Properties

Label 836.2.a.d.1.5
Level $836$
Weight $2$
Character 836.1
Self dual yes
Analytic conductor $6.675$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [836,2,Mod(1,836)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(836, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("836.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 836 = 2^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 836.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.67549360898\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 12x^{4} + 28x^{3} + 16x^{2} - 60x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.64714\) of defining polynomial
Character \(\chi\) \(=\) 836.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.64714 q^{3} +1.84900 q^{5} +3.60453 q^{7} -0.286920 q^{9} +1.00000 q^{11} -4.60764 q^{13} +3.04556 q^{15} +4.53875 q^{17} +1.00000 q^{19} +5.93718 q^{21} +7.43020 q^{23} -1.58121 q^{25} -5.41403 q^{27} -1.20922 q^{29} -8.16972 q^{31} +1.64714 q^{33} +6.66477 q^{35} -2.67467 q^{37} -7.58945 q^{39} -10.6575 q^{41} +7.58121 q^{43} -0.530515 q^{45} -7.21528 q^{47} +5.99263 q^{49} +7.47598 q^{51} +9.86813 q^{53} +1.84900 q^{55} +1.64714 q^{57} -7.61190 q^{59} +13.0950 q^{61} -1.03421 q^{63} -8.51952 q^{65} +9.37878 q^{67} +12.2386 q^{69} -10.9414 q^{71} +8.17013 q^{73} -2.60447 q^{75} +3.60453 q^{77} +14.1049 q^{79} -8.05692 q^{81} -15.3819 q^{83} +8.39215 q^{85} -1.99176 q^{87} +6.58945 q^{89} -16.6084 q^{91} -13.4567 q^{93} +1.84900 q^{95} -12.8914 q^{97} -0.286920 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 2 q^{7} + 10 q^{9} + 6 q^{11} + 2 q^{13} - 12 q^{15} + 12 q^{17} + 6 q^{19} + 2 q^{21} - 2 q^{23} + 26 q^{25} + 16 q^{27} + 4 q^{29} - 20 q^{31} - 2 q^{33} + 20 q^{35} + 22 q^{37} + 8 q^{39}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.64714 0.950978 0.475489 0.879722i \(-0.342271\pi\)
0.475489 + 0.879722i \(0.342271\pi\)
\(4\) 0 0
\(5\) 1.84900 0.826897 0.413449 0.910527i \(-0.364324\pi\)
0.413449 + 0.910527i \(0.364324\pi\)
\(6\) 0 0
\(7\) 3.60453 1.36238 0.681192 0.732105i \(-0.261462\pi\)
0.681192 + 0.732105i \(0.261462\pi\)
\(8\) 0 0
\(9\) −0.286920 −0.0956400
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.60764 −1.27793 −0.638965 0.769236i \(-0.720637\pi\)
−0.638965 + 0.769236i \(0.720637\pi\)
\(14\) 0 0
\(15\) 3.04556 0.786361
\(16\) 0 0
\(17\) 4.53875 1.10081 0.550405 0.834898i \(-0.314473\pi\)
0.550405 + 0.834898i \(0.314473\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 5.93718 1.29560
\(22\) 0 0
\(23\) 7.43020 1.54930 0.774652 0.632387i \(-0.217925\pi\)
0.774652 + 0.632387i \(0.217925\pi\)
\(24\) 0 0
\(25\) −1.58121 −0.316241
\(26\) 0 0
\(27\) −5.41403 −1.04193
\(28\) 0 0
\(29\) −1.20922 −0.224547 −0.112273 0.993677i \(-0.535813\pi\)
−0.112273 + 0.993677i \(0.535813\pi\)
\(30\) 0 0
\(31\) −8.16972 −1.46733 −0.733663 0.679514i \(-0.762191\pi\)
−0.733663 + 0.679514i \(0.762191\pi\)
\(32\) 0 0
\(33\) 1.64714 0.286731
\(34\) 0 0
\(35\) 6.66477 1.12655
\(36\) 0 0
\(37\) −2.67467 −0.439713 −0.219857 0.975532i \(-0.570559\pi\)
−0.219857 + 0.975532i \(0.570559\pi\)
\(38\) 0 0
\(39\) −7.58945 −1.21528
\(40\) 0 0
\(41\) −10.6575 −1.66442 −0.832208 0.554464i \(-0.812923\pi\)
−0.832208 + 0.554464i \(0.812923\pi\)
\(42\) 0 0
\(43\) 7.58121 1.15612 0.578062 0.815993i \(-0.303809\pi\)
0.578062 + 0.815993i \(0.303809\pi\)
\(44\) 0 0
\(45\) −0.530515 −0.0790844
\(46\) 0 0
\(47\) −7.21528 −1.05246 −0.526229 0.850343i \(-0.676394\pi\)
−0.526229 + 0.850343i \(0.676394\pi\)
\(48\) 0 0
\(49\) 5.99263 0.856091
\(50\) 0 0
\(51\) 7.47598 1.04685
\(52\) 0 0
\(53\) 9.86813 1.35549 0.677746 0.735296i \(-0.262957\pi\)
0.677746 + 0.735296i \(0.262957\pi\)
\(54\) 0 0
\(55\) 1.84900 0.249319
\(56\) 0 0
\(57\) 1.64714 0.218169
\(58\) 0 0
\(59\) −7.61190 −0.990984 −0.495492 0.868612i \(-0.665012\pi\)
−0.495492 + 0.868612i \(0.665012\pi\)
\(60\) 0 0
\(61\) 13.0950 1.67664 0.838320 0.545179i \(-0.183538\pi\)
0.838320 + 0.545179i \(0.183538\pi\)
\(62\) 0 0
\(63\) −1.03421 −0.130298
\(64\) 0 0
\(65\) −8.51952 −1.05672
\(66\) 0 0
\(67\) 9.37878 1.14580 0.572900 0.819625i \(-0.305818\pi\)
0.572900 + 0.819625i \(0.305818\pi\)
