Properties

Label 8281.2.a.cw.1.10
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8281,2,Mod(1,8281)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8281.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8281, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,1,0,23,13,14,0,0,26,-5,1,-5,0,0,-5,17,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 1183)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 8281.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.877203 q^{2} +0.755024 q^{3} -1.23052 q^{4} -0.265839 q^{5} -0.662309 q^{6} +2.83382 q^{8} -2.42994 q^{9} +0.233195 q^{10} -0.455666 q^{11} -0.929068 q^{12} -0.200715 q^{15} -0.0248023 q^{16} +3.65702 q^{17} +2.13155 q^{18} -3.55974 q^{19} +0.327119 q^{20} +0.399712 q^{22} -3.07952 q^{23} +2.13960 q^{24} -4.92933 q^{25} -4.09973 q^{27} -0.612999 q^{29} +0.176068 q^{30} -10.7090 q^{31} -5.64588 q^{32} -0.344039 q^{33} -3.20795 q^{34} +2.99008 q^{36} +2.18786 q^{37} +3.12262 q^{38} -0.753339 q^{40} +7.13669 q^{41} +6.76740 q^{43} +0.560704 q^{44} +0.645973 q^{45} +2.70137 q^{46} -7.47771 q^{47} -0.0187263 q^{48} +4.32402 q^{50} +2.76114 q^{51} -7.79148 q^{53} +3.59630 q^{54} +0.121134 q^{55} -2.68769 q^{57} +0.537725 q^{58} +11.6247 q^{59} +0.246983 q^{60} +1.59475 q^{61} +9.39396 q^{62} +5.00218 q^{64} +0.301792 q^{66} +9.39914 q^{67} -4.50002 q^{68} -2.32511 q^{69} +6.89894 q^{71} -6.88600 q^{72} +2.85100 q^{73} -1.91920 q^{74} -3.72176 q^{75} +4.38032 q^{76} +8.73448 q^{79} +0.00659341 q^{80} +4.19442 q^{81} -6.26033 q^{82} -7.51728 q^{83} -0.972179 q^{85} -5.93638 q^{86} -0.462829 q^{87} -1.29127 q^{88} +8.42769 q^{89} -0.566649 q^{90} +3.78940 q^{92} -8.08554 q^{93} +6.55947 q^{94} +0.946319 q^{95} -4.26277 q^{96} -1.61319 q^{97} +1.10724 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + 23 q^{4} + 13 q^{5} + 14 q^{6} + 26 q^{9} - 5 q^{10} + q^{11} - 5 q^{12} - 5 q^{15} + 17 q^{16} + 5 q^{17} + 24 q^{19} + 34 q^{20} - 14 q^{22} + 11 q^{23} + 32 q^{24} + 33 q^{25} + 21 q^{27}+ \cdots + 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.877203 −0.620276 −0.310138 0.950692i \(-0.600375\pi\)
−0.310138 + 0.950692i \(0.600375\pi\)
\(3\) 0.755024 0.435913 0.217957 0.975958i \(-0.430061\pi\)
0.217957 + 0.975958i \(0.430061\pi\)
\(4\) −1.23052 −0.615258
\(5\) −0.265839 −0.118887 −0.0594434 0.998232i \(-0.518933\pi\)
−0.0594434 + 0.998232i \(0.518933\pi\)
\(6\) −0.662309 −0.270386
\(7\) 0 0
\(8\) 2.83382 1.00191
\(9\) −2.42994 −0.809980
\(10\) 0.233195 0.0737427
\(11\) −0.455666 −0.137388 −0.0686942 0.997638i \(-0.521883\pi\)
−0.0686942 + 0.997638i \(0.521883\pi\)
\(12\) −0.929068 −0.268199
\(13\) 0 0
\(14\) 0 0
\(15\) −0.200715 −0.0518243
\(16\) −0.0248023 −0.00620056
\(17\) 3.65702 0.886958 0.443479 0.896285i \(-0.353744\pi\)
0.443479 + 0.896285i \(0.353744\pi\)
\(18\) 2.13155 0.502411
\(19\) −3.55974 −0.816661 −0.408331 0.912834i \(-0.633889\pi\)
−0.408331 + 0.912834i \(0.633889\pi\)
\(20\) 0.327119 0.0731460
\(21\) 0 0
\(22\) 0.399712 0.0852188
\(23\) −3.07952 −0.642125 −0.321063 0.947058i \(-0.604040\pi\)
−0.321063 + 0.947058i \(0.604040\pi\)
\(24\) 2.13960 0.436744
\(25\) −4.92933 −0.985866
\(26\) 0 0
\(27\) −4.09973 −0.788994
\(28\) 0 0
\(29\) −0.612999 −0.113831 −0.0569155 0.998379i \(-0.518127\pi\)
−0.0569155 + 0.998379i \(0.518127\pi\)
\(30\) 0.176068 0.0321454
\(31\) −10.7090 −1.92339 −0.961696 0.274119i \(-0.911614\pi\)
−0.961696 + 0.274119i \(0.911614\pi\)
\(32\) −5.64588 −0.998060
\(33\) −0.344039 −0.0598894
\(34\) −3.20795 −0.550159
\(35\) 0 0
\(36\) 2.99008 0.498346
\(37\) 2.18786 0.359682 0.179841 0.983696i \(-0.442442\pi\)
0.179841 + 0.983696i \(0.442442\pi\)
\(38\) 3.12262 0.506556
\(39\) 0 0
\(40\) −0.753339 −0.119113
\(41\) 7.13669 1.11456 0.557282 0.830323i \(-0.311844\pi\)
0.557282 + 0.830323i \(0.311844\pi\)
\(42\) 0 0
\(43\) 6.76740 1.03202 0.516009 0.856583i \(-0.327417\pi\)
0.516009 + 0.856583i \(0.327417\pi\)
\(44\) 0.560704 0.0845293
\(45\) 0.645973 0.0962959
\(46\) 2.70137 0.398295
\(47\) −7.47771 −1.09074 −0.545368 0.838197i \(-0.683610\pi\)
−0.545368 + 0.838197i \(0.683610\pi\)
\(48\) −0.0187263 −0.00270291
\(49\) 0 0
\(50\) 4.32402 0.611509
\(51\) 2.76114 0.386637
\(52\) 0 0
\(53\) −7.79148 −1.07024 −0.535121 0.844776i \(-0.679734\pi\)
−0.535121 + 0.844776i \(0.679734\pi\)
\(54\) 3.59630 0.489394
\(55\) 0.121134 0.0163337
\(56\) 0 0
\(57\) −2.68769 −0.355993
\(58\) 0.537725 0.0706067
\(59\) 11.6247 1.51341 0.756703 0.653758i \(-0.226809\pi\)
0.756703 + 0.653758i \(0.226809\pi\)
\(60\) 0.246983 0.0318853
\(61\) 1.59475 0.204186 0.102093 0.994775i \(-0.467446\pi\)
0.102093 + 0.994775i \(0.467446\pi\)
\(62\) 9.39396 1.19303
\(63\) 0 0
\(64\) 5.00218 0.625273
\(65\) 0 0
\(66\) 0.301792 0.0371480
\(67\) 9.39914 1.14829 0.574144 0.818755i \(-0.305335\pi\)
0.574144 + 0.818755i \(0.305335\pi\)
