Properties

Label 8281.2.a.bz.1.5
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8281,2,Mod(1,8281)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8281, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8281.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-2,-1,4,-1,9,0,-3,-3,-4,-4,-5,0,0,2,-8,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.6995813.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 7x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.04394\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.55469 q^{2} -0.489252 q^{3} +0.417051 q^{4} -1.19151 q^{5} -0.760633 q^{6} -2.46099 q^{8} -2.76063 q^{9} -1.85243 q^{10} +2.11614 q^{11} -0.204043 q^{12} +0.582949 q^{15} -4.66017 q^{16} -0.906303 q^{17} -4.29192 q^{18} +6.69028 q^{19} -0.496921 q^{20} +3.28993 q^{22} +3.59733 q^{23} +1.20404 q^{24} -3.58030 q^{25} +2.81840 q^{27} +8.51545 q^{29} +0.906303 q^{30} -5.28780 q^{31} -2.32313 q^{32} -1.03532 q^{33} -1.40902 q^{34} -1.15133 q^{36} +4.99159 q^{37} +10.4013 q^{38} +2.93230 q^{40} +1.53636 q^{41} +5.43273 q^{43} +0.882538 q^{44} +3.28933 q^{45} +5.59272 q^{46} -3.18673 q^{47} +2.28000 q^{48} -5.56625 q^{50} +0.443410 q^{51} -2.82477 q^{53} +4.38173 q^{54} -2.52140 q^{55} -3.27323 q^{57} +13.2389 q^{58} -10.2460 q^{59} +0.243120 q^{60} -8.26845 q^{61} -8.22088 q^{62} +5.70861 q^{64} -1.60960 q^{66} -3.74363 q^{67} -0.377975 q^{68} -1.76000 q^{69} -2.53020 q^{71} +6.79389 q^{72} -5.73044 q^{73} +7.76035 q^{74} +1.75167 q^{75} +2.79019 q^{76} +6.07240 q^{79} +5.55265 q^{80} +6.90299 q^{81} +2.38856 q^{82} -11.6309 q^{83} +1.07987 q^{85} +8.44619 q^{86} -4.16619 q^{87} -5.20780 q^{88} -17.7511 q^{89} +5.11387 q^{90} +1.50027 q^{92} +2.58707 q^{93} -4.95437 q^{94} -7.97155 q^{95} +1.13659 q^{96} +6.20434 q^{97} -5.84188 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - q^{3} + 4 q^{4} - q^{5} + 9 q^{6} - 3 q^{8} - 3 q^{9} - 4 q^{10} - 4 q^{11} - 5 q^{12} + 2 q^{15} - 8 q^{16} - 5 q^{17} - 3 q^{18} + q^{19} + q^{20} + 5 q^{22} + q^{23} + 11 q^{24}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.55469 1.09933 0.549665 0.835385i \(-0.314755\pi\)
0.549665 + 0.835385i \(0.314755\pi\)
\(3\) −0.489252 −0.282470 −0.141235 0.989976i \(-0.545107\pi\)
−0.141235 + 0.989976i \(0.545107\pi\)
\(4\) 0.417051 0.208526
\(5\) −1.19151 −0.532860 −0.266430 0.963854i \(-0.585844\pi\)
−0.266430 + 0.963854i \(0.585844\pi\)
\(6\) −0.760633 −0.310527
\(7\) 0 0
\(8\) −2.46099 −0.870091
\(9\) −2.76063 −0.920211
\(10\) −1.85243 −0.585789
\(11\) 2.11614 0.638040 0.319020 0.947748i \(-0.396646\pi\)
0.319020 + 0.947748i \(0.396646\pi\)
\(12\) −0.204043 −0.0589021
\(13\) 0 0
\(14\) 0 0
\(15\) 0.582949 0.150517
\(16\) −4.66017 −1.16504
