Properties

Label 8330.2.a.cv.1.9
Level $8330$
Weight $2$
Character 8330.1
Self dual yes
Analytic conductor $66.515$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,10,-2,10,-10,-2,0,10,12,-10,-2,-2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 19x^{8} + 38x^{7} + 100x^{6} - 194x^{5} - 151x^{4} + 282x^{3} + 85x^{2} - 108x - 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-2.34515\) of defining polynomial
Character \(\chi\) \(=\) 8330.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.34515 q^{3} +1.00000 q^{4} -1.00000 q^{5} +2.34515 q^{6} +1.00000 q^{8} +2.49972 q^{9} -1.00000 q^{10} +3.95825 q^{11} +2.34515 q^{12} +0.841221 q^{13} -2.34515 q^{15} +1.00000 q^{16} -1.00000 q^{17} +2.49972 q^{18} -5.96603 q^{19} -1.00000 q^{20} +3.95825 q^{22} +4.78411 q^{23} +2.34515 q^{24} +1.00000 q^{25} +0.841221 q^{26} -1.17324 q^{27} -2.06380 q^{29} -2.34515 q^{30} +4.26909 q^{31} +1.00000 q^{32} +9.28267 q^{33} -1.00000 q^{34} +2.49972 q^{36} +6.03766 q^{37} -5.96603 q^{38} +1.97279 q^{39} -1.00000 q^{40} +6.18647 q^{41} +6.35786 q^{43} +3.95825 q^{44} -2.49972 q^{45} +4.78411 q^{46} +7.70954 q^{47} +2.34515 q^{48} +1.00000 q^{50} -2.34515 q^{51} +0.841221 q^{52} +10.0922 q^{53} -1.17324 q^{54} -3.95825 q^{55} -13.9912 q^{57} -2.06380 q^{58} -4.36748 q^{59} -2.34515 q^{60} -10.8522 q^{61} +4.26909 q^{62} +1.00000 q^{64} -0.841221 q^{65} +9.28267 q^{66} +2.44661 q^{67} -1.00000 q^{68} +11.2194 q^{69} -16.1776 q^{71} +2.49972 q^{72} +10.1451 q^{73} +6.03766 q^{74} +2.34515 q^{75} -5.96603 q^{76} +1.97279 q^{78} +1.91492 q^{79} -1.00000 q^{80} -10.2506 q^{81} +6.18647 q^{82} -5.72752 q^{83} +1.00000 q^{85} +6.35786 q^{86} -4.83992 q^{87} +3.95825 q^{88} +14.0692 q^{89} -2.49972 q^{90} +4.78411 q^{92} +10.0117 q^{93} +7.70954 q^{94} +5.96603 q^{95} +2.34515 q^{96} +1.10161 q^{97} +9.89449 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{2} - 2 q^{3} + 10 q^{4} - 10 q^{5} - 2 q^{6} + 10 q^{8} + 12 q^{9} - 10 q^{10} - 2 q^{11} - 2 q^{12} - 4 q^{13} + 2 q^{15} + 10 q^{16} - 10 q^{17} + 12 q^{18} - 14 q^{19} - 10 q^{20} - 2 q^{22}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.34515 1.35397 0.676986 0.735996i \(-0.263286\pi\)
0.676986 + 0.735996i \(0.263286\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 2.34515 0.957402
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 2.49972 0.833239
\(10\) −1.00000 −0.316228
\(11\) 3.95825 1.19346 0.596728 0.802444i \(-0.296467\pi\)
0.596728 + 0.802444i \(0.296467\pi\)
\(12\) 2.34515 0.676986
\(13\) 0.841221 0.233313 0.116656 0.993172i \(-0.462782\pi\)
0.116656 + 0.993172i \(0.462782\pi\)
\(14\) 0 0
\(15\) −2.34515 −0.605514
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 2.49972 0.589189
\(19\) −5.96603 −1.36870 −0.684350 0.729153i \(-0.739914\pi\)
−0.684350 + 0.729153i \(0.739914\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 3.95825 0.843901
\(23\) 4.78411 0.997555 0.498778 0.866730i \(-0.333782\pi\)
0.498778 + 0.866730i \(0.333782\pi\)
\(24\) 2.34515 0.478701
\(25\) 1.00000 0.200000
\(26\) 0.841221 0.164977
\(27\) −1.17324 −0.225790
\(28\) 0 0
\(29\) −2.06380 −0.383239 −0.191619 0.981469i \(-0.561374\pi\)
−0.191619 + 0.981469i \(0.561374\pi\)
\(30\) −2.34515 −0.428163
\(31\) 4.26909 0.766752 0.383376 0.923592i \(-0.374761\pi\)
0.383376 + 0.923592i \(0.374761\pi\)
\(32\) 1.00000 0.176777
\(33\) 9.28267 1.61591
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 2.49972 0.416619
\(37\) 6.03766 0.992586 0.496293 0.868155i \(-0.334694\pi\)
0.496293 + 0.868155i \(0.334694\pi\)
\(38\) −5.96603 −0.967818
\(39\) 1.97279 0.315899
\(40\) −1.00000 −0.158114
\(41\) 6.18647 0.966164 0.483082 0.875575i \(-0.339517\pi\)
0.483082 + 0.875575i \(0.339517\pi\)
\(42\) 0 0
\(43\) 6.35786 0.969565 0.484783 0.874635i \(-0.338899\pi\)
0.484783 + 0.874635i \(0.338899\pi\)
\(44\) 3.95825 0.596728
\(45\) −2.49972 −0.372636
\(46\) 4.78411 0.705378
\(47\) 7.70954 1.12455 0.562276 0.826949i \(-0.309926\pi\)
0.562276 + 0.826949i \(0.309926\pi\)
\(48\) 2.34515 0.338493
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) −2.34515 −0.328386
\(52\) 0.841221 0.116656
\(53\) 10.0922 1.38628 0.693138 0.720805i \(-0.256228\pi\)
0.693138 + 0.720805i \(0.256228\pi\)
\(54\) −1.17324 −0.159658
\(55\) −3.95825 −0.533730
\(56\) 0 0
\(57\) −13.9912 −1.85318
\(58\) −2.06380 −0.270991
\(59\) −4.36748 −0.568597 −0.284299 0.958736i \(-0.591761\pi\)
−0.284299 + 0.958736i \(0.591761\pi\)
\(60\) −2.34515 −0.302757
\(61\) −10.8522 −1.38948 −0.694739 0.719262i \(-0.744480\pi\)
−0.694739 + 0.719262i \(0.744480\pi\)
\(62\) 4.26909 0.542175
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.841221 −0.104341
\(66\) 9.28267 1.14262
\(67\) 2.44661 0.298901 0.149451 0.988769i \(-0.452250\pi\)
0.149451 + 0.988769i \(0.452250\pi\)
\(68\) −1.00000 −0.121268
\(69\) 11.2194 1.35066
\(70\) 0 0