\(68\) −4.50002 −0.545708
\(69\) −2.32511 −0.279911
\(70\) 0 0
\(71\) 6.89894 0.818754 0.409377 0.912365i \(-0.365746\pi\)
0.409377 + 0.912365i \(0.365746\pi\)
\(72\) −6.88600 −0.811523
\(73\) 2.85100 0.333684 0.166842 0.985984i \(-0.446643\pi\)
0.166842 + 0.985984i \(0.446643\pi\)
\(74\) −1.91920 −0.223102
\(75\) −3.72176 −0.429752
\(76\) 4.38032 0.502457
\(77\) 0 0
\(78\) 0 0
\(79\) 8.73448 0.982706 0.491353 0.870960i \(-0.336502\pi\)
0.491353 + 0.870960i \(0.336502\pi\)
\(80\) 0.00659341 0.000737165 0
\(81\) 4.19442 0.466047
\(82\) −6.26033 −0.691337
\(83\) −7.51728 −0.825129 −0.412564 0.910928i \(-0.635367\pi\)
−0.412564 + 0.910928i \(0.635367\pi\)
\(84\) 0 0
\(85\) −0.972179 −0.105448
\(86\) −5.93638 −0.640136
\(87\) −0.462829 −0.0496205
\(88\) −1.29127 −0.137650
\(89\) 8.42769 0.893333 0.446666 0.894701i \(-0.352611\pi\)
0.446666 + 0.894701i \(0.352611\pi\)
\(90\) −0.566649 −0.0597301
\(91\) 0 0
\(92\) 3.78940 0.395072
\(93\) −8.08554 −0.838432
\(94\) 6.55947 0.676557
\(95\) 0.946319 0.0970903
\(96\) −4.26277 −0.435067
\(97\) −1.61319 −0.163795 −0.0818975 0.996641i \(-0.526098\pi\)
−0.0818975 + 0.996641i \(0.526098\pi\)
\(98\) 0 0
\(99\) 1.10724 0.111282
\(100\) 6.06561 0.606561
\(101\) −7.29769 −0.726147 −0.363074 0.931760i \(-0.618273\pi\)
−0.363074 + 0.931760i \(0.618273\pi\)
\(102\) −2.42208 −0.239822
\(103\) 8.16853 0.804869 0.402434 0.915449i \(-0.368164\pi\)
0.402434 + 0.915449i \(0.368164\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 6.83471 0.663845
\(107\) −16.4079 −1.58621 −0.793104 0.609087i \(-0.791536\pi\)
−0.793104 + 0.609087i \(0.791536\pi\)
\(108\) 5.04478 0.485434
\(109\) 5.96790 0.571621 0.285811 0.958286i \(-0.407737\pi\)
0.285811 + 0.958286i \(0.407737\pi\)
\(110\) −0.106259 −0.0101314
\(111\) 1.65189 0.156790
\(112\) 0 0
\(113\) −16.9748 −1.59685 −0.798426 0.602093i \(-0.794334\pi\)
−0.798426 + 0.602093i \(0.794334\pi\)
\(114\) 2.35765 0.220814
\(115\) 0.818658 0.0763402
\(116\) 0.754305 0.0700354
\(117\) 0 0
\(118\) −10.1972 −0.938730
\(119\) 0 0
\(120\) −0.568789 −0.0519231
\(121\) −10.7924 −0.981124
\(122\) −1.39892 −0.126652
\(123\) 5.38837 0.485853
\(124\) 13.1776 1.18338
\(125\) 2.63960 0.236093
\(126\) 0 0
\(127\) 13.3247 1.18238 0.591188 0.806534i \(-0.298659\pi\)
0.591188 + 0.806534i \(0.298659\pi\)
\(128\) 6.90382 0.610218
\(129\) 5.10955 0.449870
\(130\) 0 0
\(131\) −15.2631 −1.33355 −0.666773 0.745260i \(-0.732325\pi\)
−0.666773 + 0.745260i \(0.732325\pi\)
\(132\) 0.423345 0.0368474
\(133\) 0 0
\(134\) −8.24495 −0.712255
\(135\) 1.08987 0.0938010
\(136\) 10.3633 0.888648
\(137\) 13.6118 1.16293 0.581466 0.813571i \(-0.302479\pi\)
0.581466 + 0.813571i \(0.302479\pi\)
\(138\) 2.03960 0.173622
\(139\) −14.3332 −1.21573 −0.607863 0.794042i \(-0.707973\pi\)
−0.607863 + 0.794042i \(0.707973\pi\)
\(140\) 0 0
\(141\) −5.64585 −0.475466
\(142\) −6.05177 −0.507854
\(143\) 0 0
\(144\) 0.0602680 0.00502233
\(145\) 0.162959 0.0135330
\(146\) −2.50090 −0.206976
\(147\) 0 0
\(148\) −2.69220 −0.221297
\(149\) −19.6559 −1.61027 −0.805136 0.593090i \(-0.797908\pi\)
−0.805136 + 0.593090i \(0.797908\pi\)
\(150\) 3.26474 0.266565
\(151\) −1.93740 −0.157664 −0.0788319 0.996888i \(-0.525119\pi\)
−0.0788319 + 0.996888i \(0.525119\pi\)
\(152\) −10.0877 −0.818218
\(153\) −8.88634 −0.718418
\(154\) 0 0
\(155\) 2.84687 0.228666
\(156\) 0 0
\(157\) −24.7415 −1.97458 −0.987291 0.158920i \(-0.949199\pi\)
−0.987291 + 0.158920i \(0.949199\pi\)
\(158\) −7.66191 −0.609549
\(159\) −5.88275 −0.466532
\(160\) 1.50089 0.118656
\(161\) 0 0
\(162\) −3.67936 −0.289078
\(163\) −6.74233 −0.528100 −0.264050 0.964509i \(-0.585058\pi\)
−0.264050 + 0.964509i \(0.585058\pi\)
\(164\) −8.78181 −0.685744
\(165\) 0.0914589 0.00712006
\(166\) 6.59418 0.511808
\(167\) 2.06354 0.159681 0.0798407 0.996808i \(-0.474559\pi\)
0.0798407 + 0.996808i \(0.474559\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0.852798 0.0654066
\(171\) 8.64996 0.661479
\(172\) −8.32738 −0.634957
\(173\) 13.5227 1.02811 0.514057 0.857756i \(-0.328142\pi\)
0.514057 + 0.857756i \(0.328142\pi\)
\(174\) 0.405995 0.0307784
\(175\) 0 0
\(176\) 0.0113015 0.000851886 0
\(177\) 8.77692 0.659714
\(178\) −7.39279 −0.554113
\(179\) −8.62973 −0.645017 −0.322508 0.946567i \(-0.604526\pi\)
−0.322508 + 0.946567i \(0.604526\pi\)
\(180\) −0.794879 −0.0592468
\(181\) 23.4579 1.74361 0.871806 0.489852i \(-0.162949\pi\)
0.871806 + 0.489852i \(0.162949\pi\)
\(182\) 0 0
\(183\) 1.20407 0.0890075
\(184\) −8.72681 −0.643349
\(185\) −0.581619 −0.0427615
\(186\) 7.09266 0.520059
\(187\) −1.66638 −0.121858
\(188\) 9.20143 0.671084
\(189\) 0 0
\(190\) −0.830114 −0.0602228
\(191\) 17.1685 1.24227 0.621134 0.783705i \(-0.286672\pi\)
0.621134 + 0.783705i \(0.286672\pi\)
\(192\) 3.77677 0.272565
\(193\) 16.1895 1.16534 0.582672 0.812707i \(-0.302007\pi\)