\(17\) −0.906303 −0.219811 −0.109905 0.993942i \(-0.535055\pi\)
−0.109905 + 0.993942i \(0.535055\pi\)
\(18\) −4.29192 −1.01162
\(19\) 6.69028 1.53486 0.767428 0.641135i \(-0.221536\pi\)
0.767428 + 0.641135i \(0.221536\pi\)
\(20\) −0.496921 −0.111115
\(21\) 0 0
\(22\) 3.28993 0.701416
\(23\) 3.59733 0.750095 0.375048 0.927006i \(-0.377626\pi\)
0.375048 + 0.927006i \(0.377626\pi\)
\(24\) 1.20404 0.245774
\(25\) −3.58030 −0.716060
\(26\) 0 0
\(27\) 2.81840 0.542401
\(28\) 0 0
\(29\) 8.51545 1.58128 0.790639 0.612282i \(-0.209748\pi\)
0.790639 + 0.612282i \(0.209748\pi\)
\(30\) 0.906303 0.165467
\(31\) −5.28780 −0.949717 −0.474859 0.880062i \(-0.657501\pi\)
−0.474859 + 0.880062i \(0.657501\pi\)
\(32\) −2.32313 −0.410675
\(33\) −1.03532 −0.180227
\(34\) −1.40902 −0.241644
\(35\) 0 0
\(36\) −1.15133 −0.191888
\(37\) 4.99159 0.820612 0.410306 0.911948i \(-0.365422\pi\)
0.410306 + 0.911948i \(0.365422\pi\)
\(38\) 10.4013 1.68731
\(39\) 0 0
\(40\) 2.93230 0.463637
\(41\) 1.53636 0.239939 0.119970 0.992778i \(-0.461720\pi\)
0.119970 + 0.992778i \(0.461720\pi\)
\(42\) 0 0
\(43\) 5.43273 0.828483 0.414242 0.910167i \(-0.364047\pi\)
0.414242 + 0.910167i \(0.364047\pi\)
\(44\) 0.882538 0.133048
\(45\) 3.28933 0.490344
\(46\) 5.59272 0.824602
\(47\) −3.18673 −0.464833 −0.232416 0.972616i \(-0.574663\pi\)
−0.232416 + 0.972616i \(0.574663\pi\)
\(48\) 2.28000 0.329089
\(49\) 0 0
\(50\) −5.56625 −0.787186
\(51\) 0.443410 0.0620898
\(52\) 0 0
\(53\) −2.82477 −0.388012 −0.194006 0.981000i \(-0.562148\pi\)
−0.194006 + 0.981000i \(0.562148\pi\)
\(54\) 4.38173 0.596278
\(55\) −2.52140 −0.339986
\(56\) 0 0
\(57\) −3.27323 −0.433550
\(58\) 13.2389 1.73835
\(59\) −10.2460 −1.33391 −0.666956 0.745097i \(-0.732403\pi\)
−0.666956 + 0.745097i \(0.732403\pi\)
\(60\) 0.243120 0.0313866
\(61\) −8.26845 −1.05867 −0.529333 0.848414i \(-0.677558\pi\)
−0.529333 + 0.848414i \(0.677558\pi\)
\(62\) −8.22088 −1.04405
\(63\) 0 0
\(64\) 5.70861 0.713576
\(65\) 0 0
\(66\) −1.60960 −0.198129
\(67\) −3.74363 −0.457358 −0.228679 0.973502i \(-0.573441\pi\)
−0.228679 + 0.973502i \(0.573441\pi\)
\(68\) −0.377975 −0.0458362
\(69\) −1.76000 −0.211879
\(70\) 0 0
\(71\) −2.53020 −0.300280 −0.150140 0.988665i \(-0.547972\pi\)
−0.150140 + 0.988665i \(0.547972\pi\)
\(72\) 6.79389 0.800668
\(73\) −5.73044 −0.670697 −0.335349 0.942094i \(-0.608854\pi\)
−0.335349 + 0.942094i \(0.608854\pi\)
\(74\) 7.76035 0.902123
\(75\) 1.75167 0.202265
\(76\) 2.79019 0.320057
\(77\) 0 0
\(78\) 0 0
\(79\) 6.07240 0.683198 0.341599 0.939846i \(-0.389031\pi\)
0.341599 + 0.939846i \(0.389031\pi\)
\(80\) 5.55265 0.620805
\(81\) 6.90299 0.766999
\(82\) 2.38856 0.263773
\(83\) −11.6309 −1.27665 −0.638327 0.769766i \(-0.720373\pi\)
−0.638327 + 0.769766i \(0.720373\pi\)
\(84\) 0 0