\(68\) 0 0
\(69\) 12.2386 1.47336
\(70\) 0 0
\(71\) −10.9414 −1.29851 −0.649254 0.760571i \(-0.724919\pi\)
−0.649254 + 0.760571i \(0.724919\pi\)
\(72\) 0 0
\(73\) 8.17013 0.956241 0.478121 0.878294i \(-0.341318\pi\)
0.478121 + 0.878294i \(0.341318\pi\)
\(74\) 0 0
\(75\) −2.60447 −0.300739
\(76\) 0 0
\(77\) 3.60453 0.410774
\(78\) 0 0
\(79\) 14.1049 1.58692 0.793461 0.608621i \(-0.208277\pi\)
0.793461 + 0.608621i \(0.208277\pi\)
\(80\) 0 0
\(81\) −8.05692 −0.895213
\(82\) 0 0
\(83\) −15.3819 −1.68838 −0.844191 0.536042i \(-0.819919\pi\)
−0.844191 + 0.536042i \(0.819919\pi\)
\(84\) 0 0
\(85\) 8.39215 0.910256
\(86\) 0 0
\(87\) −1.99176 −0.213539
\(88\) 0 0
\(89\) 6.58945 0.698480 0.349240 0.937033i \(-0.386440\pi\)
0.349240 + 0.937033i \(0.386440\pi\)
\(90\) 0 0
\(91\) −16.6084 −1.74103
\(92\) 0 0
\(93\) −13.4567 −1.39539
\(94\) 0 0
\(95\) 1.84900 0.189703
\(96\) 0 0
\(97\) −12.8914 −1.30893 −0.654464 0.756093i \(-0.727106\pi\)
−0.654464 + 0.756093i \(0.727106\pi\)
\(98\) 0 0
\(99\) −0.286920 −0.0288365
\(100\) 0 0
\(101\) 0.942465 0.0937787 0.0468894 0.998900i \(-0.485069\pi\)
0.0468894 + 0.998900i \(0.485069\pi\)
\(102\) 0 0
\(103\) −10.5386 −1.03840 −0.519199 0.854653i \(-0.673770\pi\)
−0.519199 + 0.854653i \(0.673770\pi\)
\(104\) 0 0
\(105\) 10.9778 1.07133
\(106\) 0 0
\(107\) 7.04516 0.681081 0.340540 0.940230i \(-0.389390\pi\)
0.340540 + 0.940230i \(0.389390\pi\)
\(108\) 0 0
\(109\) −10.2076 −0.977708 −0.488854 0.872366i \(-0.662585\pi\)
−0.488854 + 0.872366i \(0.662585\pi\)
\(110\) 0 0
\(111\) −4.40557 −0.418158
\(112\) 0 0
\(113\) 3.83490 0.360757 0.180378 0.983597i \(-0.442268\pi\)
0.180378 + 0.983597i \(0.442268\pi\)
\(114\) 0 0
\(115\) 13.7384 1.28112
\(116\) 0 0
\(117\) 1.32202 0.122221
\(118\) 0 0
\(119\) 16.3601 1.49973
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −17.5544 −1.58282
\(124\) 0 0
\(125\) −12.1686 −1.08840
\(126\) 0 0
\(127\) 10.6913 0.948696 0.474348 0.880337i \(-0.342684\pi\)
0.474348 + 0.880337i \(0.342684\pi\)
\(128\) 0 0
\(129\) 12.4873 1.09945
\(130\) 0 0
\(131\) −10.2811 −0.898260 −0.449130 0.893466i \(-0.648266\pi\)
−0.449130 + 0.893466i \(0.648266\pi\)
\(132\) 0 0
\(133\) 3.60453 0.312552
\(134\) 0 0
\(135\) −10.0105 −0.861569
\(136\) 0 0
\(137\) 5.15505 0.440425 0.220213 0.975452i \(-0.429325\pi\)
0.220213 + 0.975452i \(0.429325\pi\)
\(138\) 0 0
\(139\) 2.23710 0.189749 0.0948743 0.995489i \(-0.469755\pi\)
0.0948743 + 0.995489i \(0.469755\pi\)
\(140\) 0 0
\(141\) −11.8846 −1.00086
\(142\) 0 0
\(143\) −4.60764 −0.385310
\(144\) 0 0
\(145\) −2.23585 −0.185677
\(146\) 0 0
\(147\) 9.87073 0.814124
\(148\) 0 0
\(149\) −13.7042 −1.12269 −0.561347 0.827581i \(-0.689717\pi\)
−0.561347 + 0.827581i \(0.689717\pi\)
\(150\) 0 0
\(151\) −16.4420 −1.33803 −0.669014 0.743250i \(-0.733283\pi\)
−0.669014 + 0.743250i \(0.733283\pi\)
\(152\) 0 0
\(153\) −1.30226 −0.105281
\(154\) 0 0
\(155\) −15.1058 −1.21333
\(156\) 0 0
\(157\) −21.4827 −1.71451 −0.857254 0.514894i \(-0.827831\pi\)
−0.857254 + 0.514894i \(0.827831\pi\)
\(158\) 0 0
\(159\) 16.2542 1.28904
\(160\) 0 0
\(161\) 26.7824 2.11075
\(162\) 0 0
\(163\) 17.1301 1.34173 0.670865 0.741580i \(-0.265923\pi\)
0.670865 + 0.741580i \(0.265923\pi\)
\(164\) 0 0
\(165\) 3.04556 0.237097
\(166\) 0 0
\(167\) −18.8782 −1.46084 −0.730419 0.682999i \(-0.760675\pi\)
−0.730419 + 0.682999i \(0.760675\pi\)
\(168\) 0 0
\(169\) 8.23037 0.633105
\(170\) 0 0
\(171\) −0.286920 −0.0219413
\(172\) 0 0
\(173\) 9.79779 0.744912 0.372456 0.928050i \(-0.378516\pi\)
0.372456 + 0.928050i \(0.378516\pi\)
\(174\) 0 0
\(175\) −5.69950 −0.430842
\(176\) 0 0
\(177\) −12.5379 −0.942405
\(178\) 0 0
\(179\) −9.54923 −0.713743 −0.356872 0.934153i \(-0.616157\pi\)
−0.356872 + 0.934153i \(0.616157\pi\)
\(180\) 0 0
\(181\) 20.9124 1.55441 0.777203 0.629249i \(-0.216638\pi\)
0.777203 + 0.629249i \(0.216638\pi\)
\(182\) 0 0
\(183\) 21.5693 1.59445
\(184\) 0 0
\(185\) −4.94546 −0.363598
\(186\) 0 0
\(187\) 4.53875 0.331907
\(188\) 0 0
\(189\) −19.5150 −1.41951
\(190\) 0 0
\(191\) −23.5827 −1.70639 −0.853193 0.521596i \(-0.825337\pi\)
−0.853193 + 0.521596i \(0.825337\pi\)
\(192\) 0 0
\(193\) 16.8780 1.21491 0.607454 0.794355i \(-0.292191\pi\)
