gp: [N,k,chi] = [833,2,Mod(48,833)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("833.48");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(833, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([8, 9]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [72,0,0,0,0,0,0,0,-24,0,-8,-24]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(833, [\chi])\):
\( T_{2}^{72} - 8 T_{2}^{67} + 72 T_{2}^{65} + 4695 T_{2}^{64} + 544 T_{2}^{63} + 48 T_{2}^{62} + \cdots + 638401 \)
T2^72 - 8*T2^67 + 72*T2^65 + 4695*T2^64 + 544*T2^63 + 48*T2^62 - 5360*T2^61 - 576*T2^60 + 840*T2^59 - 5088*T2^58 + 146288*T2^57 + 6663233*T2^56 + 1224456*T2^55 - 584368*T2^54 - 11927808*T2^53 - 1322240*T2^52 + 34707704*T2^51 + 23409504*T2^50 + 32432832*T2^49 + 3404610543*T2^48 + 508200512*T2^47 - 32337568*T2^46 - 5552652872*T2^45 - 623379968*T2^44 + 19743313720*T2^43 + 13018283744*T2^42 - 11011391264*T2^41 + 596948589985*T2^40 + 28832743696*T2^39 + 148779106432*T2^38 - 411764213088*T2^37 - 61817881216*T2^36 + 1612824683200*T2^35 - 226328572320*T2^34 - 1724303662192*T2^33 + 23892833027297*T2^32 - 1938883416112*T2^31 + 2598843330752*T2^30 + 1120123653984*T2^29 - 1508964346240*T2^28 + 13368808287448*T2^27 - 10250540889088*T2^26 - 22338412554568*T2^25 + 91850139709207*T2^24 - 28499137312752*T2^23 - 19010437421424*T2^22 + 51064432331280*T2^21 - 10514583170368*T2^20 - 28190119992408*T2^19 + 27423766327072*T2^18 - 23434042033760*T2^17 + 23385566384881*T2^16 - 11777072398824*T2^15 + 575482001072*T2^14 + 4573901761472*T2^13 - 1474223909376*T2^12 - 2161002125384*T2^11 + 2208478077152*T2^10 - 1221619722224*T2^9 + 659466509407*T2^8 - 308370780912*T2^7 + 100059016544*T2^6 - 22939620040*T2^5 + 4428677248*T2^4 - 760348872*T2^3 + 104926848*T2^2 - 10521232*T2 + 638401
\( T_{3}^{72} + 12 T_{3}^{70} + 24 T_{3}^{69} + 16 T_{3}^{68} + 216 T_{3}^{67} - 632 T_{3}^{66} + \cdots + 4817408 \)
T3^72 + 12*T3^70 + 24*T3^69 + 16*T3^68 + 216*T3^67 - 632*T3^66 + 504*T3^65 - 6304*T3^64 - 17544*T3^63 + 42732*T3^62 - 133416*T3^61 + 764584*T3^60 + 1749048*T3^59 + 3595772*T3^58 + 30027856*T3^57 + 60130398*T3^56 + 177594776*T3^55 + 718545024*T3^54 + 1586333928*T3^53 + 3868801048*T3^52 + 12404271976*T3^51 + 22753987716*T3^50 + 52690860152*T3^49 + 124117442400*T3^48 + 126658833512*T3^47 + 552912284060*T3^46 + 407646031240*T3^45 + 1766128938520*T3^44 + 2558282800784*T3^43 + 1171534729320*T3^42 + 10272833130384*T3^41 - 18990018407149*T3^40 + 17669195258664*T3^39 + 16749119843216*T3^38 - 51447149950792*T3^37 + 133638179745288*T3^36 - 732273785834504*T3^35 + 1762899189522172*T3^34 - 2185675152180120*T3^33 + 6077338136976640*T3^32 - 15076698122778696*T3^31 + 18994455223583508*T3^30 - 26267359904573416*T3^29 + 78191433809952392*T3^28 - 92294717971329328*T3^27 + 97760285624436456*T3^26 - 153577868044419856*T3^25 + 195161928582830478*T3^24 - 190729568470161864*T3^23 + 128653816079928572*T3^22 - 58012287706113280*T3^21 + 62868480863685032*T3^20 - 111027455737672832*T3^19 + 115362731819792540*T3^18 - 64267408448549456*T3^17 + 12669168613722592*T3^16 + 7716259094587104*T3^15 - 4450280375099000*T3^14 - 1150009421616736*T3^13 + 2034927868437632*T3^12 - 631922027551192*T3^11 - 192294889831052*T3^10 + 146045081219744*T3^9 - 12408113971487*T3^8 - 12607484870208*T3^7 + 3008814659904*T3^6 + 1208926694336*T3^5 + 178961813536*T3^4 + 27166450176*T3^3 + 3226735360*T3^2 + 191206400*T3 + 4817408