\(85\) 1.07987 0.117128
\(86\) 8.44619 0.910776
\(87\) −4.16619 −0.446663
\(88\) −5.20780 −0.555153
\(89\) −17.7511 −1.88162 −0.940808 0.338939i \(-0.889932\pi\)
−0.940808 + 0.338939i \(0.889932\pi\)
\(90\) 5.11387 0.539049
\(91\) 0 0
\(92\) 1.50027 0.156414
\(93\) 2.58707 0.268266
\(94\) −4.95437 −0.511004
\(95\) −7.97155 −0.817863
\(96\) 1.13659 0.116003
\(97\) 6.20434 0.629955 0.314978 0.949099i \(-0.398003\pi\)
0.314978 + 0.949099i \(0.398003\pi\)
\(98\) 0 0
\(99\) −5.84188 −0.587131
\(100\) −1.49317 −0.149317
\(101\) −7.22266 −0.718682 −0.359341 0.933206i \(-0.616999\pi\)
−0.359341 + 0.933206i \(0.616999\pi\)
\(102\) 0.689364 0.0682572
\(103\) 9.92645 0.978082 0.489041 0.872261i \(-0.337347\pi\)
0.489041 + 0.872261i \(0.337347\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −4.39164 −0.426553
\(107\) −2.20006 −0.212688 −0.106344 0.994329i \(-0.533915\pi\)
−0.106344 + 0.994329i \(0.533915\pi\)
\(108\) 1.17542 0.113105
\(109\) 13.7458 1.31661 0.658305 0.752751i \(-0.271274\pi\)
0.658305 + 0.752751i \(0.271274\pi\)
\(110\) −3.91999 −0.373757
\(111\) −2.44214 −0.231798
\(112\) 0 0
\(113\) −16.0947 −1.51406 −0.757032 0.653378i \(-0.773351\pi\)
−0.757032 + 0.653378i \(0.773351\pi\)
\(114\) −5.08885 −0.476614
\(115\) −4.28626 −0.399696
\(116\) 3.55138 0.329737
\(117\) 0 0
\(118\) −15.9293 −1.46641
\(119\) 0 0
\(120\) −1.43463 −0.130963
\(121\) −6.52196 −0.592905
\(122\) −12.8549 −1.16382
\(123\) −0.751668 −0.0677756
\(124\) −2.20528 −0.198040
\(125\) 10.2235 0.914420
\(126\) 0 0
\(127\) −15.6784 −1.39123 −0.695617 0.718413i \(-0.744869\pi\)
−0.695617 + 0.718413i \(0.744869\pi\)
\(128\) 13.5213 1.19513
\(129\) −2.65797 −0.234021
\(130\) 0 0
\(131\) −9.53769 −0.833312 −0.416656 0.909064i \(-0.636798\pi\)
−0.416656 + 0.909064i \(0.636798\pi\)
\(132\) −0.431783 −0.0375819
\(133\) 0 0
\(134\) −5.82018 −0.502787
\(135\) −3.35815 −0.289024
\(136\) 2.23040 0.191255
\(137\) −2.76461 −0.236197 −0.118098 0.993002i \(-0.537680\pi\)
−0.118098 + 0.993002i \(0.537680\pi\)
\(138\) −2.73625 −0.232925
\(139\) −22.7967 −1.93359 −0.966795 0.255554i \(-0.917742\pi\)
−0.966795 + 0.255554i \(0.917742\pi\)
\(140\) 0 0
\(141\) 1.55911 0.131301
\(142\) −3.93368 −0.330107
\(143\) 0 0
\(144\) 12.8650 1.07209
\(145\) −10.1462 −0.842600
\(146\) −8.90904 −0.737317
\(147\) 0 0
\(148\) 2.08175 0.171119
\(149\) −14.4116 −1.18065 −0.590323 0.807167i \(-0.701000\pi\)
−0.590323 + 0.807167i \(0.701000\pi\)
\(150\) 2.72329 0.222356
\(151\) 15.2580 1.24168 0.620840 0.783937i \(-0.286792\pi\)
0.620840 + 0.783937i \(0.286792\pi\)
\(152\) −16.4647 −1.33546
\(153\) 2.50197 0.202272
\(154\) 0 0
\(155\) 6.30048 0.506067
\(156\) 0 0
\(157\) −11.4149 −0.911008 −0.455504 0.890234i \(-0.650541\pi\)