0.607454 + 0.794355i \(0.292191\pi\)
\(194\) 0 0
\(195\) −14.0329 −1.00491
\(196\) 0 0
\(197\) 16.2427 1.15724 0.578621 0.815597i \(-0.303591\pi\)
0.578621 + 0.815597i \(0.303591\pi\)
\(198\) 0 0
\(199\) −22.0695 −1.56446 −0.782232 0.622988i \(-0.785919\pi\)
−0.782232 + 0.622988i \(0.785919\pi\)
\(200\) 0 0
\(201\) 15.4482 1.08963
\(202\) 0 0
\(203\) −4.35867 −0.305919
\(204\) 0 0
\(205\) −19.7056 −1.37630
\(206\) 0 0
\(207\) −2.13187 −0.148175
\(208\) 0 0
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −1.06376 −0.0732323 −0.0366162 0.999329i \(-0.511658\pi\)
−0.0366162 + 0.999329i \(0.511658\pi\)
\(212\) 0 0
\(213\) −18.0221 −1.23485
\(214\) 0 0
\(215\) 14.0176 0.955995
\(216\) 0 0
\(217\) −29.4480 −1.99906
\(218\) 0 0
\(219\) 13.4574 0.909365
\(220\) 0 0
\(221\) −20.9130 −1.40676
\(222\) 0 0
\(223\) −3.85252 −0.257984 −0.128992 0.991646i \(-0.541174\pi\)
−0.128992 + 0.991646i \(0.541174\pi\)
\(224\) 0 0
\(225\) 0.453680 0.0302453
\(226\) 0 0
\(227\) −1.38224 −0.0917428 −0.0458714 0.998947i \(-0.514606\pi\)
−0.0458714 + 0.998947i \(0.514606\pi\)
\(228\) 0 0
\(229\) −4.79798 −0.317060 −0.158530 0.987354i \(-0.550675\pi\)
−0.158530 + 0.987354i \(0.550675\pi\)
\(230\) 0 0
\(231\) 5.93718 0.390637
\(232\) 0 0
\(233\) 6.77649 0.443943 0.221971 0.975053i \(-0.428751\pi\)
0.221971 + 0.975053i \(0.428751\pi\)
\(234\) 0 0
\(235\) −13.3410 −0.870274
\(236\) 0 0
\(237\) 23.2327 1.50913
\(238\) 0 0
\(239\) −17.8035 −1.15161 −0.575807 0.817586i \(-0.695312\pi\)
−0.575807 + 0.817586i \(0.695312\pi\)
\(240\) 0 0
\(241\) 16.9019 1.08875 0.544373 0.838843i \(-0.316768\pi\)
0.544373 + 0.838843i \(0.316768\pi\)
\(242\) 0 0
\(243\) 2.97119 0.190602
\(244\) 0 0
\(245\) 11.0804 0.707899
\(246\) 0 0
\(247\) −4.60764 −0.293177
\(248\) 0 0
\(249\) −25.3362 −1.60561
\(250\) 0 0
\(251\) −23.7083 −1.49645 −0.748226 0.663444i \(-0.769094\pi\)
−0.748226 + 0.663444i \(0.769094\pi\)
\(252\) 0 0
\(253\) 7.43020 0.467133
\(254\) 0 0
\(255\) 13.8231 0.865634
\(256\) 0 0
\(257\) 1.23002 0.0767263 0.0383632 0.999264i \(-0.487786\pi\)
0.0383632 + 0.999264i \(0.487786\pi\)
\(258\) 0 0
\(259\) −9.64094 −0.599059
\(260\) 0 0
\(261\) 0.346950 0.0214756
\(262\) 0 0
\(263\) 8.29315 0.511377 0.255689 0.966759i \(-0.417698\pi\)
0.255689 + 0.966759i \(0.417698\pi\)
\(264\) 0 0
\(265\) 18.2461 1.12085
\(266\) 0 0
\(267\) 10.8538 0.664239
\(268\) 0 0
\(269\) 20.8457 1.27098 0.635492 0.772108i \(-0.280797\pi\)
0.635492 + 0.772108i \(0.280797\pi\)
\(270\) 0 0
\(271\) 8.06428 0.489870 0.244935 0.969539i \(-0.421233\pi\)
0.244935 + 0.969539i \(0.421233\pi\)
\(272\) 0 0
\(273\) −27.3564 −1.65568
\(274\) 0 0
\(275\) −1.58121 −0.0953503
\(276\) 0 0
\(277\) −8.94531 −0.537472 −0.268736 0.963214i \(-0.586606\pi\)
−0.268736 + 0.963214i \(0.586606\pi\)
\(278\) 0 0
\(279\) 2.34406 0.140335
\(280\) 0 0
\(281\) −5.65424 −0.337304 −0.168652 0.985676i \(-0.553941\pi\)
−0.168652 + 0.985676i \(0.553941\pi\)
\(282\) 0 0
\(283\) 28.2519 1.67940 0.839700 0.543051i \(-0.182731\pi\)
0.839700 + 0.543051i \(0.182731\pi\)
\(284\) 0 0
\(285\) 3.04556 0.180404
\(286\) 0 0
\(287\) −38.4151 −2.26757
\(288\) 0 0
\(289\) 3.60029 0.211782
\(290\) 0 0
\(291\) −21.2341 −1.24476
\(292\) 0 0
\(293\) 3.67042 0.214428 0.107214 0.994236i \(-0.465807\pi\)
0.107214 + 0.994236i \(0.465807\pi\)
\(294\) 0 0
\(295\) −14.0744 −0.819442
\(296\) 0 0
\(297\) −5.41403 −0.314154
\(298\) 0 0
\(299\) −34.2357 −1.97990
\(300\) 0 0
\(301\) 27.3267 1.57508
\(302\) 0 0
\(303\) 1.55237 0.0891816
\(304\) 0 0
\(305\) 24.2126 1.38641
\(306\) 0 0
\(307\) 9.06344 0.517278 0.258639 0.965974i \(-0.416726\pi\)
0.258639 + 0.965974i \(0.416726\pi\)
\(308\) 0 0
\(309\) −17.3586 −0.987494
\(310\) 0 0
\(311\) −15.7300 −0.891968 −0.445984 0.895041i \(-0.647146\pi\)
−0.445984 + 0.895041i \(0.647146\pi\)
\(312\) 0 0
\(313\) −4.58157 −0.258966 −0.129483 0.991582i \(-0.541332\pi\)
−0.129483 + 0.991582i \(0.541332\pi\)
\(314\) 0 0
\(315\) −1.91226 −0.107743
\(316\) 0 0
\(317\) −5.37416 −0.301843 −0.150921 0.988546i \(-0.548224\pi\)
−0.150921 + 0.988546i \(0.548224\pi\)
\(318\) 0 0
\(319\) −1.20922 −0.0677034
\(320\) 0 0
\(321\) 11.6044 0.647693