0.582672 + 0.812707i \(0.302007\pi\)
\(194\) 1.41510 0.101598
\(195\) 0 0
\(196\) 0 0
\(197\) 14.1272 1.00652 0.503262 0.864134i \(-0.332133\pi\)
0.503262 + 0.864134i \(0.332133\pi\)
\(198\) −0.971275 −0.0690255
\(199\) −13.7329 −0.973499 −0.486749 0.873542i \(-0.661817\pi\)
−0.486749 + 0.873542i \(0.661817\pi\)
\(200\) −13.9688 −0.987745
\(201\) 7.09657 0.500554
\(202\) 6.40155 0.450412
\(203\) 0 0
\(204\) −3.39762 −0.237881
\(205\) −1.89721 −0.132507
\(206\) −7.16546 −0.499241
\(207\) 7.48306 0.520109
\(208\) 0 0
\(209\) 1.62205 0.112200
\(210\) 0 0
\(211\) 18.7380 1.28998 0.644988 0.764193i \(-0.276863\pi\)
0.644988 + 0.764193i \(0.276863\pi\)
\(212\) 9.58753 0.658474
\(213\) 5.20887 0.356906
\(214\) 14.3930 0.983886
\(215\) −1.79904 −0.122693
\(216\) −11.6179 −0.790497
\(217\) 0 0
\(218\) −5.23506 −0.354563
\(219\) 2.15257 0.145457
\(220\) −0.149057 −0.0100494
\(221\) 0 0
\(222\) −1.44904 −0.0972533
\(223\) −3.78482 −0.253450 −0.126725 0.991938i \(-0.540447\pi\)
−0.126725 + 0.991938i \(0.540447\pi\)
\(224\) 0 0
\(225\) 11.9780 0.798531
\(226\) 14.8903 0.990489
\(227\) 9.00380 0.597603 0.298802 0.954315i \(-0.403413\pi\)
0.298802 + 0.954315i \(0.403413\pi\)
\(228\) 3.30724 0.219028
\(229\) 1.08397 0.0716306 0.0358153 0.999358i \(-0.488597\pi\)
0.0358153 + 0.999358i \(0.488597\pi\)
\(230\) −0.718129 −0.0473520
\(231\) 0 0
\(232\) −1.73713 −0.114048
\(233\) −14.1071 −0.924186 −0.462093 0.886831i \(-0.652901\pi\)
−0.462093 + 0.886831i \(0.652901\pi\)
\(234\) 0 0
\(235\) 1.98787 0.129674
\(236\) −14.3044 −0.931135
\(237\) 6.59474 0.428375
\(238\) 0 0
\(239\) 18.9679 1.22693 0.613467 0.789721i \(-0.289775\pi\)
0.613467 + 0.789721i \(0.289775\pi\)
\(240\) 0.00497818 0.000321340 0
\(241\) 25.1138 1.61772 0.808862 0.587999i \(-0.200084\pi\)
0.808862 + 0.587999i \(0.200084\pi\)
\(242\) 9.46710 0.608568
\(243\) 15.4661 0.992150
\(244\) −1.96236 −0.125627
\(245\) 0 0
\(246\) −4.72670 −0.301363
\(247\) 0 0
\(248\) −30.3473 −1.92706
\(249\) −5.67572 −0.359684
\(250\) −2.31547 −0.146443
\(251\) 21.2412 1.34073 0.670367 0.742030i \(-0.266137\pi\)
0.670367 + 0.742030i \(0.266137\pi\)
\(252\) 0 0
\(253\) 1.40323 0.0882206
\(254\) −11.6885 −0.733399
\(255\) −0.734018 −0.0459660
\(256\) −16.0604 −1.00378
\(257\) −25.3217 −1.57952 −0.789762 0.613413i \(-0.789796\pi\)
−0.789762 + 0.613413i \(0.789796\pi\)
\(258\) −4.48211 −0.279044
\(259\) 0 0
\(260\) 0 0
\(261\) 1.48955 0.0922009
\(262\) 13.3889 0.827167
\(263\) 10.4189 0.642458 0.321229 0.947002i \(-0.395904\pi\)
0.321229 + 0.947002i \(0.395904\pi\)
\(264\) −0.974943 −0.0600036
\(265\) 2.07128 0.127238
\(266\) 0 0
\(267\) 6.36310 0.389416
\(268\) −11.5658 −0.706492
\(269\) −29.5305 −1.80051 −0.900254 0.435365i \(-0.856619\pi\)
−0.900254 + 0.435365i \(0.856619\pi\)
\(270\) −0.956036 −0.0581825
\(271\) 25.4321 1.54489 0.772446 0.635081i \(-0.219033\pi\)
0.772446 + 0.635081i \(0.219033\pi\)
\(272\) −0.0907024 −0.00549964
\(273\) 0 0
\(274\) −11.9403 −0.721339
\(275\) 2.24613 0.135447
\(276\) 2.86109 0.172217
\(277\) 11.4076 0.685416 0.342708 0.939442i \(-0.388656\pi\)
0.342708 + 0.939442i \(0.388656\pi\)
\(278\) 12.5731 0.754086
\(279\) 26.0222 1.55791
\(280\) 0 0
\(281\) −11.9773 −0.714507 −0.357253 0.934008i \(-0.616287\pi\)
−0.357253 + 0.934008i \(0.616287\pi\)
\(282\) 4.95255 0.294920
\(283\) −2.32905 −0.138448 −0.0692239 0.997601i \(-0.522052\pi\)
−0.0692239 + 0.997601i \(0.522052\pi\)
\(284\) −8.48925 −0.503745
\(285\) 0.714493 0.0423229
\(286\) 0 0
\(287\) 0 0
\(288\) 13.7191 0.808408
\(289\) −3.62619 −0.213305
\(290\) −0.142948 −0.00839421
\(291\) −1.21800 −0.0714004
\(292\) −3.50820 −0.205302
\(293\) 29.8421 1.74339 0.871696 0.490047i \(-0.163021\pi\)
0.871696 + 0.490047i \(0.163021\pi\)
\(294\) 0 0
\(295\) −3.09030 −0.179924
\(296\) 6.20000 0.360368
\(297\) 1.86811 0.108399
\(298\) 17.2422 0.998813
\(299\) 0 0
\(300\) 4.57968 0.264408
\(301\) 0 0
\(302\) 1.69950 0.0977950
\(303\) −5.50993 −0.316537
\(304\) 0.0882897 0.00506376
\(305\) −0.423946 −0.0242750
\(306\) 7.79512 0.445618
\(307\) 13.3825 0.763780 0.381890 0.924208i \(-0.375273\pi\)
0.381890 + 0.924208i \(0.375273\pi\)
\(308\) 0 0
\(309\) 6.16743 0.350853
\(310\) −2.49728 −0.141836
\(311\) 20.2744 1.14966 0.574828 0.818275i \(-0.305069\pi\)
0.574828 + 0.818275i \(0.305069\pi\)
\(312\) 0 0
\(313\) −1.18573 −0.0670215 −0.0335107 0.999438i \(-0.510669\pi\)
−0.0335107 + 0.999438i \(0.510669\pi\)
\(314\) 21.7033 1.22479
\(315\) 0 0
\(316\) −10.7479 −0.604617
\(317\) −3.81328 −0.214175 −0.107087 0.994250i \(-0.534152\pi\)
−0.107087 + 0.994250i \(0.534152\pi\)
\(318\) 5.16036 0.289379
\(319\) 0.279323 0.0156391
\(320\) −1.32978 −0.0743367
\(321\) −12.3883 −0.691448
\(322\) 0 0
\(323\) −13.0181 −0.724344
\(324\) −5.16130 −0.286739
\(325\) 0 0
\(326\) 5.91439 0.327568
\(327\) 4.50591 0.249177
\(328\) 20.2241 1.11669