−0.455504 + 0.890234i \(0.650541\pi\)
\(158\) 9.44068 0.751060
\(159\) 1.38202 0.109602
\(160\) 2.76803 0.218832
\(161\) 0 0
\(162\) 10.7320 0.843185
\(163\) −14.4077 −1.12850 −0.564249 0.825605i \(-0.690834\pi\)
−0.564249 + 0.825605i \(0.690834\pi\)
\(164\) 0.640742 0.0500335
\(165\) 1.23360 0.0960357
\(166\) −18.0824 −1.40346
\(167\) 7.77190 0.601407 0.300704 0.953718i \(-0.402778\pi\)
0.300704 + 0.953718i \(0.402778\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 1.67886 0.128763
\(171\) −18.4694 −1.41239
\(172\) 2.26573 0.172760
\(173\) 6.09461 0.463365 0.231682 0.972791i \(-0.425577\pi\)
0.231682 + 0.972791i \(0.425577\pi\)
\(174\) −6.47713 −0.491030
\(175\) 0 0
\(176\) −9.86157 −0.743344
\(177\) 5.01286 0.376789
\(178\) −27.5975 −2.06852
\(179\) 18.5298 1.38498 0.692490 0.721428i \(-0.256514\pi\)
0.692490 + 0.721428i \(0.256514\pi\)
\(180\) 1.37182 0.102249
\(181\) −5.60520 −0.416631 −0.208316 0.978062i \(-0.566798\pi\)
−0.208316 + 0.978062i \(0.566798\pi\)
\(182\) 0 0
\(183\) 4.04535 0.299041
\(184\) −8.85299 −0.652651
\(185\) −5.94753 −0.437271
\(186\) 4.02208 0.294913
\(187\) −1.91786 −0.140248
\(188\) −1.32903 −0.0969295
\(189\) 0 0
\(190\) −12.3933 −0.899102
\(191\) 0.503703 0.0364466 0.0182233 0.999834i \(-0.494199\pi\)
0.0182233 + 0.999834i \(0.494199\pi\)
\(192\) −2.79294 −0.201563
\(193\) −3.71244 −0.267227 −0.133614 0.991033i \(-0.542658\pi\)
−0.133614 + 0.991033i \(0.542658\pi\)
\(194\) 9.64581 0.692529
\(195\) 0 0
\(196\) 0 0
\(197\) −7.44451 −0.530399 −0.265200 0.964194i \(-0.585438\pi\)
−0.265200 + 0.964194i \(0.585438\pi\)
\(198\) −9.08230 −0.645451
\(199\) 7.50556 0.532055 0.266028 0.963965i \(-0.414289\pi\)
0.266028 + 0.963965i \(0.414289\pi\)
\(200\) 8.81108 0.623038
\(201\) 1.83158 0.129190
\(202\) −11.2290 −0.790068
\(203\) 0 0
\(204\) 0.184925 0.0129473
\(205\) −1.83059 −0.127854
\(206\) 15.4325 1.07523
\(207\) −9.93091 −0.690246
\(208\) 0 0
\(209\) 14.1576 0.979299
\(210\) 0 0
\(211\) 3.79063 0.260957 0.130479 0.991451i \(-0.458349\pi\)
0.130479 + 0.991451i \(0.458349\pi\)
\(212\) −1.17807 −0.0809105
\(213\) 1.23791 0.0848200
\(214\) −3.42041 −0.233814
\(215\) −6.47316 −0.441466
\(216\) −6.93605 −0.471938
\(217\) 0 0
\(218\) 21.3704 1.44739
\(219\) 2.80363 0.189452
\(220\) −1.05155 −0.0708958
\(221\) 0 0
\(222\) −3.79676 −0.254822
\(223\) 4.86879 0.326039 0.163019 0.986623i \(-0.447877\pi\)
0.163019 + 0.986623i \(0.447877\pi\)
\(224\) 0 0
\(225\) 9.88390 0.658926
\(226\) −25.0223 −1.66446
\(227\) 24.1767 1.60466 0.802332 0.596877i \(-0.203592\pi\)
0.802332 + 0.596877i \(0.203592\pi\)
\(228\) −1.36510 −0.0904063
\(229\) −21.7123 −1.43479 −0.717394 0.696668i \(-0.754665\pi\)
−0.717394 + 0.696668i \(0.754665\pi\)
\(230\) −6.66379 −0.439397
\(231\) 0 0