\(322\) 0 0
\(323\) 4.53875 0.252543
\(324\) 0 0
\(325\) 7.28563 0.404134
\(326\) 0 0
\(327\) −16.8133 −0.929779
\(328\) 0 0
\(329\) −26.0077 −1.43385
\(330\) 0 0
\(331\) 14.7794 0.812349 0.406174 0.913796i \(-0.366863\pi\)
0.406174 + 0.913796i \(0.366863\pi\)
\(332\) 0 0
\(333\) 0.767417 0.0420542
\(334\) 0 0
\(335\) 17.3413 0.947459
\(336\) 0 0
\(337\) 12.3056 0.670331 0.335165 0.942159i \(-0.391208\pi\)
0.335165 + 0.942159i \(0.391208\pi\)
\(338\) 0 0
\(339\) 6.31663 0.343072
\(340\) 0 0
\(341\) −8.16972 −0.442415
\(342\) 0 0
\(343\) −3.63108 −0.196060
\(344\) 0 0
\(345\) 22.6292 1.21831
\(346\) 0 0
\(347\) 16.6446 0.893530 0.446765 0.894651i \(-0.352576\pi\)
0.446765 + 0.894651i \(0.352576\pi\)
\(348\) 0 0
\(349\) −12.8958 −0.690297 −0.345149 0.938548i \(-0.612171\pi\)
−0.345149 + 0.938548i \(0.612171\pi\)
\(350\) 0 0
\(351\) 24.9459 1.33151
\(352\) 0 0
\(353\) 9.50692 0.506003 0.253001 0.967466i \(-0.418582\pi\)
0.253001 + 0.967466i \(0.418582\pi\)
\(354\) 0 0
\(355\) −20.2307 −1.07373
\(356\) 0 0
\(357\) 26.9474 1.42621
\(358\) 0 0
\(359\) 19.5140 1.02991 0.514954 0.857218i \(-0.327809\pi\)
0.514954 + 0.857218i \(0.327809\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 1.64714 0.0864526
\(364\) 0 0
\(365\) 15.1066 0.790713
\(366\) 0 0
\(367\) −26.2094 −1.36812 −0.684060 0.729425i \(-0.739788\pi\)
−0.684060 + 0.729425i \(0.739788\pi\)
\(368\) 0 0
\(369\) 3.05784 0.159185
\(370\) 0 0
\(371\) 35.5700 1.84670
\(372\) 0 0
\(373\) 15.3119 0.792821 0.396410 0.918073i \(-0.370256\pi\)
0.396410 + 0.918073i \(0.370256\pi\)
\(374\) 0 0
\(375\) −20.0435 −1.03504
\(376\) 0 0
\(377\) 5.57166 0.286955
\(378\) 0 0
\(379\) −11.9993 −0.616361 −0.308180 0.951328i \(-0.599720\pi\)
−0.308180 + 0.951328i \(0.599720\pi\)
\(380\) 0 0
\(381\) 17.6100 0.902190
\(382\) 0 0
\(383\) 27.5695 1.40874 0.704369 0.709834i \(-0.251230\pi\)
0.704369 + 0.709834i \(0.251230\pi\)
\(384\) 0 0
\(385\) 6.66477 0.339668
\(386\) 0 0
\(387\) −2.17520 −0.110572
\(388\) 0 0
\(389\) −26.3579 −1.33640 −0.668198 0.743983i \(-0.732934\pi\)
−0.668198 + 0.743983i \(0.732934\pi\)
\(390\) 0 0
\(391\) 33.7239 1.70549
\(392\) 0 0
\(393\) −16.9344 −0.854226
\(394\) 0 0
\(395\) 26.0799 1.31222
\(396\) 0 0
\(397\) −14.6384 −0.734683 −0.367341 0.930086i \(-0.619732\pi\)
−0.367341 + 0.930086i \(0.619732\pi\)
\(398\) 0 0
\(399\) 5.93718 0.297231
\(400\) 0 0
\(401\) 0.884350 0.0441623 0.0220812 0.999756i \(-0.492971\pi\)
0.0220812 + 0.999756i \(0.492971\pi\)
\(402\) 0 0
\(403\) 37.6432 1.87514
\(404\) 0 0
\(405\) −14.8972 −0.740249
\(406\) 0 0
\(407\) −2.67467 −0.132579
\(408\) 0 0
\(409\) 21.6864 1.07233 0.536163 0.844115i \(-0.319873\pi\)
0.536163 + 0.844115i \(0.319873\pi\)
\(410\) 0 0
\(411\) 8.49110 0.418835
\(412\) 0 0
\(413\) −27.4373 −1.35010
\(414\) 0 0
\(415\) −28.4411 −1.39612
\(416\) 0 0
\(417\) 3.68483 0.180447
\(418\) 0 0
\(419\) 29.6191 1.44699 0.723494 0.690331i \(-0.242535\pi\)
0.723494 + 0.690331i \(0.242535\pi\)
\(420\) 0 0
\(421\) 33.1830 1.61724 0.808621 0.588329i \(-0.200214\pi\)
0.808621 + 0.588329i \(0.200214\pi\)
\(422\) 0 0
\(423\) 2.07021 0.100657
\(424\) 0 0
\(425\) −7.17671 −0.348121
\(426\) 0 0
\(427\) 47.2012 2.28423
\(428\) 0 0
\(429\) −7.58945 −0.366422
\(430\) 0 0
\(431\) −5.37951 −0.259122 −0.129561 0.991571i \(-0.541357\pi\)
−0.129561 + 0.991571i \(0.541357\pi\)
\(432\) 0 0
\(433\) 32.5638 1.56491 0.782457 0.622704i \(-0.213966\pi\)
0.782457 + 0.622704i \(0.213966\pi\)
\(434\) 0 0
\(435\) −3.68276 −0.176575
\(436\) 0 0
\(437\) 7.43020 0.355435
\(438\) 0 0
\(439\) 25.6281 1.22316 0.611580 0.791182i \(-0.290534\pi\)
0.611580 + 0.791182i \(0.290534\pi\)
\(440\) 0 0
\(441\) −1.71941 −0.0818765
\(442\) 0 0
\(443\) 9.87249 0.469056 0.234528 0.972109i \(-0.424645\pi\)
0.234528 + 0.972109i \(0.424645\pi\)
\(444\) 0 0
\(445\) 12.1839 0.577571
\(446\) 0 0
\(447\) −22.5728 −1.06766
\(448\) 0 0
\(449\) −1.43358 −0.0676550 −0.0338275 0.999428i \(-0.510770\pi\)
−0.0338275 + 0.999428i \(0.510770\pi\)
\(450\) 0 0
\(451\) −10.6575 −0.501840
\(452\) 0 0
\(453\) −27.0823 −1.27244
\(454\) 0 0
\(455\) −30.7089 −1.43965
\(456\) 0 0
\(457\) −1.81542 −0.0849217 −0.0424609 0.999098i \(-0.513520\pi\)
