Defining parameters
| Level: | \( N \) | \(=\) | \( 832 = 2^{6} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 832.q (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(336\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(832, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 464 | 96 | 368 |
| Cusp forms | 432 | 96 | 336 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(832, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 832.3.q.a | $96$ | $22.670$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{3}^{\mathrm{old}}(832, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 3}\)