\(232\) −20.9564 −1.37586
\(233\) 3.79684 0.248739 0.124370 0.992236i \(-0.460309\pi\)
0.124370 + 0.992236i \(0.460309\pi\)
\(234\) 0 0
\(235\) 3.79703 0.247691
\(236\) −4.27309 −0.278155
\(237\) −2.97093 −0.192983
\(238\) 0 0
\(239\) 21.9100 1.41724 0.708619 0.705592i \(-0.249319\pi\)
0.708619 + 0.705592i \(0.249319\pi\)
\(240\) −2.71664 −0.175358
\(241\) −20.7488 −1.33655 −0.668273 0.743916i \(-0.732966\pi\)
−0.668273 + 0.743916i \(0.732966\pi\)
\(242\) −10.1396 −0.651798
\(243\) −11.8325 −0.759055
\(244\) −3.44837 −0.220759
\(245\) 0 0
\(246\) −1.16861 −0.0745077
\(247\) 0 0
\(248\) 13.0132 0.826341
\(249\) 5.69042 0.360616
\(250\) 15.8944 1.00525
\(251\) 13.2578 0.836827 0.418413 0.908257i \(-0.362586\pi\)
0.418413 + 0.908257i \(0.362586\pi\)
\(252\) 0 0
\(253\) 7.61245 0.478591
\(254\) −24.3750 −1.52943
\(255\) −0.528328 −0.0330852
\(256\) 9.60425 0.600266
\(257\) −13.1711 −0.821590 −0.410795 0.911728i \(-0.634749\pi\)
−0.410795 + 0.911728i \(0.634749\pi\)
\(258\) −4.13231 −0.257266
\(259\) 0 0
\(260\) 0 0
\(261\) −23.5080 −1.45511
\(262\) −14.8281 −0.916084
\(263\) −19.1406 −1.18026 −0.590129 0.807309i \(-0.700923\pi\)
−0.590129 + 0.807309i \(0.700923\pi\)
\(264\) 2.54792 0.156814
\(265\) 3.36575 0.206756
\(266\) 0 0
\(267\) 8.68477 0.531499
\(268\) −1.56129 −0.0953708
\(269\) −28.4822 −1.73659 −0.868296 0.496047i \(-0.834784\pi\)
−0.868296 + 0.496047i \(0.834784\pi\)
\(270\) −5.22088 −0.317732
\(271\) 17.9474 1.09023 0.545114 0.838362i \(-0.316486\pi\)
0.545114 + 0.838362i \(0.316486\pi\)
\(272\) 4.22353 0.256089
\(273\) 0 0
\(274\) −4.29811 −0.259658
\(275\) −7.57641 −0.456875
\(276\) −0.734010 −0.0441822
\(277\) 13.4389 0.807463 0.403732 0.914877i \(-0.367713\pi\)
0.403732 + 0.914877i \(0.367713\pi\)
\(278\) −35.4417 −2.12565
\(279\) 14.5977 0.873940
\(280\) 0 0
\(281\) −29.9530 −1.78685 −0.893424 0.449214i \(-0.851704\pi\)
−0.893424 + 0.449214i \(0.851704\pi\)
\(282\) 2.42393 0.144343
\(283\) −9.89122 −0.587972 −0.293986 0.955810i \(-0.594982\pi\)
−0.293986 + 0.955810i \(0.594982\pi\)
\(284\) −1.05523 −0.0626161
\(285\) 3.90009 0.231021
\(286\) 0 0
\(287\) 0 0
\(288\) 6.41330 0.377907
\(289\) −16.1786 −0.951683
\(290\) −15.7742 −0.926295
\(291\) −3.03548 −0.177943
\(292\) −2.38989 −0.139858
\(293\) 7.91058 0.462141 0.231071 0.972937i \(-0.425777\pi\)
0.231071 + 0.972937i \(0.425777\pi\)
\(294\) 0 0
\(295\) 12.2082 0.710788
\(296\) −12.2842 −0.714007
\(297\) 5.96412 0.346073
\(298\) −22.4056 −1.29792
\(299\) 0 0
\(300\) 0.730535 0.0421775
\(301\) 0 0
\(302\) 23.7214 1.36502
\(303\) 3.53370 0.203006
\(304\) −31.1779 −1.78817
\(305\) 9.85196 0.564121
\(306\) 3.88978 0.222364
\(307\) 1.27238 0.0726187 0.0363094 0.999341i \(-0.488440\pi\)
0.0363094 + 0.999341i \(0.488440\pi\)