−0.0424609 + 0.999098i \(0.513520\pi\)
\(458\) 0 0
\(459\) −24.5729 −1.14697
\(460\) 0 0
\(461\) −30.3391 −1.41303 −0.706517 0.707696i \(-0.749735\pi\)
−0.706517 + 0.707696i \(0.749735\pi\)
\(462\) 0 0
\(463\) −24.1414 −1.12195 −0.560974 0.827833i \(-0.689573\pi\)
−0.560974 + 0.827833i \(0.689573\pi\)
\(464\) 0 0
\(465\) −24.8814 −1.15385
\(466\) 0 0
\(467\) 13.7532 0.636421 0.318210 0.948020i \(-0.396918\pi\)
0.318210 + 0.948020i \(0.396918\pi\)
\(468\) 0 0
\(469\) 33.8061 1.56102
\(470\) 0 0
\(471\) −35.3851 −1.63046
\(472\) 0 0
\(473\) 7.58121 0.348584
\(474\) 0 0
\(475\) −1.58121 −0.0725507
\(476\) 0 0
\(477\) −2.83136 −0.129639
\(478\) 0 0
\(479\) −19.1851 −0.876588 −0.438294 0.898832i \(-0.644417\pi\)
−0.438294 + 0.898832i \(0.644417\pi\)
\(480\) 0 0
\(481\) 12.3239 0.561923
\(482\) 0 0
\(483\) 44.1144 2.00728
\(484\) 0 0
\(485\) −23.8363 −1.08235
\(486\) 0 0
\(487\) 14.3820 0.651711 0.325855 0.945420i \(-0.394348\pi\)
0.325855 + 0.945420i \(0.394348\pi\)
\(488\) 0 0
\(489\) 28.2157 1.27596
\(490\) 0 0
\(491\) 32.7834 1.47950 0.739748 0.672885i \(-0.234945\pi\)
0.739748 + 0.672885i \(0.234945\pi\)
\(492\) 0 0
\(493\) −5.48836 −0.247183
\(494\) 0 0
\(495\) −0.530515 −0.0238449
\(496\) 0 0
\(497\) −39.4387 −1.76907
\(498\) 0 0
\(499\) −7.89797 −0.353562 −0.176781 0.984250i \(-0.556568\pi\)
−0.176781 + 0.984250i \(0.556568\pi\)
\(500\) 0 0
\(501\) −31.0951 −1.38923
\(502\) 0 0
\(503\) −2.50370 −0.111634 −0.0558172 0.998441i \(-0.517776\pi\)
−0.0558172 + 0.998441i \(0.517776\pi\)
\(504\) 0 0
\(505\) 1.74262 0.0775454
\(506\) 0 0
\(507\) 13.5566 0.602069
\(508\) 0 0
\(509\) 28.5076 1.26358 0.631788 0.775142i \(-0.282321\pi\)
0.631788 + 0.775142i \(0.282321\pi\)
\(510\) 0 0
\(511\) 29.4495 1.30277
\(512\) 0 0
\(513\) −5.41403 −0.239035
\(514\) 0 0
\(515\) −19.4858 −0.858649
\(516\) 0 0
\(517\) −7.21528 −0.317328
\(518\) 0 0
\(519\) 16.1384 0.708396
\(520\) 0 0
\(521\) 33.6574 1.47456 0.737279 0.675588i \(-0.236110\pi\)
0.737279 + 0.675588i \(0.236110\pi\)
\(522\) 0 0
\(523\) 17.2318 0.753492 0.376746 0.926317i \(-0.377043\pi\)
0.376746 + 0.926317i \(0.377043\pi\)
\(524\) 0 0
\(525\) −9.38790 −0.409721
\(526\) 0 0
\(527\) −37.0804 −1.61525
\(528\) 0 0
\(529\) 32.2079 1.40034
\(530\) 0 0
\(531\) 2.18400 0.0947777
\(532\) 0 0
\(533\) 49.1058 2.12701
\(534\) 0 0
\(535\) 13.0265 0.563184
\(536\) 0 0
\(537\) −15.7290 −0.678754
\(538\) 0 0
\(539\) 5.99263 0.258121
\(540\) 0 0
\(541\) 41.6025 1.78863 0.894315 0.447438i \(-0.147663\pi\)
0.894315 + 0.447438i \(0.147663\pi\)
\(542\) 0 0
\(543\) 34.4457 1.47821
\(544\) 0 0
\(545\) −18.8738 −0.808464
\(546\) 0 0
\(547\) 0.872294 0.0372966 0.0186483 0.999826i \(-0.494064\pi\)
0.0186483 + 0.999826i \(0.494064\pi\)
\(548\) 0 0
\(549\) −3.75721 −0.160354
\(550\) 0 0
\(551\) −1.20922 −0.0515146
\(552\) 0 0
\(553\) 50.8414 2.16200
\(554\) 0 0
\(555\) −8.14589 −0.345774
\(556\) 0 0
\(557\) −9.76642 −0.413816 −0.206908 0.978360i \(-0.566340\pi\)
−0.206908 + 0.978360i \(0.566340\pi\)
\(558\) 0 0
\(559\) −34.9315 −1.47744
\(560\) 0 0
\(561\) 7.47598 0.315636
\(562\) 0 0
\(563\) 11.0277 0.464762 0.232381 0.972625i \(-0.425348\pi\)
0.232381 + 0.972625i \(0.425348\pi\)
\(564\) 0 0
\(565\) 7.09072 0.298309
\(566\) 0 0
\(567\) −29.0414 −1.21962
\(568\) 0 0
\(569\) 5.57307 0.233635 0.116818 0.993153i \(-0.462731\pi\)
0.116818 + 0.993153i \(0.462731\pi\)
\(570\) 0 0
\(571\) −8.86690 −0.371068 −0.185534 0.982638i \(-0.559402\pi\)
−0.185534 + 0.982638i \(0.559402\pi\)
\(572\) 0 0
\(573\) −38.8441 −1.62274
\(574\) 0 0
\(575\) −11.7487 −0.489954
\(576\) 0 0
\(577\) −31.3329 −1.30440 −0.652202 0.758045i \(-0.726155\pi\)
−0.652202 + 0.758045i \(0.726155\pi\)
\(578\) 0 0
\(579\) 27.8005 1.15535
\(580\) 0 0
\(581\) −55.4445 −2.30022
\(582\) 0 0
\(583\) 9.86813 0.408696
\(584\) 0 0
\(585\) 2.44442 0.101064
\(586\) 0 0
\(587\) −19.2704 −0.795376 −0.397688 0.917521i \(-0.630187\pi\)
−0.397688 + 0.917521i \(0.630187\pi\)
\(588\) 0 0
\(589\) −8.16972 −0.336627
\(590\) 0 0
\(591\) 26.7540 1.10051
\(592\) 0 0
\(593\) −29.5232 −1.21237 −0.606186 0.795323i \(-0.707301\pi\)
−0.606186 + 0.795323i \(0.707301\pi\)
\(594\) 0 0
\(595\) 30.2497 1.24012
