Properties

Label 832.3
Level 832
Weight 3
Dimension 23662
Nonzero newspaces 28
Sturm bound 129024
Trace bound 17

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 28 \)
Sturm bound: \(129024\)
Trace bound: \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(832))\).

Total New Old
Modular forms 43872 24146 19726
Cusp forms 42144 23662 18482
Eisenstein series 1728 484 1244

Trace form

\( 23662 q - 80 q^{2} - 60 q^{3} - 80 q^{4} - 80 q^{5} - 80 q^{6} - 64 q^{7} - 80 q^{8} - 118 q^{9} - 80 q^{10} - 92 q^{11} - 80 q^{12} - 104 q^{13} - 176 q^{14} - 56 q^{15} - 80 q^{16} - 108 q^{17} - 80 q^{18}+ \cdots - 652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(832))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
832.3.c \(\chi_{832}(831, \cdot)\) 832.3.c.a 1 1
832.3.c.b 1
832.3.c.c 2
832.3.c.d 2
832.3.c.e 4
832.3.c.f 8
832.3.c.g 8
832.3.c.h 14
832.3.c.i 14
832.3.d \(\chi_{832}(703, \cdot)\) 832.3.d.a 4 1
832.3.d.b 8
832.3.d.c 12
832.3.d.d 12
832.3.d.e 12
832.3.g \(\chi_{832}(287, \cdot)\) 832.3.g.a 16 1
832.3.g.b 32
832.3.h \(\chi_{832}(415, \cdot)\) 832.3.h.a 16 1
832.3.h.b 40
832.3.j \(\chi_{832}(161, \cdot)\) n/a 112 2
832.3.m \(\chi_{832}(177, \cdot)\) n/a 108 2
832.3.o \(\chi_{832}(207, \cdot)\) n/a 108 2
832.3.q \(\chi_{832}(79, \cdot)\) 832.3.q.a 96 2
832.3.r \(\chi_{832}(369, \cdot)\) n/a 108 2
832.3.t \(\chi_{832}(385, \cdot)\) n/a 108 2
832.3.v \(\chi_{832}(159, \cdot)\) n/a 112 2
832.3.x \(\chi_{832}(95, \cdot)\) n/a 112 2
832.3.y \(\chi_{832}(127, \cdot)\) n/a 108 2
832.3.bb \(\chi_{832}(191, \cdot)\) n/a 108 2
832.3.bc \(\chi_{832}(57, \cdot)\) None 0 4
832.3.be \(\chi_{832}(103, \cdot)\) None 0 4
832.3.bh \(\chi_{832}(183, \cdot)\) None 0 4
832.3.bj \(\chi_{832}(265, \cdot)\) None 0 4
832.3.bl \(\chi_{832}(193, \cdot)\) n/a 216 4
832.3.bm \(\chi_{832}(145, \cdot)\) n/a 216 4
832.3.bo \(\chi_{832}(367, \cdot)\) n/a 216 4
832.3.bq \(\chi_{832}(303, \cdot)\) n/a 216 4
832.3.bt \(\chi_{832}(305, \cdot)\) n/a 216 4
832.3.bv \(\chi_{832}(33, \cdot)\) n/a 224 4
832.3.bx \(\chi_{832}(21, \cdot)\) n/a 1776 8
832.3.bz \(\chi_{832}(51, \cdot)\) n/a 1776 8
832.3.ca \(\chi_{832}(27, \cdot)\) n/a 1536 8
832.3.cd \(\chi_{832}(5, \cdot)\) n/a 1776 8
832.3.ce \(\chi_{832}(41, \cdot)\) None 0 8
832.3.cg \(\chi_{832}(55, \cdot)\) None 0 8
832.3.cj \(\chi_{832}(23, \cdot)\) None 0 8
832.3.cl \(\chi_{832}(137, \cdot)\) None 0 8
832.3.cm \(\chi_{832}(141, \cdot)\) n/a 3552 16
832.3.co \(\chi_{832}(43, \cdot)\) n/a 3552 16
832.3.cr \(\chi_{832}(3, \cdot)\) n/a 3552 16
832.3.cs \(\chi_{832}(37, \cdot)\) n/a 3552 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(832))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(832)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 7}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(416))\)\(^{\oplus 2}\)