\(329\) 0 0
\(330\) −0.0802280 −0.00441641
\(331\) −9.78226 −0.537682 −0.268841 0.963185i \(-0.586641\pi\)
−0.268841 + 0.963185i \(0.586641\pi\)
\(332\) 9.25013 0.507667
\(333\) −5.31637 −0.291335
\(334\) −1.81014 −0.0990466
\(335\) −2.49866 −0.136516
\(336\) 0 0
\(337\) −7.21841 −0.393212 −0.196606 0.980483i \(-0.562992\pi\)
−0.196606 + 0.980483i \(0.562992\pi\)
\(338\) 0 0
\(339\) −12.8164 −0.696089
\(340\) 1.19628 0.0648775
\(341\) 4.87972 0.264252
\(342\) −7.58777 −0.410300
\(343\) 0 0
\(344\) 19.1776 1.03399
\(345\) 0.618106 0.0332777
\(346\) −11.8622 −0.637714
\(347\) 14.8788 0.798736 0.399368 0.916791i \(-0.369230\pi\)
0.399368 + 0.916791i \(0.369230\pi\)
\(348\) 0.569518 0.0305294
\(349\) 6.61098 0.353878 0.176939 0.984222i \(-0.443380\pi\)
0.176939 + 0.984222i \(0.443380\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.57263 0.137122
\(353\) 35.3388 1.88089 0.940447 0.339939i \(-0.110407\pi\)
0.940447 + 0.339939i \(0.110407\pi\)
\(354\) −7.69914 −0.409205
\(355\) −1.83401 −0.0973391
\(356\) −10.3704 −0.549630
\(357\) 0 0
\(358\) 7.57003 0.400088
\(359\) 14.0258 0.740252 0.370126 0.928981i \(-0.379314\pi\)
0.370126 + 0.928981i \(0.379314\pi\)
\(360\) 1.83057 0.0964794
\(361\) −6.32822 −0.333064
\(362\) −20.5773 −1.08152
\(363\) −8.14849 −0.427685
\(364\) 0 0
\(365\) −0.757907 −0.0396707
\(366\) −1.05621 −0.0552092
\(367\) 25.3700 1.32430 0.662152 0.749369i \(-0.269643\pi\)
0.662152 + 0.749369i \(0.269643\pi\)
\(368\) 0.0763792 0.00398154
\(369\) −17.3417 −0.902774
\(370\) 0.510198 0.0265239
\(371\) 0 0
\(372\) 9.94938 0.515851
\(373\) 18.2160 0.943188 0.471594 0.881816i \(-0.343679\pi\)
0.471594 + 0.881816i \(0.343679\pi\)
\(374\) 1.46175 0.0755855
\(375\) 1.99296 0.102916
\(376\) −21.1905 −1.09281
\(377\) 0 0
\(378\) 0 0
\(379\) −7.24143 −0.371968 −0.185984 0.982553i \(-0.559547\pi\)
−0.185984 + 0.982553i \(0.559547\pi\)
\(380\) −1.16446 −0.0597355
\(381\) 10.0605 0.515413
\(382\) −15.0602 −0.770549
\(383\) −0.367176 −0.0187618 −0.00938091 0.999956i \(-0.502986\pi\)
−0.00938091 + 0.999956i \(0.502986\pi\)
\(384\) 5.21255 0.266002
\(385\) 0 0
\(386\) −14.2015 −0.722835
\(387\) −16.4444 −0.835914
\(388\) 1.98506 0.100776
\(389\) 11.1560 0.565631 0.282815 0.959174i \(-0.408732\pi\)
0.282815 + 0.959174i \(0.408732\pi\)
\(390\) 0 0
\(391\) −11.2619 −0.569538
\(392\) 0 0
\(393\) −11.5240 −0.581311
\(394\) −12.3924 −0.624322
\(395\) −2.32197 −0.116831
\(396\) −1.36248 −0.0684670
\(397\) 3.17876 0.159537 0.0797686 0.996813i \(-0.474582\pi\)
0.0797686 + 0.996813i \(0.474582\pi\)
\(398\) 12.0465 0.603838
\(399\) 0 0
\(400\) 0.122258 0.00611292
\(401\) −8.09236 −0.404113 −0.202057 0.979374i \(-0.564763\pi\)
−0.202057 + 0.979374i \(0.564763\pi\)
\(402\) −6.22513 −0.310481
\(403\) 0 0
\(404\) 8.97992 0.446767
\(405\) −1.11504 −0.0554068
\(406\) 0 0
\(407\) −0.996934 −0.0494162
\(408\) 7.82456 0.387374
\(409\) 3.13028 0.154783 0.0773913 0.997001i \(-0.475341\pi\)
0.0773913 + 0.997001i \(0.475341\pi\)
\(410\) 1.66424 0.0821909
\(411\) 10.2772 0.506937
\(412\) −10.0515 −0.495202
\(413\) 0 0
\(414\) −6.56416 −0.322611
\(415\) 1.99839 0.0980969
\(416\) 0 0
\(417\) −10.8219 −0.529951
\(418\) −1.42287 −0.0695949
\(419\) −11.4655 −0.560128 −0.280064 0.959981i \(-0.590356\pi\)
−0.280064 + 0.959981i \(0.590356\pi\)
\(420\) 0 0
\(421\) −22.1642 −1.08022 −0.540108 0.841596i \(-0.681617\pi\)
−0.540108 + 0.841596i \(0.681617\pi\)
\(422\) −16.4370 −0.800141
\(423\) 18.1704 0.883474
\(424\) −22.0796 −1.07228
\(425\) −18.0267 −0.874422
\(426\) −4.56923 −0.221380
\(427\) 0 0
\(428\) 20.1901 0.975926
\(429\) 0 0
\(430\) 1.57812 0.0761038
\(431\) 21.3135 1.02664 0.513319 0.858198i \(-0.328416\pi\)
0.513319 + 0.858198i \(0.328416\pi\)
\(432\) 0.101683 0.00489221
\(433\) −0.0447167 −0.00214895 −0.00107447 0.999999i \(-0.500342\pi\)
−0.00107447 + 0.999999i \(0.500342\pi\)
\(434\) 0 0
\(435\) 0.123038 0.00589922
\(436\) −7.34359 −0.351694
\(437\) 10.9623 0.524399
\(438\) −1.88824 −0.0902237
\(439\) 3.32925 0.158896 0.0794481 0.996839i \(-0.474684\pi\)
0.0794481 + 0.996839i \(0.474684\pi\)
\(440\) 0.343271 0.0163648
\(441\) 0 0
\(442\) 0 0
\(443\) 30.4552 1.44697 0.723485 0.690340i \(-0.242539\pi\)
0.723485 + 0.690340i \(0.242539\pi\)
\(444\) −2.03267 −0.0964664
\(445\) −2.24041 −0.106206
\(446\) 3.32006 0.157209
\(447\) −14.8407 −0.701939
\(448\) 0 0
\(449\) 6.77363 0.319667 0.159834 0.987144i \(-0.448904\pi\)
0.159834 + 0.987144i \(0.448904\pi\)
\(450\) −10.5071 −0.495310
\(451\) −3.25195 −0.153128
\(452\) 20.8877 0.982475
\(453\) −1.46279 −0.0687277
\(454\) −7.89816 −0.370679
\(455\) 0 0
\(456\) −7.61643 −0.356672
\(457\) −32.1702 −1.50486 −0.752430 0.658672i \(-0.771118\pi\)
−0.752430 + 0.658672i \(0.771118\pi\)
\(458\) −0.950859 −0.0444307
\(459\) −14.9928 −0.699805
\(460\) −1.00737 −0.0469689
