Properties

Label 832.3.m
Level $832$
Weight $3$
Character orbit 832.m
Rep. character $\chi_{832}(177,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $108$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 832.m (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 208 \)
Character field: \(\Q(i)\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(832, [\chi])\).

Total New Old
Modular forms 464 116 348
Cusp forms 432 108 324
Eisenstein series 32 8 24

Trace form

\( 108 q + 4 q^{3} + 4 q^{11} - 2 q^{13} + 4 q^{15} + 4 q^{19} + 32 q^{21} - 460 q^{25} - 32 q^{27} - 4 q^{29} + 4 q^{31} - 4 q^{33} + 4 q^{35} - 4 q^{37} + 64 q^{43} + 60 q^{45} + 4 q^{47} - 4 q^{53} - 36 q^{57}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(832, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(832, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 3}\)