\(71\) −16.1776 −1.91992 −0.959962 0.280130i \(-0.909622\pi\)
−0.959962 + 0.280130i \(0.909622\pi\)
\(72\) 2.49972 0.294594
\(73\) 10.1451 1.18739 0.593697 0.804689i \(-0.297668\pi\)
0.593697 + 0.804689i \(0.297668\pi\)
\(74\) 6.03766 0.701864
\(75\) 2.34515 0.270794
\(76\) −5.96603 −0.684350
\(77\) 0 0
\(78\) 1.97279 0.223374
\(79\) 1.91492 0.215445 0.107723 0.994181i \(-0.465644\pi\)
0.107723 + 0.994181i \(0.465644\pi\)
\(80\) −1.00000 −0.111803
\(81\) −10.2506 −1.13895
\(82\) 6.18647 0.683181
\(83\) −5.72752 −0.628677 −0.314338 0.949311i \(-0.601783\pi\)
−0.314338 + 0.949311i \(0.601783\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 6.35786 0.685586
\(87\) −4.83992 −0.518894
\(88\) 3.95825 0.421950
\(89\) 14.0692 1.49134 0.745668 0.666317i \(-0.232130\pi\)
0.745668 + 0.666317i \(0.232130\pi\)
\(90\) −2.49972 −0.263493
\(91\) 0 0
\(92\) 4.78411 0.498778
\(93\) 10.0117 1.03816
\(94\) 7.70954 0.795179
\(95\) 5.96603 0.612102
\(96\) 2.34515 0.239351
\(97\) 1.10161 0.111852 0.0559258 0.998435i \(-0.482189\pi\)
0.0559258 + 0.998435i \(0.482189\pi\)
\(98\) 0 0
\(99\) 9.89449 0.994434
\(100\) 1.00000 0.100000
\(101\) −8.17811 −0.813752 −0.406876 0.913483i \(-0.633382\pi\)
−0.406876 + 0.913483i \(0.633382\pi\)
\(102\) −2.34515 −0.232204
\(103\) 12.8886 1.26995 0.634976 0.772531i \(-0.281010\pi\)
0.634976 + 0.772531i \(0.281010\pi\)
\(104\) 0.841221 0.0824885
\(105\) 0 0
\(106\) 10.0922 0.980244
\(107\) 6.14230 0.593798 0.296899 0.954909i \(-0.404047\pi\)
0.296899 + 0.954909i \(0.404047\pi\)
\(108\) −1.17324 −0.112895
\(109\) 0.718456 0.0688156 0.0344078 0.999408i \(-0.489045\pi\)
0.0344078 + 0.999408i \(0.489045\pi\)
\(110\) −3.95825 −0.377404
\(111\) 14.1592 1.34393
\(112\) 0 0
\(113\) 15.9603 1.50142 0.750710 0.660632i \(-0.229712\pi\)
0.750710 + 0.660632i \(0.229712\pi\)
\(114\) −13.9912 −1.31040
\(115\) −4.78411 −0.446120
\(116\) −2.06380 −0.191619
\(117\) 2.10281 0.194405
\(118\) −4.36748 −0.402059
\(119\) 0 0
\(120\) −2.34515 −0.214082
\(121\) 4.66771 0.424338
\(122\) −10.8522 −0.982509
\(123\) 14.5082 1.30816
\(124\) 4.26909 0.383376
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −4.04237 −0.358702 −0.179351 0.983785i \(-0.557400\pi\)
−0.179351 + 0.983785i \(0.557400\pi\)
\(128\) 1.00000 0.0883883
\(129\) 14.9101 1.31276
\(130\) −0.841221 −0.0737799
\(131\) 11.5774 1.01152 0.505762 0.862673i \(-0.331212\pi\)
0.505762 + 0.862673i \(0.331212\pi\)
\(132\) 9.28267 0.807953
\(133\) 0 0
\(134\) 2.44661 0.211355
\(135\) 1.17324 0.100976
\(136\) −1.00000 −0.0857493
\(137\) 1.69633 0.144927 0.0724634 0.997371i \(-0.476914\pi\)
0.0724634 + 0.997371i \(0.476914\pi\)
\(138\) 11.2194 0.955062
\(139\) −13.1117 −1.11212 −0.556061 0.831141i \(-0.687688\pi\)
−0.556061 + 0.831141i \(0.687688\pi\)
\(140\) 0 0
\(141\) 18.0800 1.52261
\(142\) −16.1776 −1.35759
\(143\) 3.32976 0.278448
\(144\) 2.49972 0.208310
\(145\) 2.06380 0.171390
\(146\) 10.1451 0.839614
\(147\) 0 0
\(148\) 6.03766 0.496293
\(149\) −7.05512 −0.577978 −0.288989 0.957332i \(-0.593319\pi\)
−0.288989 + 0.957332i \(0.593319\pi\)
\(150\) 2.34515 0.191480
\(151\) 21.4470 1.74533 0.872667 0.488316i \(-0.162389\pi\)
0.872667 + 0.488316i \(0.162389\pi\)
\(152\) −5.96603 −0.483909
\(153\) −2.49972 −0.202090
\(154\) 0 0
\(155\) −4.26909 −0.342902
\(156\) 1.97279 0.157949
\(157\) −21.8380 −1.74286 −0.871431 0.490518i \(-0.836808\pi\)
−0.871431 + 0.490518i \(0.836808\pi\)
\(158\) 1.91492 0.152343
\(159\) 23.6678 1.87698
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) −10.2506 −0.805361
\(163\) −9.80190 −0.767744 −0.383872 0.923386i \(-0.625410\pi\)
−0.383872 + 0.923386i \(0.625410\pi\)
\(164\) 6.18647 0.483082
\(165\) −9.28267 −0.722655
\(166\) −5.72752 −0.444541
\(167\) −3.49467 −0.270426 −0.135213 0.990817i \(-0.543172\pi\)
−0.135213 + 0.990817i \(0.543172\pi\)
\(168\) 0 0
\(169\) −12.2923 −0.945565
\(170\) 1.00000 0.0766965
\(171\) −14.9134 −1.14045
\(172\) 6.35786 0.484783
\(173\) 6.28337 0.477716 0.238858 0.971055i \(-0.423227\pi\)
0.238858 + 0.971055i \(0.423227\pi\)
\(174\) −4.83992 −0.366914
\(175\) 0 0
\(176\) 3.95825 0.298364
\(177\) −10.2424 −0.769865
\(178\) 14.0692 1.05453
\(179\) 3.76919 0.281722 0.140861 0.990029i \(-0.455013\pi\)
0.140861 + 0.990029i \(0.455013\pi\)
\(180\) −2.49972 −0.186318
\(181\) 0.786659 0.0584719 0.0292359 0.999573i \(-0.490693\pi\)
0.0292359 + 0.999573i \(0.490693\pi\)
\(182\) 0 0
\(183\) −25.4499 −1.88131
\(184\) 4.78411 0.352689
\(185\) −6.03766 −0.443898
\(186\) 10.0117 0.734090
\(187\) −3.95825 −0.289456
\(188\) 7.70954 0.562276
\(189\) 0 0
\(190\) 5.96603 0.432821
\(191\) −24.8380 −1.79721 −0.898606 0.438755i \(-0.855419\pi\)
−0.898606 + 0.438755i \(0.855419\pi\)
\(192\) 2.34515 0.169246
\(193\) 19.5742 1.40898 0.704489 0.709715i \(-0.251176\pi\)
0.704489 + 0.709715i \(0.251176\pi\)
\(194\) 1.10161 0.0790911