\(461\) −24.4018 −1.13651 −0.568253 0.822854i \(-0.692380\pi\)
−0.568253 + 0.822854i \(0.692380\pi\)
\(462\) 0 0
\(463\) 23.4370 1.08921 0.544604 0.838693i \(-0.316680\pi\)
0.544604 + 0.838693i \(0.316680\pi\)
\(464\) 0.0152038 0.000705817 0
\(465\) 2.14945 0.0996785
\(466\) 12.3748 0.573251
\(467\) 27.8751 1.28990 0.644952 0.764223i \(-0.276877\pi\)
0.644952 + 0.764223i \(0.276877\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1.74376 −0.0804338
\(471\) −18.6804 −0.860747
\(472\) 32.9423 1.51629
\(473\) −3.08367 −0.141787
\(474\) −5.78493 −0.265710
\(475\) 17.5472 0.805119
\(476\) 0 0
\(477\) 18.9328 0.866874
\(478\) −16.6387 −0.761037
\(479\) 2.07202 0.0946729 0.0473365 0.998879i \(-0.484927\pi\)
0.0473365 + 0.998879i \(0.484927\pi\)
\(480\) 1.13321 0.0517238
\(481\) 0 0
\(482\) −22.0299 −1.00343
\(483\) 0 0
\(484\) 13.2802 0.603644
\(485\) 0.428850 0.0194731
\(486\) −13.5669 −0.615407
\(487\) −6.01962 −0.272775 −0.136388 0.990656i \(-0.543549\pi\)
−0.136388 + 0.990656i \(0.543549\pi\)
\(488\) 4.51922 0.204575
\(489\) −5.09062 −0.230206
\(490\) 0 0
\(491\) 2.01551 0.0909588 0.0454794 0.998965i \(-0.485518\pi\)
0.0454794 + 0.998965i \(0.485518\pi\)
\(492\) −6.63047 −0.298925
\(493\) −2.24175 −0.100963
\(494\) 0 0
\(495\) −0.294348 −0.0132299
\(496\) 0.265607 0.0119261
\(497\) 0 0
\(498\) 4.97876 0.223104
\(499\) 7.51174 0.336272 0.168136 0.985764i \(-0.446225\pi\)
0.168136 + 0.985764i \(0.446225\pi\)
\(500\) −3.24807 −0.145258
\(501\) 1.55802 0.0696072
\(502\) −18.6329 −0.831625
\(503\) 15.1154 0.673962 0.336981 0.941511i \(-0.390594\pi\)
0.336981 + 0.941511i \(0.390594\pi\)
\(504\) 0 0
\(505\) 1.94001 0.0863293
\(506\) −1.23092 −0.0547211
\(507\) 0 0
\(508\) −16.3962 −0.727466
\(509\) 36.6699 1.62537 0.812683 0.582706i \(-0.198006\pi\)
0.812683 + 0.582706i \(0.198006\pi\)
\(510\) 0.643883 0.0285116
\(511\) 0 0
\(512\) 0.280601 0.0124009
\(513\) 14.5940 0.644341
\(514\) 22.2123 0.979742
\(515\) −2.17151 −0.0956883
\(516\) −6.28737 −0.276786
\(517\) 3.40734 0.149855
\(518\) 0 0
\(519\) 10.2100 0.448168
\(520\) 0 0
\(521\) 31.8083 1.39355 0.696774 0.717291i \(-0.254618\pi\)
0.696774 + 0.717291i \(0.254618\pi\)
\(522\) −1.30664 −0.0571900
\(523\) 39.5596 1.72982 0.864909 0.501928i \(-0.167376\pi\)
0.864909 + 0.501928i \(0.167376\pi\)
\(524\) 18.7815 0.820475
\(525\) 0 0
\(526\) −9.13951 −0.398501
\(527\) −39.1630 −1.70597
\(528\) 0.00853293 0.000371348 0
\(529\) −13.5165 −0.587675
\(530\) −1.81693 −0.0789224
\(531\) −28.2473 −1.22583
\(532\) 0 0
\(533\) 0 0
\(534\) −5.58173 −0.241545
\(535\) 4.36185 0.188579
\(536\) 26.6354 1.15048
\(537\) −6.51565 −0.281171
\(538\) 25.9043 1.11681
\(539\) 0 0
\(540\) −1.34110 −0.0577118
\(541\) −22.2284 −0.955673 −0.477836 0.878449i \(-0.658579\pi\)
−0.477836 + 0.878449i \(0.658579\pi\)
\(542\) −22.3091 −0.958259
\(543\) 17.7113 0.760063
\(544\) −20.6471 −0.885237
\(545\) −1.58650 −0.0679582
\(546\) 0 0
\(547\) −14.1989 −0.607100 −0.303550 0.952816i \(-0.598172\pi\)
−0.303550 + 0.952816i \(0.598172\pi\)
\(548\) −16.7495 −0.715503
\(549\) −3.87513 −0.165387
\(550\) −1.97031 −0.0840143
\(551\) 2.18212 0.0929615
\(552\) −6.58895 −0.280444
\(553\) 0 0
\(554\) −10.0068 −0.425147
\(555\) −0.439136 −0.0186403
\(556\) 17.6372 0.747985
\(557\) −26.6179 −1.12784 −0.563918 0.825831i \(-0.690707\pi\)
−0.563918 + 0.825831i \(0.690707\pi\)
\(558\) −22.8267 −0.966333
\(559\) 0 0
\(560\) 0 0
\(561\) −1.25816 −0.0531194
\(562\) 10.5065 0.443191
\(563\) 20.9514 0.882996 0.441498 0.897262i \(-0.354447\pi\)
0.441498 + 0.897262i \(0.354447\pi\)
\(564\) 6.94730 0.292534
\(565\) 4.51256 0.189845
\(566\) 2.04305 0.0858759
\(567\) 0 0
\(568\) 19.5503 0.820314
\(569\) −1.12515 −0.0471686 −0.0235843 0.999722i \(-0.507508\pi\)
−0.0235843 + 0.999722i \(0.507508\pi\)
\(570\) −0.626755 −0.0262519
\(571\) −41.6288 −1.74211 −0.871055 0.491185i \(-0.836564\pi\)
−0.871055 + 0.491185i \(0.836564\pi\)
\(572\) 0 0
\(573\) 12.9626 0.541521
\(574\) 0 0
\(575\) 15.1800 0.633049
\(576\) −12.1550 −0.506459
\(577\) −29.4246 −1.22496 −0.612481 0.790485i \(-0.709829\pi\)
−0.612481 + 0.790485i \(0.709829\pi\)
\(578\) 3.18090 0.132308
\(579\) 12.2234 0.507989
\(580\) −0.200524 −0.00832629
\(581\) 0 0
\(582\) 1.06843 0.0442879
\(583\) 3.55031 0.147039
\(584\) 8.07921 0.334320
\(585\) 0 0
\(586\) −26.1775 −1.08138
\(587\) 36.0961 1.48985 0.744923 0.667150i \(-0.232486\pi\)
0.744923 + 0.667150i \(0.232486\pi\)
\(588\) 0 0
\(589\) 38.1213 1.57076
\(590\) 2.71082 0.111603
\(591\) 10.6664 0.438757
\(592\) −0.0542639 −0.00223023
\(593\) 4.07766 0.167449 0.0837246 0.996489i \(-0.473318\pi\)
0.0837246 + 0.996489i \(0.473318\pi\)
\(594\) −1.63871 −0.0672371
\(595\) 0 0
\(596\) 24.1869 0.990732
\(597\) −10.3687 −0.424361
\(598\) 0 0
\(599\) −25.3993 −1.03779 −0.518894 0.854839i \(-0.673656\pi\)
−0.518894 + 0.854839i \(0.673656\pi\)