\(596\) 0 0
\(597\) −36.3516 −1.48777
\(598\) 0 0
\(599\) 12.5386 0.512313 0.256157 0.966635i \(-0.417544\pi\)
0.256157 + 0.966635i \(0.417544\pi\)
\(600\) 0 0
\(601\) 5.36819 0.218973 0.109486 0.993988i \(-0.465079\pi\)
0.109486 + 0.993988i \(0.465079\pi\)
\(602\) 0 0
\(603\) −2.69096 −0.109584
\(604\) 0 0
\(605\) 1.84900 0.0751725
\(606\) 0 0
\(607\) −47.5693 −1.93078 −0.965389 0.260814i \(-0.916009\pi\)
−0.965389 + 0.260814i \(0.916009\pi\)
\(608\) 0 0
\(609\) −7.17936 −0.290922
\(610\) 0 0
\(611\) 33.2455 1.34497
\(612\) 0 0
\(613\) 12.0498 0.486688 0.243344 0.969940i \(-0.421756\pi\)
0.243344 + 0.969940i \(0.421756\pi\)
\(614\) 0 0
\(615\) −32.4580 −1.30883
\(616\) 0 0
\(617\) −2.65285 −0.106800 −0.0534000 0.998573i \(-0.517006\pi\)
−0.0534000 + 0.998573i \(0.517006\pi\)
\(618\) 0 0
\(619\) 23.1495 0.930458 0.465229 0.885190i \(-0.345972\pi\)
0.465229 + 0.885190i \(0.345972\pi\)
\(620\) 0 0
\(621\) −40.2273 −1.61427
\(622\) 0 0
\(623\) 23.7519 0.951598
\(624\) 0 0
\(625\) −14.5938 −0.583750
\(626\) 0 0
\(627\) 1.64714 0.0657806
\(628\) 0 0
\(629\) −12.1397 −0.484041
\(630\) 0 0
\(631\) 20.9858 0.835433 0.417717 0.908577i \(-0.362830\pi\)
0.417717 + 0.908577i \(0.362830\pi\)
\(632\) 0 0
\(633\) −1.75217 −0.0696424
\(634\) 0 0
\(635\) 19.7681 0.784474
\(636\) 0 0
\(637\) −27.6119 −1.09402
\(638\) 0 0
\(639\) 3.13931 0.124189
\(640\) 0 0
\(641\) 23.7666 0.938724 0.469362 0.883006i \(-0.344484\pi\)
0.469362 + 0.883006i \(0.344484\pi\)
\(642\) 0 0
\(643\) 23.8230 0.939486 0.469743 0.882803i \(-0.344347\pi\)
0.469743 + 0.882803i \(0.344347\pi\)
\(644\) 0 0
\(645\) 23.0891 0.909130
\(646\) 0 0
\(647\) 25.4698 1.00132 0.500661 0.865643i \(-0.333090\pi\)
0.500661 + 0.865643i \(0.333090\pi\)
\(648\) 0 0
\(649\) −7.61190 −0.298793
\(650\) 0 0
\(651\) −48.5051 −1.90106
\(652\) 0 0
\(653\) −40.5654 −1.58745 −0.793724 0.608278i \(-0.791861\pi\)
−0.793724 + 0.608278i \(0.791861\pi\)
\(654\) 0 0
\(655\) −19.0097 −0.742769
\(656\) 0 0
\(657\) −2.34417 −0.0914549
\(658\) 0 0
\(659\) 30.3240 1.18126 0.590628 0.806944i \(-0.298880\pi\)
0.590628 + 0.806944i \(0.298880\pi\)
\(660\) 0 0
\(661\) −2.02555 −0.0787847 −0.0393923 0.999224i \(-0.512542\pi\)
−0.0393923 + 0.999224i \(0.512542\pi\)
\(662\) 0 0
\(663\) −34.4466 −1.33780
\(664\) 0 0
\(665\) 6.66477 0.258449
\(666\) 0 0
\(667\) −8.98476 −0.347891
\(668\) 0 0
\(669\) −6.34565 −0.245337
\(670\) 0 0
\(671\) 13.0950 0.505526
\(672\) 0 0
\(673\) −48.5899 −1.87300 −0.936501 0.350664i \(-0.885956\pi\)
−0.936501 + 0.350664i \(0.885956\pi\)
\(674\) 0 0
\(675\) 8.56069 0.329501
\(676\) 0 0
\(677\) −16.4471 −0.632115 −0.316057 0.948740i \(-0.602359\pi\)
−0.316057 + 0.948740i \(0.602359\pi\)
\(678\) 0 0
\(679\) −46.4676 −1.78326
\(680\) 0 0
\(681\) −2.27675 −0.0872454
\(682\) 0 0
\(683\) −5.22449 −0.199910 −0.0999549 0.994992i \(-0.531870\pi\)
−0.0999549 + 0.994992i \(0.531870\pi\)
\(684\) 0 0
\(685\) 9.53167 0.364186
\(686\) 0 0
\(687\) −7.90296 −0.301517
\(688\) 0 0
\(689\) −45.4688 −1.73222
\(690\) 0 0
\(691\) 1.93791 0.0737217 0.0368608 0.999320i \(-0.488264\pi\)
0.0368608 + 0.999320i \(0.488264\pi\)
\(692\) 0 0
\(693\) −1.03421 −0.0392865
\(694\) 0 0
\(695\) 4.13640 0.156903
\(696\) 0 0
\(697\) −48.3716 −1.83220
\(698\) 0 0
\(699\) 11.1618 0.422180
\(700\) 0 0
\(701\) −18.0143 −0.680391 −0.340196 0.940355i \(-0.610493\pi\)
−0.340196 + 0.940355i \(0.610493\pi\)
\(702\) 0 0
\(703\) −2.67467 −0.100877
\(704\) 0 0
\(705\) −21.9746 −0.827612
\(706\) 0 0
\(707\) 3.39714 0.127763
\(708\) 0 0
\(709\) 6.68923 0.251219 0.125610 0.992080i \(-0.459911\pi\)
0.125610 + 0.992080i \(0.459911\pi\)
\(710\) 0 0
\(711\) −4.04697 −0.151773
\(712\) 0 0
\(713\) −60.7027 −2.27333
\(714\) 0 0
\(715\) −8.51952 −0.318612
\(716\) 0 0
\(717\) −29.3249 −1.09516
\(718\) 0 0
\(719\) 35.4030 1.32031 0.660155 0.751129i \(-0.270490\pi\)
0.660155 + 0.751129i \(0.270490\pi\)
\(720\) 0 0
\(721\) −37.9867 −1.41470
\(722\) 0 0
\(723\) 27.8398 1.03537
\(724\) 0 0
\(725\) 1.91203 0.0710109
\(726\) 0 0
\(727\) 30.7973 1.14221 0.571104 0.820878i \(-0.306515\pi\)
0.571104 + 0.820878i \(0.306515\pi\)
\(728\) 0 0
\(729\) 29.0647 1.07647
\(730\) 0 0
\(731\) 34.4092 1.27267
