i
\(956\) 0 0
\(957\) −2.31243 24.7109i −0.0747502 0.798791i
\(958\) 0 0
\(959\) −0.167815 + 0.121925i −0.00541903 + 0.00393715i
\(960\) 0 0
\(961\) −9.30279 + 28.6310i −0.300090 + 0.923582i
\(962\) 0 0
\(963\) 51.3218 + 37.2875i 1.65382 + 1.20157i
\(964\) 0 0
\(965\) 14.8842 + 45.8089i 0.479140 + 1.47464i
\(966\) 0 0
\(967\) −9.03749 −0.290626 −0.145313 0.989386i \(-0.546419\pi\)
−0.145313 + 0.989386i \(0.546419\pi\)
\(968\) 0 0
\(969\) 7.37884 0.237042
\(970\) 0 0
\(971\) 0.306047 + 0.941916i 0.00982152 + 0.0302275i 0.955847 0.293864i \(-0.0949413\pi\)
−0.946026 + 0.324092i \(0.894941\pi\)
\(972\) 0 0
\(973\) −1.02050 0.741437i −0.0327157 0.0237694i
\(974\) 0 0
\(975\) −4.09134 + 12.5918i −0.131028 + 0.403262i
\(976\) 0 0
\(977\) 15.7123 11.4157i 0.502682 0.365220i −0.307358 0.951594i \(-0.599445\pi\)
0.810041 + 0.586374i \(0.199445\pi\)
\(978\) 0 0
\(979\) 4.18449 + 44.7161i 0.133737 + 1.42913i
\(980\) 0 0
\(981\) 37.1425 26.9856i 1.18587 0.861583i
\(982\) 0 0
\(983\) −0.777006 + 2.39138i −0.0247826 + 0.0762731i −0.962683 0.270632i \(-0.912767\pi\)
0.937900 + 0.346905i \(0.112767\pi\)
\(984\) 0 0
\(985\) 20.1726 + 14.6562i 0.642751 + 0.466986i
\(986\) 0 0
\(987\) 1.01727 + 3.13083i 0.0323800 + 0.0996554i
\(988\) 0 0
\(989\) −6.26741 −0.199292
\(990\) 0 0
\(991\) 21.0983 0.670210 0.335105 0.942181i \(-0.391228\pi\)
0.335105 + 0.942181i \(0.391228\pi\)
\(992\) 0 0
\(993\) 22.0912 + 67.9897i 0.701043 + 2.15759i
\(994\) 0 0
\(995\) 4.40659 + 3.20158i 0.139698 + 0.101497i
\(996\) 0 0
\(997\) −9.79701 + 30.1521i −0.310274 + 0.954927i 0.667382 + 0.744716i \(0.267415\pi\)
−0.977656 + 0.210211i \(0.932585\pi\)
\(998\) 0 0
\(999\) −2.24885 + 1.63388i −0.0711505 + 0.0516938i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 836.2.j.a.685.1 yes 12
11.2 odd 10 9196.2.a.i.1.1 6
11.4 even 5 inner 836.2.j.a.609.1 12
11.9 even 5 9196.2.a.j.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.j.a.609.1 12 11.4 even 5 inner
836.2.j.a.685.1 yes 12 1.1 even 1 trivial
9196.2.a.i.1.1 6 11.2 odd 10
9196.2.a.j.1.1 6 11.9 even 5