\(308\) 0 0
\(309\) −4.85653 −0.276278
\(310\) 9.79527 0.556334
\(311\) 24.7635 1.40421 0.702103 0.712075i \(-0.252244\pi\)
0.702103 + 0.712075i \(0.252244\pi\)
\(312\) 0 0
\(313\) 2.37651 0.134328 0.0671642 0.997742i \(-0.478605\pi\)
0.0671642 + 0.997742i \(0.478605\pi\)
\(314\) −17.7466 −1.00150
\(315\) 0 0
\(316\) 2.53250 0.142464
\(317\) −19.7796 −1.11093 −0.555466 0.831539i \(-0.687460\pi\)
−0.555466 + 0.831539i \(0.687460\pi\)
\(318\) 2.14862 0.120488
\(319\) 18.0199 1.00892
\(320\) −6.80187 −0.380236
\(321\) 1.07638 0.0600779
\(322\) 0 0
\(323\) −6.06342 −0.337378
\(324\) 2.87890 0.159939
\(325\) 0 0
\(326\) −22.3995 −1.24059
\(327\) −6.72516 −0.371902
\(328\) −3.78097 −0.208769
\(329\) 0 0
\(330\) 1.91786 0.105575
\(331\) 3.92773 0.215888 0.107944 0.994157i \(-0.465573\pi\)
0.107944 + 0.994157i \(0.465573\pi\)
\(332\) −4.85067 −0.266215
\(333\) −13.7799 −0.755136
\(334\) 12.0829 0.661145
\(335\) 4.46058 0.243708
\(336\) 0 0
\(337\) −7.14099 −0.388995 −0.194497 0.980903i \(-0.562308\pi\)
−0.194497 + 0.980903i \(0.562308\pi\)
\(338\) 0 0
\(339\) 7.87437 0.427677
\(340\) 0.450361 0.0244243
\(341\) −11.1897 −0.605958
\(342\) −28.7142 −1.55268
\(343\) 0 0
\(344\) −13.3699 −0.720856
\(345\) 2.09706 0.112902
\(346\) 9.47522 0.509391
\(347\) 10.0700 0.540584 0.270292 0.962778i \(-0.412880\pi\)
0.270292 + 0.962778i \(0.412880\pi\)
\(348\) −1.73752 −0.0931407
\(349\) −6.28837 −0.336609 −0.168304 0.985735i \(-0.553829\pi\)
−0.168304 + 0.985735i \(0.553829\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4.91606 −0.262027
\(353\) 34.1672 1.81854 0.909269 0.416210i \(-0.136642\pi\)
0.909269 + 0.416210i \(0.136642\pi\)
\(354\) 7.79342 0.414216
\(355\) 3.01477 0.160007
\(356\) −7.40313 −0.392365
\(357\) 0 0
\(358\) 28.8080 1.52255
\(359\) 18.6865 0.986238 0.493119 0.869962i \(-0.335857\pi\)
0.493119 + 0.869962i \(0.335857\pi\)
\(360\) −8.09500 −0.426644
\(361\) 25.7599 1.35578
\(362\) −8.71433 −0.458015
\(363\) 3.19088 0.167478
\(364\) 0 0
\(365\) 6.82788 0.357388
\(366\) 6.28926 0.328745
\(367\) −31.0611 −1.62137 −0.810687 0.585479i \(-0.800906\pi\)
−0.810687 + 0.585479i \(0.800906\pi\)
\(368\) −16.7642 −0.873893
\(369\) −4.24133 −0.220795
\(370\) −9.24655 −0.480705
\(371\) 0 0
\(372\) 1.07894 0.0559404
\(373\) −2.93704 −0.152074 −0.0760371 0.997105i \(-0.524227\pi\)
−0.0760371 + 0.997105i \(0.524227\pi\)
\(374\) −2.98168 −0.154179
\(375\) −5.00188 −0.258296
\(376\) 7.84252 0.404447
\(377\) 0 0
\(378\) 0 0
\(379\) 10.0851 0.518036 0.259018 0.965872i \(-0.416601\pi\)
0.259018 + 0.965872i \(0.416601\pi\)
\(380\) −3.32454 −0.170545
\(381\) 7.67069 0.392981
\(382\) 0.783100 0.0400669
\(383\) 3.68931 0.188515 0.0942576 0.995548i \(-0.469952\pi\)
0.0942576 + 0.995548i \(0.469952\pi\)