\(732\) 0 0
\(733\) 50.1274 1.85150 0.925748 0.378140i \(-0.123436\pi\)
0.925748 + 0.378140i \(0.123436\pi\)
\(734\) 0 0
\(735\) 18.2510 0.673197
\(736\) 0 0
\(737\) 9.37878 0.345472
\(738\) 0 0
\(739\) 7.52288 0.276734 0.138367 0.990381i \(-0.455815\pi\)
0.138367 + 0.990381i \(0.455815\pi\)
\(740\) 0 0
\(741\) −7.58945 −0.278805
\(742\) 0 0
\(743\) −43.3485 −1.59030 −0.795151 0.606412i \(-0.792608\pi\)
−0.795151 + 0.606412i \(0.792608\pi\)
\(744\) 0 0
\(745\) −25.3391 −0.928352
\(746\) 0 0
\(747\) 4.41337 0.161477
\(748\) 0 0
\(749\) 25.3945 0.927894
\(750\) 0 0
\(751\) −7.77361 −0.283663 −0.141832 0.989891i \(-0.545299\pi\)
−0.141832 + 0.989891i \(0.545299\pi\)
\(752\) 0 0
\(753\) −39.0509 −1.42309
\(754\) 0 0
\(755\) −30.4012 −1.10641
\(756\) 0 0
\(757\) 15.8968 0.577779 0.288890 0.957362i \(-0.406714\pi\)
0.288890 + 0.957362i \(0.406714\pi\)
\(758\) 0 0
\(759\) 12.2386 0.444233
\(760\) 0 0
\(761\) 29.6717 1.07560 0.537798 0.843073i \(-0.319256\pi\)
0.537798 + 0.843073i \(0.319256\pi\)
\(762\) 0 0
\(763\) −36.7935 −1.33201
\(764\) 0 0
\(765\) −2.40788 −0.0870569
\(766\) 0 0
\(767\) 35.0729 1.26641
\(768\) 0 0
\(769\) −24.8509 −0.896145 −0.448073 0.893997i \(-0.647889\pi\)
−0.448073 + 0.893997i \(0.647889\pi\)
\(770\) 0 0
\(771\) 2.02601 0.0729651
\(772\) 0 0
\(773\) 10.5033 0.377779 0.188890 0.981998i \(-0.439511\pi\)
0.188890 + 0.981998i \(0.439511\pi\)
\(774\) 0 0
\(775\) 12.9180 0.464029
\(776\) 0 0
\(777\) −15.8800 −0.569692
\(778\) 0 0
\(779\) −10.6575 −0.381843
\(780\) 0 0
\(781\) −10.9414 −0.391515
\(782\) 0 0
\(783\) 6.54676 0.233962
\(784\) 0 0
\(785\) −39.7215 −1.41772
\(786\) 0 0
\(787\) 14.5264 0.517809 0.258905 0.965903i \(-0.416638\pi\)
0.258905 + 0.965903i \(0.416638\pi\)
\(788\) 0 0
\(789\) 13.6600 0.486309
\(790\) 0 0
\(791\) 13.8230 0.491489
\(792\) 0 0
\(793\) −60.3370 −2.14263
\(794\) 0 0
\(795\) 30.0540 1.06591
\(796\) 0 0
\(797\) 30.5101 1.08072 0.540361 0.841433i \(-0.318288\pi\)
0.540361 + 0.841433i \(0.318288\pi\)
\(798\) 0 0
\(799\) −32.7484 −1.15856
\(800\) 0 0
\(801\) −1.89064 −0.0668026
\(802\) 0 0
\(803\) 8.17013 0.288318
\(804\) 0 0
\(805\) 49.5206 1.74537
\(806\) 0 0
\(807\) 34.3358 1.20868
\(808\) 0 0
\(809\) −3.17703 −0.111698 −0.0558492 0.998439i \(-0.517787\pi\)
−0.0558492 + 0.998439i \(0.517787\pi\)
\(810\) 0 0
\(811\) 17.0867 0.599994 0.299997 0.953940i \(-0.403014\pi\)
0.299997 + 0.953940i \(0.403014\pi\)
\(812\) 0 0
\(813\) 13.2830 0.465856
\(814\) 0 0
\(815\) 31.6734 1.10947
\(816\) 0 0
\(817\) 7.58121 0.265233
\(818\) 0 0
\(819\) 4.76528 0.166512
\(820\) 0 0
\(821\) −13.5078 −0.471425 −0.235713 0.971823i \(-0.575742\pi\)
−0.235713 + 0.971823i \(0.575742\pi\)
\(822\) 0 0
\(823\) 8.83242 0.307879 0.153939 0.988080i \(-0.450804\pi\)
0.153939 + 0.988080i \(0.450804\pi\)
\(824\) 0 0
\(825\) −2.60447 −0.0906761
\(826\) 0 0
\(827\) 3.46414 0.120460 0.0602299 0.998185i \(-0.480817\pi\)
0.0602299 + 0.998185i \(0.480817\pi\)
\(828\) 0 0
\(829\) 42.5694 1.47850 0.739249 0.673433i \(-0.235181\pi\)
0.739249 + 0.673433i \(0.235181\pi\)
\(830\) 0 0
\(831\) −14.7342 −0.511124
\(832\) 0 0
\(833\) 27.1991 0.942393
\(834\) 0 0
\(835\) −34.9057 −1.20796
\(836\) 0 0
\(837\) 44.2311 1.52885
\(838\) 0 0
\(839\) −18.5545 −0.640573 −0.320287 0.947321i \(-0.603779\pi\)
−0.320287 + 0.947321i \(0.603779\pi\)
\(840\) 0 0
\(841\) −27.5378 −0.949579
\(842\) 0 0
\(843\) −9.31335 −0.320769
\(844\) 0 0
\(845\) 15.2179 0.523513
\(846\) 0 0
\(847\) 3.60453 0.123853
\(848\) 0 0
\(849\) 46.5349 1.59707
\(850\) 0 0
\(851\) −19.8734 −0.681250
\(852\) 0 0
\(853\) 19.0092 0.650863 0.325431 0.945566i \(-0.394491\pi\)
0.325431 + 0.945566i \(0.394491\pi\)
\(854\) 0 0
\(855\) −0.530515 −0.0181432
\(856\) 0 0
\(857\) −8.84122 −0.302010 −0.151005 0.988533i \(-0.548251\pi\)
−0.151005 + 0.988533i \(0.548251\pi\)
\(858\) 0 0
\(859\) −15.6032 −0.532375 −0.266188 0.963921i \(-0.585764\pi\)
−0.266188 + 0.963921i \(0.585764\pi\)
\(860\) 0 0
\(861\) −63.2752 −2.15641
\(862\) 0 0
\(863\) −27.2438 −0.927388 −0.463694 0.885995i \(-0.653476\pi\)
−0.463694 + 0.885995i \(0.653476\pi\)
\(864\) 0 0
\(865\) 18.1161 0.615966
\(866\) 0 0
\(867\) 5.93020 0.201400