\(195\) −1.97279 −0.141274
\(196\) 0 0
\(197\) 1.70467 0.121452 0.0607262 0.998154i \(-0.480658\pi\)
0.0607262 + 0.998154i \(0.480658\pi\)
\(198\) 9.89449 0.703171
\(199\) 8.43343 0.597830 0.298915 0.954280i \(-0.403375\pi\)
0.298915 + 0.954280i \(0.403375\pi\)
\(200\) 1.00000 0.0707107
\(201\) 5.73766 0.404704
\(202\) −8.17811 −0.575409
\(203\) 0 0
\(204\) −2.34515 −0.164193
\(205\) −6.18647 −0.432082
\(206\) 12.8886 0.897992
\(207\) 11.9589 0.831201
\(208\) 0.841221 0.0583282
\(209\) −23.6150 −1.63348
\(210\) 0 0
\(211\) −21.5843 −1.48593 −0.742963 0.669333i \(-0.766580\pi\)
−0.742963 + 0.669333i \(0.766580\pi\)
\(212\) 10.0922 0.693138
\(213\) −37.9388 −2.59952
\(214\) 6.14230 0.419879
\(215\) −6.35786 −0.433603
\(216\) −1.17324 −0.0798289
\(217\) 0 0
\(218\) 0.718456 0.0486600
\(219\) 23.7917 1.60770
\(220\) −3.95825 −0.266865
\(221\) −0.841221 −0.0565866
\(222\) 14.1592 0.950304
\(223\) 2.67003 0.178798 0.0893992 0.995996i \(-0.471505\pi\)
0.0893992 + 0.995996i \(0.471505\pi\)
\(224\) 0 0
\(225\) 2.49972 0.166648
\(226\) 15.9603 1.06166
\(227\) −0.283479 −0.0188152 −0.00940759 0.999956i \(-0.502995\pi\)
−0.00940759 + 0.999956i \(0.502995\pi\)
\(228\) −13.9912 −0.926591
\(229\) 7.18681 0.474918 0.237459 0.971398i \(-0.423685\pi\)
0.237459 + 0.971398i \(0.423685\pi\)
\(230\) −4.78411 −0.315455
\(231\) 0 0
\(232\) −2.06380 −0.135495
\(233\) −1.45602 −0.0953872 −0.0476936 0.998862i \(-0.515187\pi\)
−0.0476936 + 0.998862i \(0.515187\pi\)
\(234\) 2.10281 0.137465
\(235\) −7.70954 −0.502915
\(236\) −4.36748 −0.284299
\(237\) 4.49076 0.291707
\(238\) 0 0
\(239\) −0.187743 −0.0121441 −0.00607205 0.999982i \(-0.501933\pi\)
−0.00607205 + 0.999982i \(0.501933\pi\)
\(240\) −2.34515 −0.151379
\(241\) −13.6144 −0.876978 −0.438489 0.898737i \(-0.644486\pi\)
−0.438489 + 0.898737i \(0.644486\pi\)
\(242\) 4.66771 0.300052
\(243\) −20.5194 −1.31632
\(244\) −10.8522 −0.694739
\(245\) 0 0
\(246\) 14.5082 0.925007
\(247\) −5.01875 −0.319335
\(248\) 4.26909 0.271088
\(249\) −13.4319 −0.851210
\(250\) −1.00000 −0.0632456
\(251\) −14.4128 −0.909726 −0.454863 0.890561i \(-0.650312\pi\)
−0.454863 + 0.890561i \(0.650312\pi\)
\(252\) 0 0
\(253\) 18.9367 1.19054
\(254\) −4.04237 −0.253641
\(255\) 2.34515 0.146859
\(256\) 1.00000 0.0625000
\(257\) 3.67957 0.229525 0.114763 0.993393i \(-0.463389\pi\)
0.114763 + 0.993393i \(0.463389\pi\)
\(258\) 14.9101 0.928264
\(259\) 0 0
\(260\) −0.841221 −0.0521703
\(261\) −5.15892 −0.319329
\(262\) 11.5774 0.715255
\(263\) 26.7164 1.64740 0.823702 0.567023i \(-0.191905\pi\)
0.823702 + 0.567023i \(0.191905\pi\)
\(264\) 9.28267 0.571309
\(265\) −10.0922 −0.619961
\(266\) 0 0
\(267\) 32.9944 2.01923
\(268\) 2.44661 0.149451
\(269\) −15.6583 −0.954702 −0.477351 0.878713i \(-0.658403\pi\)
−0.477351 + 0.878713i \(0.658403\pi\)
\(270\) 1.17324 0.0714011
\(271\) −4.22991 −0.256949 −0.128474 0.991713i \(-0.541008\pi\)
−0.128474 + 0.991713i \(0.541008\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) 1.69633 0.102479
\(275\) 3.95825 0.238691
\(276\) 11.2194 0.675331
\(277\) −0.167793 −0.0100817 −0.00504086 0.999987i \(-0.501605\pi\)
−0.00504086 + 0.999987i \(0.501605\pi\)
\(278\) −13.1117 −0.786390
\(279\) 10.6715 0.638887
\(280\) 0 0
\(281\) 15.9964 0.954268 0.477134 0.878831i \(-0.341676\pi\)
0.477134 + 0.878831i \(0.341676\pi\)
\(282\) 18.0800 1.07665
\(283\) −30.2665 −1.79916 −0.899578 0.436761i \(-0.856126\pi\)
−0.899578 + 0.436761i \(0.856126\pi\)
\(284\) −16.1776 −0.959962
\(285\) 13.9912 0.828768
\(286\) 3.32976 0.196893
\(287\) 0 0
\(288\) 2.49972 0.147297
\(289\) 1.00000 0.0588235
\(290\) 2.06380 0.121191
\(291\) 2.58344 0.151444
\(292\) 10.1451 0.593697
\(293\) −5.53049 −0.323095 −0.161547 0.986865i \(-0.551648\pi\)
−0.161547 + 0.986865i \(0.551648\pi\)
\(294\) 0 0
\(295\) 4.36748 0.254284
\(296\) 6.03766 0.350932
\(297\) −4.64397 −0.269471
\(298\) −7.05512 −0.408692
\(299\) 4.02449 0.232742
\(300\) 2.34515 0.135397
\(301\) 0 0
\(302\) 21.4470 1.23414
\(303\) −19.1789 −1.10180
\(304\) −5.96603 −0.342175
\(305\) 10.8522 0.621393
\(306\) −2.49972 −0.142899
\(307\) 18.9207 1.07986 0.539932 0.841709i \(-0.318450\pi\)
0.539932 + 0.841709i \(0.318450\pi\)
\(308\) 0 0
\(309\) 30.2257 1.71948
\(310\) −4.26909 −0.242468
\(311\) 16.6685 0.945183 0.472591 0.881282i \(-0.343319\pi\)
0.472591 + 0.881282i \(0.343319\pi\)
\(312\) 1.97279 0.111687
\(313\) −23.3668 −1.32077 −0.660384 0.750928i \(-0.729606\pi\)
−0.660384 + 0.750928i \(0.729606\pi\)
\(314\) −21.8380 −1.23239
\(315\) 0 0
\(316\) 1.91492 0.107723
\(317\) 18.7350 1.05226 0.526132 0.850403i \(-0.323642\pi\)
0.526132 + 0.850403i \(0.323642\pi\)
\(318\) 23.6678 1.32722
\(319\) −8.16905 −0.457379
\(320\) −1.00000 −0.0559017
\(321\) 14.4046 0.803986
\(322\) 0 0
\(323\) 5.96603 0.331959
\(324\) −10.2506 −0.569476
\(325\) 0.841221 0.0466625
\(326\) −9.80190 −0.542877