\(600\) −10.5468 −0.430571
\(601\) 43.4761 1.77343 0.886713 0.462321i \(-0.152983\pi\)
0.886713 + 0.462321i \(0.152983\pi\)
\(602\) 0 0
\(603\) −22.8393 −0.930089
\(604\) 2.38401 0.0970038
\(605\) 2.86903 0.116643
\(606\) 4.83332 0.196340
\(607\) 18.2340 0.740094 0.370047 0.929013i \(-0.379342\pi\)
0.370047 + 0.929013i \(0.379342\pi\)
\(608\) 20.0979 0.815077
\(609\) 0 0
\(610\) 0.371886 0.0150572
\(611\) 0 0
\(612\) 10.9348 0.442012
\(613\) 32.2272 1.30165 0.650823 0.759230i \(-0.274424\pi\)
0.650823 + 0.759230i \(0.274424\pi\)
\(614\) −11.7392 −0.473755
\(615\) −1.43244 −0.0577615
\(616\) 0 0
\(617\) 37.0753 1.49260 0.746298 0.665612i \(-0.231830\pi\)
0.746298 + 0.665612i \(0.231830\pi\)
\(618\) −5.41009 −0.217626
\(619\) 33.8527 1.36066 0.680328 0.732908i \(-0.261837\pi\)
0.680328 + 0.732908i \(0.261837\pi\)
\(620\) −3.50311 −0.140688
\(621\) 12.6252 0.506633
\(622\) −17.7848 −0.713104
\(623\) 0 0
\(624\) 0 0
\(625\) 23.9449 0.957798
\(626\) 1.04013 0.0415718
\(627\) 1.22469 0.0489094
\(628\) 30.4447 1.21488
\(629\) 8.00106 0.319023
\(630\) 0 0
\(631\) 33.2239 1.32262 0.661311 0.750111i \(-0.270000\pi\)
0.661311 + 0.750111i \(0.270000\pi\)
\(632\) 24.7519 0.984579
\(633\) 14.1476 0.562317
\(634\) 3.34502 0.132848
\(635\) −3.54222 −0.140569
\(636\) 7.23881 0.287038
\(637\) 0 0
\(638\) −0.245023 −0.00970055
\(639\) −16.7640 −0.663174
\(640\) −1.83531 −0.0725468
\(641\) −11.8377 −0.467561 −0.233780 0.972289i \(-0.575110\pi\)
−0.233780 + 0.972289i \(0.575110\pi\)
\(642\) 10.8671 0.428889
\(643\) 40.1562 1.58360 0.791802 0.610778i \(-0.209143\pi\)
0.791802 + 0.610778i \(0.209143\pi\)
\(644\) 0 0
\(645\) −1.35832 −0.0534837
\(646\) 11.4195 0.449294
\(647\) −3.17699 −0.124900 −0.0624501 0.998048i \(-0.519891\pi\)
−0.0624501 + 0.998048i \(0.519891\pi\)
\(648\) 11.8862 0.466935
\(649\) −5.29698 −0.207925
\(650\) 0 0
\(651\) 0 0
\(652\) 8.29654 0.324918
\(653\) 30.6776 1.20051 0.600253 0.799810i \(-0.295067\pi\)
0.600253 + 0.799810i \(0.295067\pi\)
\(654\) −3.95259 −0.154559
\(655\) 4.05754 0.158541
\(656\) −0.177006 −0.00691093
\(657\) −6.92775 −0.270277
\(658\) 0 0
\(659\) −8.19638 −0.319286 −0.159643 0.987175i \(-0.551034\pi\)
−0.159643 + 0.987175i \(0.551034\pi\)
\(660\) −0.112542 −0.00438067
\(661\) 30.8005 1.19800 0.599000 0.800749i \(-0.295565\pi\)
0.599000 + 0.800749i \(0.295565\pi\)
\(662\) 8.58102 0.333511
\(663\) 0 0
\(664\) −21.3026 −0.826701
\(665\) 0 0
\(666\) 4.66354 0.180708
\(667\) 1.88775 0.0730938
\(668\) −2.53922 −0.0982452
\(669\) −2.85763 −0.110482
\(670\) 2.19183 0.0846778
\(671\) −0.726671 −0.0280528
\(672\) 0 0
\(673\) −29.7292 −1.14598 −0.572988 0.819564i \(-0.694216\pi\)
−0.572988 + 0.819564i \(0.694216\pi\)
\(674\) 6.33201 0.243900
\(675\) 20.2089 0.777842
\(676\) 0 0
\(677\) 27.8067 1.06870 0.534349 0.845264i \(-0.320557\pi\)
0.534349 + 0.845264i \(0.320557\pi\)
\(678\) 11.2425 0.431767
\(679\) 0 0
\(680\) −2.75498 −0.105649
\(681\) 6.79808 0.260503
\(682\) −4.28051 −0.163909
\(683\) −13.8232 −0.528929 −0.264465 0.964395i \(-0.585195\pi\)
−0.264465 + 0.964395i \(0.585195\pi\)
\(684\) −10.6439 −0.406980
\(685\) −3.61854 −0.138257
\(686\) 0 0
\(687\) 0.818421 0.0312247
\(688\) −0.167847 −0.00639910
\(689\) 0 0
\(690\) −0.542204 −0.0206414
\(691\) −2.04187 −0.0776762 −0.0388381 0.999246i \(-0.512366\pi\)
−0.0388381 + 0.999246i \(0.512366\pi\)
\(692\) −16.6399 −0.632555
\(693\) 0 0
\(694\) −13.0517 −0.495437
\(695\) 3.81032 0.144534
\(696\) −1.31157 −0.0497150
\(697\) 26.0990 0.988572
\(698\) −5.79917 −0.219502
\(699\) −10.6512 −0.402865
\(700\) 0 0
\(701\) −27.0161 −1.02039 −0.510193 0.860060i \(-0.670426\pi\)
−0.510193 + 0.860060i \(0.670426\pi\)
\(702\) 0 0
\(703\) −7.78823 −0.293739
\(704\) −2.27933 −0.0859053
\(705\) 1.50089 0.0565267
\(706\) −30.9993 −1.16667
\(707\) 0 0
\(708\) −10.8001 −0.405894
\(709\) 2.83830 0.106595 0.0532973 0.998579i \(-0.483027\pi\)
0.0532973 + 0.998579i \(0.483027\pi\)
\(710\) 1.60880 0.0603771
\(711\) −21.2243 −0.795972
\(712\) 23.8825 0.895035
\(713\) 32.9786 1.23506
\(714\) 0 0
\(715\) 0 0
\(716\) 10.6190 0.396851
\(717\) 14.3212 0.534836
\(718\) −12.3035 −0.459161
\(719\) −39.2389 −1.46336 −0.731682 0.681646i \(-0.761264\pi\)
−0.731682 + 0.681646i \(0.761264\pi\)
\(720\) −0.0160216 −0.000597089 0
\(721\) 0 0
\(722\) 5.55113 0.206592
\(723\) 18.9615 0.705187
\(724\) −28.8653 −1.07277
\(725\) 3.02168 0.112222
\(726\) 7.14788 0.265283
\(727\) −12.9172 −0.479074 −0.239537 0.970887i \(-0.576996\pi\)
−0.239537 + 0.970887i \(0.576996\pi\)
\(728\) 0 0
\(729\) −0.906005 −0.0335558
\(730\) 0.664838 0.0246068
\(731\) 24.7485 0.915357
\(732\) −1.48163 −0.0547625
\(733\) −7.21963 −0.266663 −0.133332 0.991071i \(-0.542568\pi\)
−0.133332 + 0.991071i \(0.542568\pi\)
\(734\) −22.2547 −0.821434
\(735\) 0 0
\(736\) 17.3866 0.640879
\(737\) −4.28287 −0.157761
