Properties

Label 832.3.q
Level $832$
Weight $3$
Character orbit 832.q
Rep. character $\chi_{832}(79,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $96$
Newform subspaces $1$
Sturm bound $336$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 832.q (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(336\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(832, [\chi])\).

Total New Old
Modular forms 464 96 368
Cusp forms 432 96 336
Eisenstein series 32 0 32

Trace form

\( 96 q - 32 q^{11} + 64 q^{19} + 128 q^{23} + 32 q^{29} - 96 q^{35} - 96 q^{37} - 160 q^{43} + 672 q^{49} + 352 q^{51} - 160 q^{53} + 256 q^{55} - 64 q^{61} - 448 q^{67} + 192 q^{69} - 416 q^{75} + 224 q^{77}+ \cdots - 480 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(832, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
832.3.q.a 832.q 16.f $96$ $22.670$ None 208.3.q.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{3}^{\mathrm{old}}(832, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 3}\)