\(327\) 1.68488 0.0931743
\(328\) 6.18647 0.341590
\(329\) 0 0
\(330\) −9.28267 −0.510994
\(331\) 7.37951 0.405615 0.202807 0.979219i \(-0.434993\pi\)
0.202807 + 0.979219i \(0.434993\pi\)
\(332\) −5.72752 −0.314338
\(333\) 15.0924 0.827061
\(334\) −3.49467 −0.191220
\(335\) −2.44661 −0.133673
\(336\) 0 0
\(337\) −22.6963 −1.23635 −0.618173 0.786042i \(-0.712127\pi\)
−0.618173 + 0.786042i \(0.712127\pi\)
\(338\) −12.2923 −0.668616
\(339\) 37.4293 2.03288
\(340\) 1.00000 0.0542326
\(341\) 16.8981 0.915085
\(342\) −14.9134 −0.806423
\(343\) 0 0
\(344\) 6.35786 0.342793
\(345\) −11.2194 −0.604034
\(346\) 6.28337 0.337796
\(347\) −24.0599 −1.29160 −0.645801 0.763506i \(-0.723476\pi\)
−0.645801 + 0.763506i \(0.723476\pi\)
\(348\) −4.83992 −0.259447
\(349\) −0.252751 −0.0135294 −0.00676472 0.999977i \(-0.502153\pi\)
−0.00676472 + 0.999977i \(0.502153\pi\)
\(350\) 0 0
\(351\) −0.986954 −0.0526797
\(352\) 3.95825 0.210975
\(353\) −31.6691 −1.68557 −0.842787 0.538247i \(-0.819087\pi\)
−0.842787 + 0.538247i \(0.819087\pi\)
\(354\) −10.2424 −0.544376
\(355\) 16.1776 0.858616
\(356\) 14.0692 0.745668
\(357\) 0 0
\(358\) 3.76919 0.199208
\(359\) 25.7300 1.35798 0.678990 0.734148i \(-0.262418\pi\)
0.678990 + 0.734148i \(0.262418\pi\)
\(360\) −2.49972 −0.131747
\(361\) 16.5935 0.873342
\(362\) 0.786659 0.0413459
\(363\) 10.9465 0.574541
\(364\) 0 0
\(365\) −10.1451 −0.531018
\(366\) −25.4499 −1.33029
\(367\) −24.9879 −1.30436 −0.652180 0.758064i \(-0.726145\pi\)
−0.652180 + 0.758064i \(0.726145\pi\)
\(368\) 4.78411 0.249389
\(369\) 15.4644 0.805045
\(370\) −6.03766 −0.313883
\(371\) 0 0
\(372\) 10.0117 0.519080
\(373\) −0.702850 −0.0363922 −0.0181961 0.999834i \(-0.505792\pi\)
−0.0181961 + 0.999834i \(0.505792\pi\)
\(374\) −3.95825 −0.204676
\(375\) −2.34515 −0.121103
\(376\) 7.70954 0.397589
\(377\) −1.73611 −0.0894145
\(378\) 0 0
\(379\) −33.3675 −1.71397 −0.856987 0.515338i \(-0.827666\pi\)
−0.856987 + 0.515338i \(0.827666\pi\)
\(380\) 5.96603 0.306051
\(381\) −9.47995 −0.485673
\(382\) −24.8380 −1.27082
\(383\) −26.1379 −1.33558 −0.667791 0.744349i \(-0.732760\pi\)
−0.667791 + 0.744349i \(0.732760\pi\)
\(384\) 2.34515 0.119675
\(385\) 0 0
\(386\) 19.5742 0.996298
\(387\) 15.8929 0.807879
\(388\) 1.10161 0.0559258
\(389\) −28.2167 −1.43064 −0.715322 0.698794i \(-0.753720\pi\)
−0.715322 + 0.698794i \(0.753720\pi\)
\(390\) −1.97279 −0.0998959
\(391\) −4.78411 −0.241943
\(392\) 0 0
\(393\) 27.1507 1.36957
\(394\) 1.70467 0.0858799
\(395\) −1.91492 −0.0963500
\(396\) 9.89449 0.497217
\(397\) −5.44020 −0.273036 −0.136518 0.990638i \(-0.543591\pi\)
−0.136518 + 0.990638i \(0.543591\pi\)
\(398\) 8.43343 0.422730
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −4.32597 −0.216029 −0.108014 0.994149i \(-0.534449\pi\)
−0.108014 + 0.994149i \(0.534449\pi\)
\(402\) 5.73766 0.286169
\(403\) 3.59125 0.178893
\(404\) −8.17811 −0.406876
\(405\) 10.2506 0.509355
\(406\) 0 0
\(407\) 23.8986 1.18461
\(408\) −2.34515 −0.116102
\(409\) 25.8813 1.27975 0.639873 0.768481i \(-0.278987\pi\)
0.639873 + 0.768481i \(0.278987\pi\)
\(410\) −6.18647 −0.305528
\(411\) 3.97813 0.196227
\(412\) 12.8886 0.634976
\(413\) 0 0
\(414\) 11.9589 0.587748
\(415\) 5.72752 0.281153
\(416\) 0.841221 0.0412442
\(417\) −30.7489 −1.50578
\(418\) −23.6150 −1.15505
\(419\) 1.23007 0.0600927 0.0300464 0.999549i \(-0.490435\pi\)
0.0300464 + 0.999549i \(0.490435\pi\)
\(420\) 0 0
\(421\) 18.7083 0.911788 0.455894 0.890034i \(-0.349320\pi\)
0.455894 + 0.890034i \(0.349320\pi\)
\(422\) −21.5843 −1.05071
\(423\) 19.2717 0.937021
\(424\) 10.0922 0.490122
\(425\) −1.00000 −0.0485071
\(426\) −37.9388 −1.83814
\(427\) 0 0
\(428\) 6.14230 0.296899
\(429\) 7.80877 0.377011
\(430\) −6.35786 −0.306603
\(431\) 9.70967 0.467698 0.233849 0.972273i \(-0.424868\pi\)
0.233849 + 0.972273i \(0.424868\pi\)
\(432\) −1.17324 −0.0564476
\(433\) −8.57171 −0.411930 −0.205965 0.978559i \(-0.566033\pi\)
−0.205965 + 0.978559i \(0.566033\pi\)
\(434\) 0 0
\(435\) 4.83992 0.232057
\(436\) 0.718456 0.0344078
\(437\) −28.5421 −1.36535
\(438\) 23.7917 1.13681
\(439\) 26.5905 1.26909 0.634547 0.772884i \(-0.281187\pi\)
0.634547 + 0.772884i \(0.281187\pi\)
\(440\) −3.95825 −0.188702
\(441\) 0 0
\(442\) −0.841221 −0.0400128
\(443\) 1.02060 0.0484901 0.0242451 0.999706i \(-0.492282\pi\)
0.0242451 + 0.999706i \(0.492282\pi\)
\(444\) 14.1592 0.671966
\(445\) −14.0692 −0.666946
\(446\) 2.67003 0.126430
\(447\) −16.5453 −0.782566
\(448\) 0 0
\(449\) 4.39147 0.207246 0.103623 0.994617i \(-0.466956\pi\)
0.103623 + 0.994617i \(0.466956\pi\)
\(450\) 2.49972 0.117838
\(451\) 24.4876 1.15307
\(452\) 15.9603 0.750710
\(453\) 50.2964 2.36313
\(454\) −0.283479 −0.0133043
\(455\) 0 0
\(456\) −13.9912 −0.655199
\(457\) 28.3785 1.32749 0.663744 0.747960i \(-0.268966\pi\)
0.663744 + 0.747960i \(0.268966\pi\)
\(458\) 7.18681 0.335818