\(868\) 0 0
\(869\) 14.1049 0.478475
\(870\) 0 0
\(871\) −43.2141 −1.46425
\(872\) 0 0
\(873\) 3.69881 0.125186
\(874\) 0 0
\(875\) −43.8622 −1.48281
\(876\) 0 0
\(877\) 1.09546 0.0369910 0.0184955 0.999829i \(-0.494112\pi\)
0.0184955 + 0.999829i \(0.494112\pi\)
\(878\) 0 0
\(879\) 6.04571 0.203917
\(880\) 0 0
\(881\) 31.6772 1.06723 0.533615 0.845727i \(-0.320833\pi\)
0.533615 + 0.845727i \(0.320833\pi\)
\(882\) 0 0
\(883\) 12.3127 0.414355 0.207178 0.978303i \(-0.433572\pi\)
0.207178 + 0.978303i \(0.433572\pi\)
\(884\) 0 0
\(885\) −23.1825 −0.779272
\(886\) 0 0
\(887\) −37.3490 −1.25406 −0.627029 0.778996i \(-0.715729\pi\)
−0.627029 + 0.778996i \(0.715729\pi\)
\(888\) 0 0
\(889\) 38.5370 1.29249
\(890\) 0 0
\(891\) −8.05692 −0.269917
\(892\) 0 0
\(893\) −7.21528 −0.241450
\(894\) 0 0
\(895\) −17.6565 −0.590192
\(896\) 0 0
\(897\) −56.3911 −1.88285
\(898\) 0 0
\(899\) 9.87900 0.329483
\(900\) 0 0
\(901\) 44.7890 1.49214
\(902\) 0 0
\(903\) 45.0110 1.49787
\(904\) 0 0
\(905\) 38.6670 1.28533
\(906\) 0 0
\(907\) 15.3443 0.509498 0.254749 0.967007i \(-0.418007\pi\)
0.254749 + 0.967007i \(0.418007\pi\)
\(908\) 0 0
\(909\) −0.270412 −0.00896900
\(910\) 0 0
\(911\) 34.4470 1.14128 0.570641 0.821200i \(-0.306695\pi\)
0.570641 + 0.821200i \(0.306695\pi\)
\(912\) 0 0
\(913\) −15.3819 −0.509066
\(914\) 0 0
\(915\) 39.8816 1.31844
\(916\) 0 0
\(917\) −37.0584 −1.22378
\(918\) 0 0
\(919\) −10.1740 −0.335608 −0.167804 0.985820i \(-0.553668\pi\)
−0.167804 + 0.985820i \(0.553668\pi\)
\(920\) 0 0
\(921\) 14.9288 0.491920
\(922\) 0 0
\(923\) 50.4142 1.65940
\(924\) 0 0
\(925\) 4.22921 0.139056
\(926\) 0 0
\(927\) 3.02373 0.0993124
\(928\) 0 0
\(929\) 11.8942 0.390235 0.195117 0.980780i \(-0.437491\pi\)
0.195117 + 0.980780i \(0.437491\pi\)
\(930\) 0 0
\(931\) 5.99263 0.196401
\(932\) 0 0
\(933\) −25.9096 −0.848242
\(934\) 0 0
\(935\) 8.39215 0.274453
\(936\) 0 0
\(937\) −24.9975 −0.816634 −0.408317 0.912840i \(-0.633884\pi\)
−0.408317 + 0.912840i \(0.633884\pi\)
\(938\) 0 0
\(939\) −7.54650 −0.246271
\(940\) 0 0
\(941\) 0.255522 0.00832978 0.00416489 0.999991i \(-0.498674\pi\)
0.00416489 + 0.999991i \(0.498674\pi\)
\(942\) 0 0
\(943\) −79.1871 −2.57869
\(944\) 0 0
\(945\) −36.0832 −1.17379
\(946\) 0 0
\(947\) −54.7242 −1.77830 −0.889149 0.457618i \(-0.848703\pi\)
−0.889149 + 0.457618i \(0.848703\pi\)
\(948\) 0 0
\(949\) −37.6450 −1.22201
\(950\) 0 0
\(951\) −8.85201 −0.287046
\(952\) 0 0
\(953\) 2.40355 0.0778587 0.0389293 0.999242i \(-0.487605\pi\)
0.0389293 + 0.999242i \(0.487605\pi\)
\(954\) 0 0
\(955\) −43.6044 −1.41100
\(956\) 0 0
\(957\) −1.99176 −0.0643845
\(958\) 0 0
\(959\) 18.5815 0.600028
\(960\) 0 0
\(961\) 35.7443 1.15304
\(962\) 0 0
\(963\) −2.02140 −0.0651386
\(964\) 0 0
\(965\) 31.2075 1.00460
\(966\) 0 0
\(967\) 38.0910 1.22492 0.612462 0.790500i \(-0.290179\pi\)
0.612462 + 0.790500i \(0.290179\pi\)
\(968\) 0 0
\(969\) 7.47598 0.240163
\(970\) 0 0
\(971\) −47.2442 −1.51614 −0.758069 0.652175i \(-0.773857\pi\)
−0.758069 + 0.652175i \(0.773857\pi\)
\(972\) 0 0
\(973\) 8.06370 0.258510
\(974\) 0 0
\(975\) 12.0005 0.384323
\(976\) 0 0
\(977\) 4.37638 0.140013 0.0700065 0.997547i \(-0.477698\pi\)
0.0700065 + 0.997547i \(0.477698\pi\)
\(978\) 0 0
\(979\) 6.58945 0.210600
\(980\) 0 0
\(981\) 2.92875 0.0935080
\(982\) 0 0
\(983\) 38.8315 1.23853 0.619266 0.785181i \(-0.287430\pi\)
0.619266 + 0.785181i \(0.287430\pi\)
\(984\) 0 0
\(985\) 30.0326 0.956919
\(986\) 0 0
\(987\) −42.8384 −1.36356
\(988\) 0 0
\(989\) 56.3299 1.79119
\(990\) 0 0
\(991\) −16.7975 −0.533591 −0.266795 0.963753i \(-0.585965\pi\)
−0.266795 + 0.963753i \(0.585965\pi\)
\(992\) 0 0
\(993\) 24.3438 0.772526
\(994\) 0 0
\(995\) −40.8064 −1.29365
\(996\) 0 0
\(997\) −41.1556 −1.30341 −0.651706 0.758471i \(-0.725946\pi\)
−0.651706 + 0.758471i \(0.725946\pi\)
\(998\) 0 0
\(999\) 14.4807 0.458151
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 836.2.a.d.1.5 6
3.2 odd 2 7524.2.a.r.1.3 6
4.3 odd 2 3344.2.a.x.1.2 6
11.10 odd 2 9196.2.a.k.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.a.d.1.5 6 1.1 even 1 trivial
3344.2.a.x.1.2 6 4.3 odd 2
7524.2.a.r.1.3 6 3.2 odd 2
9196.2.a.k.1.5 6 11.10 odd 2