\(738\) 15.2122 0.559969
\(739\) −24.4029 −0.897677 −0.448838 0.893613i \(-0.648162\pi\)
−0.448838 + 0.893613i \(0.648162\pi\)
\(740\) 0.715691 0.0263093
\(741\) 0 0
\(742\) 0 0
\(743\) −43.6054 −1.59973 −0.799864 0.600182i \(-0.795095\pi\)
−0.799864 + 0.600182i \(0.795095\pi\)
\(744\) −22.9129 −0.840029
\(745\) 5.22530 0.191440
\(746\) −15.9791 −0.585037
\(747\) 18.2665 0.668338
\(748\) 2.05051 0.0749739
\(749\) 0 0
\(750\) −1.74823 −0.0638364
\(751\) 0.527048 0.0192322 0.00961612 0.999954i \(-0.496939\pi\)
0.00961612 + 0.999954i \(0.496939\pi\)
\(752\) 0.185464 0.00676318
\(753\) 16.0376 0.584444
\(754\) 0 0
\(755\) 0.515038 0.0187441
\(756\) 0 0
\(757\) −17.4591 −0.634563 −0.317282 0.948331i \(-0.602770\pi\)
−0.317282 + 0.948331i \(0.602770\pi\)
\(758\) 6.35221 0.230723
\(759\) 1.05948 0.0384565
\(760\) 2.68169 0.0972753
\(761\) −36.3311 −1.31700 −0.658501 0.752580i \(-0.728809\pi\)
−0.658501 + 0.752580i \(0.728809\pi\)
\(762\) −8.82507 −0.319698
\(763\) 0 0
\(764\) −21.1261 −0.764314
\(765\) 2.36234 0.0854104
\(766\) 0.322088 0.0116375
\(767\) 0 0
\(768\) −12.1260 −0.437559
\(769\) −30.7750 −1.10977 −0.554887 0.831926i \(-0.687239\pi\)
−0.554887 + 0.831926i \(0.687239\pi\)
\(770\) 0 0
\(771\) −19.1185 −0.688536
\(772\) −19.9214 −0.716987
\(773\) 29.6721 1.06723 0.533616 0.845727i \(-0.320833\pi\)
0.533616 + 0.845727i \(0.320833\pi\)
\(774\) 14.4250 0.518497
\(775\) 52.7881 1.89621
\(776\) −4.57149 −0.164107
\(777\) 0 0
\(778\) −9.78606 −0.350847
\(779\) −25.4048 −0.910221
\(780\) 0 0
\(781\) −3.14361 −0.112487
\(782\) 9.87896 0.353271
\(783\) 2.51313 0.0898120
\(784\) 0 0
\(785\) 6.57724 0.234752
\(786\) 10.1089 0.360573
\(787\) −27.5755 −0.982959 −0.491479 0.870889i \(-0.663544\pi\)
−0.491479 + 0.870889i \(0.663544\pi\)
\(788\) −17.3838 −0.619271
\(789\) 7.86653 0.280056
\(790\) 2.03684 0.0724674
\(791\) 0 0
\(792\) 3.13772 0.111494
\(793\) 0 0
\(794\) −2.78842 −0.0989572
\(795\) 1.56386 0.0554645
\(796\) 16.8985 0.598952
\(797\) 15.4319 0.546627 0.273314 0.961925i \(-0.411880\pi\)
0.273314 + 0.961925i \(0.411880\pi\)
\(798\) 0 0
\(799\) −27.3461 −0.967437
\(800\) 27.8304 0.983953
\(801\) −20.4788 −0.723582
\(802\) 7.09864 0.250662
\(803\) −1.29910 −0.0458444
\(804\) −8.73244 −0.307969
\(805\) 0 0
\(806\) 0 0
\(807\) −22.2962 −0.784865
\(808\) −20.6803 −0.727531
\(809\) 6.45513 0.226950 0.113475 0.993541i \(-0.463802\pi\)
0.113475 + 0.993541i \(0.463802\pi\)
\(810\) 0.978117 0.0343675
\(811\) −21.6726 −0.761027 −0.380513 0.924775i \(-0.624253\pi\)
−0.380513 + 0.924775i \(0.624253\pi\)
\(812\) 0 0
\(813\) 19.2019 0.673438
\(814\) 0.874514 0.0306517
\(815\) 1.79238 0.0627842
\(816\) −0.0684825 −0.00239737
\(817\) −24.0902 −0.842810
\(818\) −2.74589 −0.0960079
\(819\) 0 0
\(820\) 2.33455 0.0815259
\(821\) 24.7869 0.865068 0.432534 0.901618i \(-0.357620\pi\)
0.432534 + 0.901618i \(0.357620\pi\)
\(822\) −9.01520 −0.314441
\(823\) −12.1129 −0.422230 −0.211115 0.977461i \(-0.567709\pi\)
−0.211115 + 0.977461i \(0.567709\pi\)
\(824\) 23.1481 0.806403
\(825\) 1.69588 0.0590430
\(826\) 0 0
\(827\) −44.8946 −1.56114 −0.780569 0.625069i \(-0.785071\pi\)
−0.780569 + 0.625069i \(0.785071\pi\)
\(828\) −9.20802 −0.320001
\(829\) 1.74161 0.0604885 0.0302443 0.999543i \(-0.490371\pi\)
0.0302443 + 0.999543i \(0.490371\pi\)
\(830\) −1.75299 −0.0608472
\(831\) 8.61300 0.298782
\(832\) 0 0
\(833\) 0 0
\(834\) 9.49301 0.328716
\(835\) −0.548569 −0.0189840
\(836\) −1.99596 −0.0690318
\(837\) 43.9040 1.51754
\(838\) 10.0576 0.347434
\(839\) −6.96538 −0.240472 −0.120236 0.992745i \(-0.538365\pi\)
−0.120236 + 0.992745i \(0.538365\pi\)
\(840\) 0 0
\(841\) −28.6242 −0.987042
\(842\) 19.4425 0.670033
\(843\) −9.04316 −0.311463
\(844\) −23.0574 −0.793667
\(845\) 0 0
\(846\) −15.9391 −0.547998
\(847\) 0 0
\(848\) 0.193246 0.00663610
\(849\) −1.75849 −0.0603512
\(850\) 15.8130 0.542383
\(851\) −6.73758 −0.230961
\(852\) −6.40959 −0.219589
\(853\) 10.5953 0.362774 0.181387 0.983412i \(-0.441941\pi\)
0.181387 + 0.983412i \(0.441941\pi\)
\(854\) 0 0
\(855\) −2.29950 −0.0786412
\(856\) −46.4969 −1.58923
\(857\) 18.4590 0.630548 0.315274 0.949001i \(-0.397904\pi\)
0.315274 + 0.949001i \(0.397904\pi\)
\(858\) 0 0
\(859\) 38.9766 1.32986 0.664932 0.746904i \(-0.268460\pi\)
0.664932 + 0.746904i \(0.268460\pi\)
\(860\) 2.21374 0.0754880
\(861\) 0 0
\(862\) −18.6963 −0.636799
\(863\) −4.16284 −0.141705 −0.0708524 0.997487i \(-0.522572\pi\)
−0.0708524 + 0.997487i \(0.522572\pi\)
\(864\) 23.1466 0.787463
\(865\) −3.59487 −0.122229
\(866\) 0.0392256 0.00133294
\(867\) −2.73786 −0.0929825
\(868\) 0 0
\(869\) −3.98001 −0.135012
\(870\) −0.107929 −0.00365914
\(871\) 0 0
\(872\) 16.9119 0.572711
\(873\) 3.91996 0.132671
\(874\) −9.61618 −0.325272
\(875\) 0 0
\(876\) −2.64877 −0.0894937
\(877\) −3.57332 −0.120662 −0.0603312 0.998178i \(-0.519216\pi\)