\(459\) 1.17324 0.0547622
\(460\) −4.78411 −0.223060
\(461\) 6.71669 0.312828 0.156414 0.987692i \(-0.450007\pi\)
0.156414 + 0.987692i \(0.450007\pi\)
\(462\) 0 0
\(463\) 7.53393 0.350131 0.175066 0.984557i \(-0.443986\pi\)
0.175066 + 0.984557i \(0.443986\pi\)
\(464\) −2.06380 −0.0958097
\(465\) −10.0117 −0.464279
\(466\) −1.45602 −0.0674489
\(467\) −9.39180 −0.434601 −0.217300 0.976105i \(-0.569725\pi\)
−0.217300 + 0.976105i \(0.569725\pi\)
\(468\) 2.10281 0.0972025
\(469\) 0 0
\(470\) −7.70954 −0.355615
\(471\) −51.2133 −2.35979
\(472\) −4.36748 −0.201030
\(473\) 25.1660 1.15713
\(474\) 4.49076 0.206268
\(475\) −5.96603 −0.273740
\(476\) 0 0
\(477\) 25.2277 1.15510
\(478\) −0.187743 −0.00858718
\(479\) −3.94238 −0.180132 −0.0900659 0.995936i \(-0.528708\pi\)
−0.0900659 + 0.995936i \(0.528708\pi\)
\(480\) −2.34515 −0.107041
\(481\) 5.07901 0.231583
\(482\) −13.6144 −0.620117
\(483\) 0 0
\(484\) 4.66771 0.212169
\(485\) −1.10161 −0.0500216
\(486\) −20.5194 −0.930778
\(487\) −38.9841 −1.76654 −0.883269 0.468867i \(-0.844662\pi\)
−0.883269 + 0.468867i \(0.844662\pi\)
\(488\) −10.8522 −0.491255
\(489\) −22.9869 −1.03950
\(490\) 0 0
\(491\) 30.9826 1.39823 0.699114 0.715011i \(-0.253578\pi\)
0.699114 + 0.715011i \(0.253578\pi\)
\(492\) 14.5082 0.654079
\(493\) 2.06380 0.0929491
\(494\) −5.01875 −0.225804
\(495\) −9.89449 −0.444724
\(496\) 4.26909 0.191688
\(497\) 0 0
\(498\) −13.4319 −0.601896
\(499\) −11.7545 −0.526205 −0.263102 0.964768i \(-0.584746\pi\)
−0.263102 + 0.964768i \(0.584746\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −8.19552 −0.366149
\(502\) −14.4128 −0.643274
\(503\) 26.2755 1.17157 0.585783 0.810468i \(-0.300787\pi\)
0.585783 + 0.810468i \(0.300787\pi\)
\(504\) 0 0
\(505\) 8.17811 0.363921
\(506\) 18.9367 0.841838
\(507\) −28.8274 −1.28027
\(508\) −4.04237 −0.179351
\(509\) −36.1557 −1.60257 −0.801287 0.598280i \(-0.795851\pi\)
−0.801287 + 0.598280i \(0.795851\pi\)
\(510\) 2.34515 0.103845
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 6.99959 0.309039
\(514\) 3.67957 0.162299
\(515\) −12.8886 −0.567940
\(516\) 14.9101 0.656382
\(517\) 30.5163 1.34210
\(518\) 0 0
\(519\) 14.7354 0.646813
\(520\) −0.841221 −0.0368900
\(521\) −17.9950 −0.788376 −0.394188 0.919030i \(-0.628974\pi\)
−0.394188 + 0.919030i \(0.628974\pi\)
\(522\) −5.15892 −0.225800
\(523\) 12.4407 0.543995 0.271997 0.962298i \(-0.412316\pi\)
0.271997 + 0.962298i \(0.412316\pi\)
\(524\) 11.5774 0.505762
\(525\) 0 0
\(526\) 26.7164 1.16489
\(527\) −4.26909 −0.185965
\(528\) 9.28267 0.403976
\(529\) −0.112322 −0.00488358
\(530\) −10.0922 −0.438379
\(531\) −10.9175 −0.473777
\(532\) 0 0
\(533\) 5.20418 0.225418
\(534\) 32.9944 1.42781
\(535\) −6.14230 −0.265555
\(536\) 2.44661 0.105678
\(537\) 8.83930 0.381444
\(538\) −15.6583 −0.675076
\(539\) 0 0
\(540\) 1.17324 0.0504882
\(541\) 14.2241 0.611540 0.305770 0.952105i \(-0.401086\pi\)
0.305770 + 0.952105i \(0.401086\pi\)
\(542\) −4.22991 −0.181690
\(543\) 1.84483 0.0791693
\(544\) −1.00000 −0.0428746
\(545\) −0.718456 −0.0307753
\(546\) 0 0
\(547\) 5.56031 0.237742 0.118871 0.992910i \(-0.462073\pi\)
0.118871 + 0.992910i \(0.462073\pi\)
\(548\) 1.69633 0.0724634
\(549\) −27.1273 −1.15777
\(550\) 3.95825 0.168780
\(551\) 12.3127 0.524539
\(552\) 11.2194 0.477531
\(553\) 0 0
\(554\) −0.167793 −0.00712885
\(555\) −14.1592 −0.601025
\(556\) −13.1117 −0.556061
\(557\) −27.2329 −1.15389 −0.576947 0.816782i \(-0.695756\pi\)
−0.576947 + 0.816782i \(0.695756\pi\)
\(558\) 10.6715 0.451761
\(559\) 5.34837 0.226212
\(560\) 0 0
\(561\) −9.28267 −0.391915
\(562\) 15.9964 0.674769
\(563\) −20.9554 −0.883165 −0.441582 0.897221i \(-0.645583\pi\)
−0.441582 + 0.897221i \(0.645583\pi\)
\(564\) 18.0800 0.761306
\(565\) −15.9603 −0.671455
\(566\) −30.2665 −1.27219
\(567\) 0 0
\(568\) −16.1776 −0.678796
\(569\) 26.0694 1.09288 0.546442 0.837497i \(-0.315982\pi\)
0.546442 + 0.837497i \(0.315982\pi\)
\(570\) 13.9912 0.586028
\(571\) 21.4688 0.898441 0.449220 0.893421i \(-0.351702\pi\)
0.449220 + 0.893421i \(0.351702\pi\)
\(572\) 3.32976 0.139224
\(573\) −58.2487 −2.43337
\(574\) 0 0
\(575\) 4.78411 0.199511
\(576\) 2.49972 0.104155
\(577\) −43.1450 −1.79615 −0.898075 0.439843i \(-0.855034\pi\)
−0.898075 + 0.439843i \(0.855034\pi\)
\(578\) 1.00000 0.0415945
\(579\) 45.9043 1.90772
\(580\) 2.06380 0.0856948
\(581\) 0 0
\(582\) 2.58344 0.107087
\(583\) 39.9475 1.65446
\(584\) 10.1451 0.419807
\(585\) −2.10281 −0.0869406
\(586\) −5.53049 −0.228463
\(587\) 26.2900 1.08511 0.542553 0.840022i \(-0.317458\pi\)
0.542553 + 0.840022i \(0.317458\pi\)
\(588\) 0 0
\(589\) −25.4695 −1.04945
\(590\) 4.36748 0.179806
\(591\) 3.99769 0.164443
\(592\) 6.03766 0.248146
\(593\) 40.7431 1.67312 0.836559 0.547876i \(-0.184564\pi\)
0.836559 + 0.547876i \(0.184564\pi\)
\(594\) −4.64397 −0.190545
\(595\) 0 0