−0.0603312 + 0.998178i \(0.519216\pi\)
\(878\) −2.92042 −0.0985595
\(879\) 22.5315 0.759967
\(880\) −0.00300439 −0.000101278 0
\(881\) 21.4938 0.724144 0.362072 0.932150i \(-0.382069\pi\)
0.362072 + 0.932150i \(0.382069\pi\)
\(882\) 0 0
\(883\) 7.48321 0.251830 0.125915 0.992041i \(-0.459813\pi\)
0.125915 + 0.992041i \(0.459813\pi\)
\(884\) 0 0
\(885\) −2.33325 −0.0784313
\(886\) −26.7154 −0.897521
\(887\) −29.4870 −0.990076 −0.495038 0.868871i \(-0.664846\pi\)
−0.495038 + 0.868871i \(0.664846\pi\)
\(888\) 4.68115 0.157089
\(889\) 0 0
\(890\) 1.96529 0.0658767
\(891\) −1.91126 −0.0640295
\(892\) 4.65728 0.155937
\(893\) 26.6187 0.890762
\(894\) 13.0183 0.435396
\(895\) 2.29412 0.0766840
\(896\) 0 0
\(897\) 0 0
\(898\) −5.94185 −0.198282
\(899\) 6.56460 0.218942
\(900\) −14.7391 −0.491303
\(901\) −28.4936 −0.949259
\(902\) 2.85262 0.0949818
\(903\) 0 0
\(904\) −48.1034 −1.59990
\(905\) −6.23602 −0.207292
\(906\) 1.28316 0.0426301
\(907\) −24.7641 −0.822280 −0.411140 0.911572i \(-0.634869\pi\)
−0.411140 + 0.911572i \(0.634869\pi\)
\(908\) −11.0793 −0.367680
\(909\) 17.7329 0.588164
\(910\) 0 0
\(911\) −5.42252 −0.179656 −0.0898281 0.995957i \(-0.528632\pi\)
−0.0898281 + 0.995957i \(0.528632\pi\)
\(912\) 0.0666608 0.00220736
\(913\) 3.42537 0.113363
\(914\) 28.2198 0.933429
\(915\) −0.320089 −0.0105818
\(916\) −1.33384 −0.0440713
\(917\) 0 0
\(918\) 13.1517 0.434072
\(919\) 13.8605 0.457215 0.228607 0.973519i \(-0.426583\pi\)
0.228607 + 0.973519i \(0.426583\pi\)
\(920\) 2.31993 0.0764857
\(921\) 10.1041 0.332942
\(922\) 21.4053 0.704947
\(923\) 0 0
\(924\) 0 0
\(925\) −10.7847 −0.354599
\(926\) −20.5590 −0.675610
\(927\) −19.8490 −0.651927
\(928\) 3.46092 0.113610
\(929\) 13.5503 0.444572 0.222286 0.974982i \(-0.428648\pi\)
0.222286 + 0.974982i \(0.428648\pi\)
\(930\) −1.88551 −0.0618282
\(931\) 0 0
\(932\) 17.3590 0.568613
\(933\) 15.3076 0.501150
\(934\) −24.4521 −0.800097
\(935\) 0.442989 0.0144873
\(936\) 0 0
\(937\) 9.85431 0.321926 0.160963 0.986960i \(-0.448540\pi\)
0.160963 + 0.986960i \(0.448540\pi\)
\(938\) 0 0
\(939\) −0.895255 −0.0292155
\(940\) −2.44610 −0.0797830
\(941\) 38.6166 1.25887 0.629433 0.777055i \(-0.283287\pi\)
0.629433 + 0.777055i \(0.283287\pi\)
\(942\) 16.3865 0.533901
\(943\) −21.9776 −0.715690
\(944\) −0.288319 −0.00938398
\(945\) 0 0
\(946\) 2.70501 0.0879473
\(947\) 34.7023 1.12767 0.563837 0.825886i \(-0.309325\pi\)
0.563837 + 0.825886i \(0.309325\pi\)
\(948\) −8.11493 −0.263561
\(949\) 0 0
\(950\) −15.3924 −0.499396
\(951\) −2.87911 −0.0933617
\(952\) 0 0
\(953\) −8.61339 −0.279015 −0.139508 0.990221i \(-0.544552\pi\)
−0.139508 + 0.990221i \(0.544552\pi\)
\(954\) −16.6079 −0.537701
\(955\) −4.56405 −0.147689
\(956\) −23.3403 −0.754880
\(957\) 0.210895 0.00681728
\(958\) −1.81758 −0.0587234
\(959\) 0 0
\(960\) −1.00401 −0.0324044
\(961\) 83.6825 2.69943
\(962\) 0 0
\(963\) 39.8701 1.28480
\(964\) −30.9029 −0.995316
\(965\) −4.30379 −0.138544
\(966\) 0 0
\(967\) 12.9432 0.416225 0.208113 0.978105i \(-0.433268\pi\)
0.208113 + 0.978105i \(0.433268\pi\)
\(968\) −30.5836 −0.982994
\(969\) −9.82895 −0.315751
\(970\) −0.376188 −0.0120787
\(971\) −31.7833 −1.01997 −0.509987 0.860182i \(-0.670350\pi\)
−0.509987 + 0.860182i \(0.670350\pi\)
\(972\) −19.0313 −0.610428
\(973\) 0 0
\(974\) 5.28043 0.169196
\(975\) 0 0
\(976\) −0.0395533 −0.00126607
\(977\) −18.7110 −0.598618 −0.299309 0.954156i \(-0.596756\pi\)
−0.299309 + 0.954156i \(0.596756\pi\)
\(978\) 4.46551 0.142791
\(979\) −3.84021 −0.122734
\(980\) 0 0
\(981\) −14.5016 −0.463002
\(982\) −1.76801 −0.0564196
\(983\) 6.32468 0.201726 0.100863 0.994900i \(-0.467840\pi\)
0.100863 + 0.994900i \(0.467840\pi\)
\(984\) 15.2697 0.486779
\(985\) −3.75557 −0.119662
\(986\) 1.96647 0.0626252
\(987\) 0 0
\(988\) 0 0
\(989\) −20.8404 −0.662685
\(990\) 0.258203 0.00820622
\(991\) 15.5948 0.495387 0.247693 0.968838i \(-0.420327\pi\)
0.247693 + 0.968838i \(0.420327\pi\)
\(992\) 60.4617 1.91966
\(993\) −7.38584 −0.234382
\(994\) 0 0
\(995\) 3.65074 0.115736
\(996\) 6.98407 0.221299
\(997\) −31.1034 −0.985056 −0.492528 0.870297i \(-0.663927\pi\)
−0.492528 + 0.870297i \(0.663927\pi\)
\(998\) −6.58932 −0.208581
\(999\) −8.96965 −0.283787
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.cw.1.10 24
7.3 odd 6 1183.2.e.k.170.15 48
7.5 odd 6 1183.2.e.k.508.15 yes 48
7.6 odd 2 8281.2.a.cv.1.10 24
13.12 even 2 8281.2.a.ct.1.15 24
91.12 odd 6 1183.2.e.l.508.10 yes 48
91.38 odd 6 1183.2.e.l.170.10 yes 48
91.90 odd 2 8281.2.a.cu.1.15 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1183.2.e.k.170.15 48 7.3 odd 6
1183.2.e.k.508.15 yes 48 7.5 odd 6
1183.2.e.l.170.10 yes 48 91.38 odd 6
1183.2.e.l.508.10 yes 48 91.12 odd 6
8281.2.a.ct.1.15 24 13.12 even 2
8281.2.a.cu.1.15 24 91.90 odd 2
8281.2.a.cv.1.10 24 7.6 odd 2
8281.2.a.cw.1.10 24 1.1 even 1 trivial