\(596\) −7.05512 −0.288989
\(597\) 19.7776 0.809445
\(598\) 4.02449 0.164574
\(599\) −4.32455 −0.176696 −0.0883481 0.996090i \(-0.528159\pi\)
−0.0883481 + 0.996090i \(0.528159\pi\)
\(600\) 2.34515 0.0957402
\(601\) −5.33141 −0.217473 −0.108736 0.994071i \(-0.534680\pi\)
−0.108736 + 0.994071i \(0.534680\pi\)
\(602\) 0 0
\(603\) 6.11583 0.249056
\(604\) 21.4470 0.872667
\(605\) −4.66771 −0.189770
\(606\) −19.1789 −0.779088
\(607\) 15.7578 0.639590 0.319795 0.947487i \(-0.396386\pi\)
0.319795 + 0.947487i \(0.396386\pi\)
\(608\) −5.96603 −0.241954
\(609\) 0 0
\(610\) 10.8522 0.439391
\(611\) 6.48543 0.262372
\(612\) −2.49972 −0.101045
\(613\) 21.5993 0.872388 0.436194 0.899853i \(-0.356326\pi\)
0.436194 + 0.899853i \(0.356326\pi\)
\(614\) 18.9207 0.763579
\(615\) −14.5082 −0.585026
\(616\) 0 0
\(617\) −18.6327 −0.750125 −0.375063 0.927000i \(-0.622379\pi\)
−0.375063 + 0.927000i \(0.622379\pi\)
\(618\) 30.2257 1.21586
\(619\) −2.87958 −0.115740 −0.0578700 0.998324i \(-0.518431\pi\)
−0.0578700 + 0.998324i \(0.518431\pi\)
\(620\) −4.26909 −0.171451
\(621\) −5.61291 −0.225238
\(622\) 16.6685 0.668345
\(623\) 0 0
\(624\) 1.97279 0.0789747
\(625\) 1.00000 0.0400000
\(626\) −23.3668 −0.933923
\(627\) −55.3807 −2.21169
\(628\) −21.8380 −0.871431
\(629\) −6.03766 −0.240737
\(630\) 0 0
\(631\) 36.1097 1.43750 0.718752 0.695267i \(-0.244714\pi\)
0.718752 + 0.695267i \(0.244714\pi\)
\(632\) 1.91492 0.0761713
\(633\) −50.6184 −2.01190
\(634\) 18.7350 0.744062
\(635\) 4.04237 0.160417
\(636\) 23.6678 0.938488
\(637\) 0 0
\(638\) −8.16905 −0.323416
\(639\) −40.4393 −1.59975
\(640\) −1.00000 −0.0395285
\(641\) 18.6963 0.738460 0.369230 0.929338i \(-0.379621\pi\)
0.369230 + 0.929338i \(0.379621\pi\)
\(642\) 14.4046 0.568504
\(643\) 4.20180 0.165703 0.0828514 0.996562i \(-0.473597\pi\)
0.0828514 + 0.996562i \(0.473597\pi\)
\(644\) 0 0
\(645\) −14.9101 −0.587086
\(646\) 5.96603 0.234730
\(647\) 1.65210 0.0649508 0.0324754 0.999473i \(-0.489661\pi\)
0.0324754 + 0.999473i \(0.489661\pi\)
\(648\) −10.2506 −0.402680
\(649\) −17.2876 −0.678596
\(650\) 0.841221 0.0329954
\(651\) 0 0
\(652\) −9.80190 −0.383872
\(653\) 44.5448 1.74317 0.871586 0.490242i \(-0.163092\pi\)
0.871586 + 0.490242i \(0.163092\pi\)
\(654\) 1.68488 0.0658842
\(655\) −11.5774 −0.452367
\(656\) 6.18647 0.241541
\(657\) 25.3598 0.989382
\(658\) 0 0
\(659\) −37.6758 −1.46764 −0.733820 0.679343i \(-0.762265\pi\)
−0.733820 + 0.679343i \(0.762265\pi\)
\(660\) −9.28267 −0.361327
\(661\) −45.6855 −1.77696 −0.888479 0.458917i \(-0.848238\pi\)
−0.888479 + 0.458917i \(0.848238\pi\)
\(662\) 7.37951 0.286813
\(663\) −1.97279 −0.0766167
\(664\) −5.72752 −0.222271
\(665\) 0 0
\(666\) 15.0924 0.584820
\(667\) −9.87346 −0.382302
\(668\) −3.49467 −0.135213
\(669\) 6.26161 0.242088
\(670\) −2.44661 −0.0945208
\(671\) −42.9556 −1.65828
\(672\) 0 0
\(673\) −22.4151 −0.864038 −0.432019 0.901865i \(-0.642199\pi\)
−0.432019 + 0.901865i \(0.642199\pi\)
\(674\) −22.6963 −0.874229
\(675\) −1.17324 −0.0451580
\(676\) −12.2923 −0.472783
\(677\) −24.3187 −0.934643 −0.467321 0.884087i \(-0.654781\pi\)
−0.467321 + 0.884087i \(0.654781\pi\)
\(678\) 37.4293 1.43746
\(679\) 0 0
\(680\) 1.00000 0.0383482
\(681\) −0.664801 −0.0254752
\(682\) 16.8981 0.647063
\(683\) −29.7327 −1.13769 −0.568846 0.822444i \(-0.692610\pi\)
−0.568846 + 0.822444i \(0.692610\pi\)
\(684\) −14.9134 −0.570227
\(685\) −1.69633 −0.0648133
\(686\) 0 0
\(687\) 16.8541 0.643025
\(688\) 6.35786 0.242391
\(689\) 8.48980 0.323435
\(690\) −11.2194 −0.427117
\(691\) −38.2211 −1.45400 −0.727000 0.686638i \(-0.759086\pi\)
−0.727000 + 0.686638i \(0.759086\pi\)
\(692\) 6.28337 0.238858
\(693\) 0 0
\(694\) −24.0599 −0.913301
\(695\) 13.1117 0.497356
\(696\) −4.83992 −0.183457
\(697\) −6.18647 −0.234329
\(698\) −0.252751 −0.00956676
\(699\) −3.41459 −0.129151
\(700\) 0 0
\(701\) 22.6906 0.857010 0.428505 0.903539i \(-0.359040\pi\)
0.428505 + 0.903539i \(0.359040\pi\)
\(702\) −0.986954 −0.0372502
\(703\) −36.0209 −1.35855
\(704\) 3.95825 0.149182
\(705\) −18.0800 −0.680933
\(706\) −31.6691 −1.19188
\(707\) 0 0
\(708\) −10.2424 −0.384932
\(709\) −10.0719 −0.378257 −0.189128 0.981952i \(-0.560566\pi\)
−0.189128 + 0.981952i \(0.560566\pi\)
\(710\) 16.1776 0.607133
\(711\) 4.78675 0.179517
\(712\) 14.0692 0.527267
\(713\) 20.4238 0.764877
\(714\) 0 0
\(715\) −3.32976 −0.124526
\(716\) 3.76919 0.140861
\(717\) −0.440286 −0.0164428
\(718\) 25.7300 0.960237
\(719\) 10.2907 0.383777 0.191888 0.981417i \(-0.438539\pi\)
0.191888 + 0.981417i \(0.438539\pi\)
\(720\) −2.49972 −0.0931589
\(721\) 0 0
\(722\) 16.5935 0.617546
\(723\) −31.9277 −1.18740
\(724\) 0.786659 0.0292359
\(725\) −2.06380 −0.0766478
\(726\) 10.9465 0.406262
\(727\) −19.0749 −0.707448 −0.353724 0.935350i \(-0.615085\pi\)
−0.353724 + 0.935350i \(0.615085\pi\)
\(728\) 0 0
\(729\) −17.3692 −0.643305
\(730\) −10.1451 −0.375487
\(731\) −6.35786 −0.235154
\(732\) −25.4499 −0.940657
\(733\) −25.0820 −0.926426 −0.463213 0.886247i \(-0.653304\pi\)
−0.463213 + 0.886247i \(0.653304\pi\)
\(734\) −24.9879 −0.922322
\(735\) 0 0
\(736\) 4.78411 0.176345
\(737\) 9.68429 0.356725
\(738\) 15.4644 0.569253
\(739\) −43.5788 −1.60307 −0.801536 0.597947i \(-0.795984\pi\)
−0.801536 + 0.597947i \(0.795984\pi\)
\(740\) −6.03766 −0.221949
\(741\) −11.7697 −0.432371
\(742\) 0 0
\(743\) −22.4398 −0.823238 −0.411619 0.911356i \(-0.635037\pi\)
−0.411619 + 0.911356i \(0.635037\pi\)
\(744\) 10.0117 0.367045
\(745\) 7.05512 0.258480
\(746\) −0.702850 −0.0257332
\(747\) −14.3172 −0.523838
\(748\) −3.95825 −0.144728
\(749\) 0 0
\(750\) −2.34515 −0.0856327
\(751\) 25.6671 0.936604 0.468302 0.883568i \(-0.344866\pi\)
0.468302 + 0.883568i \(0.344866\pi\)
\(752\) 7.70954 0.281138
\(753\) −33.8001 −1.23174
\(754\) −1.73611 −0.0632256
\(755\) −21.4470 −0.780537
\(756\) 0 0
\(757\) −18.5832 −0.675417 −0.337708 0.941251i \(-0.609652\pi\)
−0.337708 + 0.941251i \(0.609652\pi\)
\(758\) −33.3675 −1.21196
\(759\) 44.4093 1.61195
\(760\) 5.96603 0.216411
\(761\) −24.2461 −0.878921 −0.439461 0.898262i \(-0.644830\pi\)
−0.439461 + 0.898262i \(0.644830\pi\)
\(762\) −9.47995 −0.343422
\(763\) 0 0
\(764\) −24.8380 −0.898606
\(765\) 2.49972 0.0903774
\(766\) −26.1379 −0.944399
\(767\) −3.67401 −0.132661
\(768\) 2.34515 0.0846232
\(769\) −40.0898 −1.44567 −0.722837 0.691018i \(-0.757162\pi\)
−0.722837 + 0.691018i \(0.757162\pi\)
\(770\) 0 0
\(771\) 8.62912 0.310770
\(772\) 19.5742 0.704489
\(773\) −40.1190 −1.44298 −0.721491 0.692424i \(-0.756543\pi\)
−0.721491 + 0.692424i \(0.756543\pi\)
\(774\) 15.8929 0.571257
\(775\) 4.26909 0.153350
\(776\) 1.10161 0.0395455
\(777\) 0 0
\(778\) −28.2167 −1.01162
\(779\) −36.9086 −1.32239
\(780\) −1.97279 −0.0706371
\(781\) −64.0348 −2.29134
\(782\) −4.78411 −0.171079
\(783\) 2.42134 0.0865316
\(784\) 0 0
\(785\) 21.8380 0.779432
\(786\) 27.1507 0.968435
\(787\) 50.5986 1.80364 0.901822 0.432107i \(-0.142230\pi\)
0.901822 + 0.432107i \(0.142230\pi\)
\(788\) 1.70467 0.0607262
\(789\) 62.6539 2.23054
\(790\) −1.91492 −0.0681297
\(791\) 0 0
\(792\) 9.89449 0.351585
\(793\) −9.12907 −0.324183
\(794\) −5.44020 −0.193066
\(795\) −23.6678 −0.839410
\(796\) 8.43343 0.298915
\(797\) −38.8101 −1.37473 −0.687363 0.726314i \(-0.741232\pi\)
−0.687363 + 0.726314i \(0.741232\pi\)
\(798\) 0 0
\(799\) −7.70954 −0.272744
\(800\) 1.00000 0.0353553
\(801\) 35.1691 1.24264
\(802\) −4.32597 −0.152755
\(803\) 40.1568 1.41710
\(804\) 5.73766 0.202352
\(805\) 0 0
\(806\) 3.59125 0.126496
\(807\) −36.7210 −1.29264
\(808\) −8.17811 −0.287705
\(809\) −22.6318 −0.795691 −0.397845 0.917452i \(-0.630242\pi\)
−0.397845 + 0.917452i \(0.630242\pi\)
\(810\) 10.2506 0.360168
\(811\) 16.6394 0.584288 0.292144 0.956374i \(-0.405631\pi\)
0.292144 + 0.956374i \(0.405631\pi\)
\(812\) 0 0
\(813\) −9.91976 −0.347901
\(814\) 23.8986 0.837644
\(815\) 9.80190 0.343345
\(816\) −2.34515 −0.0820966
\(817\) −37.9312 −1.32704
\(818\) 25.8813 0.904917
\(819\) 0 0
\(820\) −6.18647 −0.216041
\(821\) −27.7222 −0.967513 −0.483757 0.875203i \(-0.660728\pi\)
−0.483757 + 0.875203i \(0.660728\pi\)
\(822\) 3.97813 0.138753
\(823\) 46.6224 1.62515 0.812577 0.582854i \(-0.198064\pi\)
0.812577 + 0.582854i \(0.198064\pi\)
\(824\) 12.8886 0.448996
\(825\) 9.28267 0.323181
\(826\) 0 0
\(827\) −17.5503 −0.610282 −0.305141 0.952307i \(-0.598704\pi\)
−0.305141 + 0.952307i \(0.598704\pi\)
\(828\) 11.9589 0.415601
\(829\) 35.6445 1.23798 0.618992 0.785397i \(-0.287541\pi\)
0.618992 + 0.785397i \(0.287541\pi\)
\(830\) 5.72752 0.198805
\(831\) −0.393500 −0.0136504
\(832\) 0.841221 0.0291641
\(833\) 0 0
\(834\) −30.7489 −1.06475
\(835\) 3.49467 0.120938
\(836\) −23.6150 −0.816742
\(837\) −5.00867 −0.173125
\(838\) 1.23007 0.0424920
\(839\) 31.4080 1.08432 0.542162 0.840274i \(-0.317606\pi\)
0.542162 + 0.840274i \(0.317606\pi\)
\(840\) 0 0
\(841\) −24.7407 −0.853128
\(842\) 18.7083 0.644731
\(843\) 37.5140 1.29205
\(844\) −21.5843 −0.742963
\(845\) 12.2923 0.422870
\(846\) 19.2717 0.662574
\(847\) 0 0
\(848\) 10.0922 0.346569
\(849\) −70.9793 −2.43600
\(850\) −1.00000 −0.0342997
\(851\) 28.8848 0.990159
\(852\) −37.9388 −1.29976
\(853\) 17.0649 0.584293 0.292146 0.956374i \(-0.405631\pi\)
0.292146 + 0.956374i \(0.405631\pi\)
\(854\) 0 0
\(855\) 14.9134 0.510027
\(856\) 6.14230 0.209939
\(857\) 46.0441 1.57284 0.786419 0.617694i \(-0.211933\pi\)
0.786419 + 0.617694i \(0.211933\pi\)
\(858\) 7.80877 0.266587
\(859\) 11.5903 0.395456 0.197728 0.980257i \(-0.436644\pi\)
0.197728 + 0.980257i \(0.436644\pi\)
\(860\) −6.35786 −0.216801
\(861\) 0 0
\(862\) 9.70967 0.330713
\(863\) 24.8201 0.844884 0.422442 0.906390i \(-0.361173\pi\)
0.422442 + 0.906390i \(0.361173\pi\)
\(864\) −1.17324 −0.0399145
\(865\) −6.28337 −0.213641
\(866\) −8.57171 −0.291279
\(867\) 2.34515 0.0796454
\(868\) 0 0
\(869\) 7.57972 0.257124
\(870\) 4.83992 0.164089
\(871\) 2.05814 0.0697374
\(872\) 0.718456 0.0243300
\(873\) 2.75371 0.0931991
\(874\) −28.5421 −0.965452
\(875\) 0 0
\(876\) 23.7917 0.803848
\(877\) 7.05497 0.238229 0.119115 0.992881i \(-0.461994\pi\)
0.119115 + 0.992881i \(0.461994\pi\)
\(878\) 26.5905 0.897385
\(879\) −12.9698 −0.437461
\(880\) −3.95825 −0.133432
\(881\) −32.6312 −1.09937 −0.549687 0.835371i \(-0.685253\pi\)
−0.549687 + 0.835371i \(0.685253\pi\)
\(882\) 0 0
\(883\) −27.5638 −0.927596 −0.463798 0.885941i \(-0.653514\pi\)
−0.463798 + 0.885941i \(0.653514\pi\)
\(884\) −0.841221 −0.0282933
\(885\) 10.2424 0.344294
\(886\) 1.02060 0.0342877
\(887\) 27.3877 0.919588 0.459794 0.888026i \(-0.347923\pi\)
0.459794 + 0.888026i \(0.347923\pi\)
\(888\) 14.1592 0.475152
\(889\) 0 0
\(890\) −14.0692 −0.471602
\(891\) −40.5743 −1.35929
\(892\) 2.67003 0.0893992
\(893\) −45.9954 −1.53918
\(894\) −16.5453 −0.553358
\(895\) −3.76919 −0.125990
\(896\) 0 0
\(897\) 9.43802 0.315126
\(898\) 4.39147 0.146545
\(899\) −8.81057 −0.293849
\(900\) 2.49972 0.0833239
\(901\) −10.0922 −0.336221
\(902\) 24.4876 0.815347
\(903\) 0 0
\(904\) 15.9603 0.530832
\(905\) −0.786659 −0.0261494
\(906\) 50.2964 1.67099
\(907\) −15.3826 −0.510771 −0.255386 0.966839i \(-0.582202\pi\)
−0.255386 + 0.966839i \(0.582202\pi\)
\(908\) −0.283479 −0.00940759
\(909\) −20.4429 −0.678049
\(910\) 0 0
\(911\) −40.7773 −1.35101 −0.675506 0.737354i \(-0.736075\pi\)
−0.675506 + 0.737354i \(0.736075\pi\)
\(912\) −13.9912 −0.463295
\(913\) −22.6709 −0.750298
\(914\) 28.3785 0.938676
\(915\) 25.4499 0.841349
\(916\) 7.18681 0.237459
\(917\) 0 0
\(918\) 1.17324 0.0387227
\(919\) 25.5639 0.843276 0.421638 0.906764i \(-0.361455\pi\)
0.421638 + 0.906764i \(0.361455\pi\)
\(920\) −4.78411 −0.157727
\(921\) 44.3719 1.46210
\(922\) 6.71669 0.221203
\(923\) −13.6089 −0.447943
\(924\) 0 0
\(925\) 6.03766 0.198517
\(926\) 7.53393 0.247580
\(927\) 32.2179 1.05817
\(928\) −2.06380 −0.0677477
\(929\) 0.675279 0.0221552 0.0110776 0.999939i \(-0.496474\pi\)
0.0110776 + 0.999939i \(0.496474\pi\)
\(930\) −10.0117 −0.328295
\(931\) 0 0
\(932\) −1.45602 −0.0476936
\(933\) 39.0900 1.27975
\(934\) −9.39180 −0.307309
\(935\) 3.95825 0.129448
\(936\) 2.10281 0.0687326
\(937\) 36.6305 1.19667 0.598333 0.801248i \(-0.295830\pi\)
0.598333 + 0.801248i \(0.295830\pi\)
\(938\) 0 0
\(939\) −54.7985 −1.78828
\(940\) −7.70954 −0.251458
\(941\) 5.32981 0.173747 0.0868734 0.996219i \(-0.472312\pi\)
0.0868734 + 0.996219i \(0.472312\pi\)
\(942\) −51.2133 −1.66862
\(943\) 29.5967 0.963802
\(944\) −4.36748 −0.142149
\(945\) 0 0
\(946\) 25.1660 0.818217
\(947\) −48.2283 −1.56721 −0.783605 0.621260i \(-0.786621\pi\)
−0.783605 + 0.621260i \(0.786621\pi\)
\(948\) 4.49076 0.145853
\(949\) 8.53426 0.277034
\(950\) −5.96603 −0.193564
\(951\) 43.9364 1.42473
\(952\) 0 0
\(953\) 11.8350 0.383372 0.191686 0.981456i \(-0.438604\pi\)
0.191686 + 0.981456i \(0.438604\pi\)
\(954\) 25.2277 0.816777
\(955\) 24.8380 0.803738
\(956\) −0.187743 −0.00607205
\(957\) −19.1576 −0.619278
\(958\) −3.94238 −0.127372
\(959\) 0 0
\(960\) −2.34515 −0.0756893
\(961\) −12.7748 −0.412092
\(962\) 5.07901 0.163754
\(963\) 15.3540 0.494776
\(964\) −13.6144 −0.438489
\(965\) −19.5742 −0.630114
\(966\) 0 0
\(967\) −3.41017 −0.109664 −0.0548318 0.998496i \(-0.517462\pi\)
−0.0548318 + 0.998496i \(0.517462\pi\)
\(968\) 4.66771 0.150026
\(969\) 13.9912 0.449463
\(970\) −1.10161 −0.0353706
\(971\) −4.30726 −0.138227 −0.0691133 0.997609i \(-0.522017\pi\)
−0.0691133 + 0.997609i \(0.522017\pi\)
\(972\) −20.5194 −0.658159
\(973\) 0 0
\(974\) −38.9841 −1.24913
\(975\) 1.97279 0.0631797
\(976\) −10.8522 −0.347369
\(977\) −9.68799 −0.309946 −0.154973 0.987919i \(-0.549529\pi\)
−0.154973 + 0.987919i \(0.549529\pi\)
\(978\) −22.9869 −0.735040
\(979\) 55.6895 1.77984
\(980\) 0 0
\(981\) 1.79593 0.0573398
\(982\) 30.9826 0.988696
\(983\) −18.2687 −0.582681 −0.291341 0.956619i \(-0.594101\pi\)
−0.291341 + 0.956619i \(0.594101\pi\)
\(984\) 14.5082 0.462504
\(985\) −1.70467 −0.0543152
\(986\) 2.06380 0.0657249
\(987\) 0 0
\(988\) −5.01875 −0.159668
\(989\) 30.4167 0.967195
\(990\) −9.89449 −0.314468
\(991\) −16.5573 −0.525958 −0.262979 0.964801i \(-0.584705\pi\)
−0.262979 + 0.964801i \(0.584705\pi\)
\(992\) 4.26909 0.135544
\(993\) 17.3060 0.549191
\(994\) 0 0
\(995\) −8.43343 −0.267358
\(996\) −13.4319 −0.425605
\(997\) 28.6155 0.906262 0.453131 0.891444i \(-0.350307\pi\)
0.453131 + 0.891444i \(0.350307\pi\)
\(998\) −11.7545 −0.372083
\(999\) −7.08363 −0.224116
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8330.2.a.cv.1.9 10
7.6 odd 2 8330.2.a.cw.1.2 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8330.2.a.cv.1.9 10 1.1 even 1 trivial
8330.2.a.cw.1.2 yes 10 7.6 odd 2