\(384\) −6.61534 −0.337588
\(385\) 0 0
\(386\) −5.77168 −0.293771
\(387\) −14.9978 −0.762379
\(388\) 2.58753 0.131362
\(389\) 22.6667 1.14925 0.574623 0.818418i \(-0.305149\pi\)
0.574623 + 0.818418i \(0.305149\pi\)
\(390\) 0 0
\(391\) −3.26027 −0.164879
\(392\) 0 0
\(393\) 4.66633 0.235385
\(394\) −11.5739 −0.583084
\(395\) −7.23533 −0.364049
\(396\) −2.43636 −0.122432
\(397\) −29.1360 −1.46229 −0.731146 0.682221i \(-0.761014\pi\)
−0.731146 + 0.682221i \(0.761014\pi\)
\(398\) 11.6688 0.584904
\(399\) 0 0
\(400\) 16.6848 0.834241
\(401\) 8.12052 0.405519 0.202760 0.979229i \(-0.435009\pi\)
0.202760 + 0.979229i \(0.435009\pi\)
\(402\) 2.84753 0.142022
\(403\) 0 0
\(404\) −3.01222 −0.149864
\(405\) −8.22499 −0.408703
\(406\) 0 0
\(407\) 10.5629 0.523583
\(408\) −1.09123 −0.0540238
\(409\) −8.32261 −0.411527 −0.205763 0.978602i \(-0.565968\pi\)
−0.205763 + 0.978602i \(0.565968\pi\)
\(410\) −2.84600 −0.140554
\(411\) 1.35259 0.0667184
\(412\) 4.13984 0.203955
\(413\) 0 0
\(414\) −15.4395 −0.758808
\(415\) 13.8583 0.680278
\(416\) 0 0
\(417\) 11.1533 0.546180
\(418\) 22.0106 1.07657
\(419\) −13.0166 −0.635905 −0.317952 0.948107i \(-0.602995\pi\)
−0.317952 + 0.948107i \(0.602995\pi\)
\(420\) 0 0
\(421\) −8.89681 −0.433604 −0.216802 0.976216i \(-0.569563\pi\)
−0.216802 + 0.976216i \(0.569563\pi\)
\(422\) 5.89323 0.286878
\(423\) 8.79740 0.427744
\(424\) 6.95174 0.337606
\(425\) 3.24484 0.157398
\(426\) 1.92456 0.0932451
\(427\) 0 0
\(428\) −0.917539 −0.0443509
\(429\) 0 0
\(430\) −10.0637 −0.485316
\(431\) −8.95743 −0.431464 −0.215732 0.976453i \(-0.569214\pi\)
−0.215732 + 0.976453i \(0.569214\pi\)
\(432\) −13.1342 −0.631920
\(433\) −0.172909 −0.00830950 −0.00415475 0.999991i \(-0.501323\pi\)
−0.00415475 + 0.999991i \(0.501323\pi\)
\(434\) 0 0
\(435\) 4.96407 0.238009
\(436\) 5.73271 0.274547
\(437\) 24.0671 1.15129
\(438\) 4.35876 0.208270
\(439\) 9.54160 0.455396 0.227698 0.973732i \(-0.426880\pi\)
0.227698 + 0.973732i \(0.426880\pi\)
\(440\) 6.20515 0.295819
\(441\) 0 0
\(442\) 0 0
\(443\) −13.8735 −0.659151 −0.329576 0.944129i \(-0.606906\pi\)
−0.329576 + 0.944129i \(0.606906\pi\)
\(444\) −1.01850 −0.0483358
\(445\) 21.1507 1.00264
\(446\) 7.56945 0.358424
\(447\) 7.05091 0.333496
\(448\) 0 0
\(449\) −21.2913 −1.00480 −0.502398 0.864636i \(-0.667549\pi\)
−0.502398 + 0.864636i \(0.667549\pi\)
\(450\) 15.3664 0.724377
\(451\) 3.25116 0.153091
\(452\) −6.71232 −0.315721
\(453\) −7.46501 −0.350737
\(454\) 37.5872 1.76406
\(455\) 0 0
\(456\) 8.05539 0.377228
\(457\) 9.68564 0.453075 0.226538 0.974002i \(-0.427259\pi\)
0.226538 + 0.974002i \(0.427259\pi\)
\(458\) −33.7558 −1.57730
\(459\) −2.55432 −0.119226
\(460\) −1.78759 −0.0833468
\(461\) −1.37436 −0.0640101 −0.0320051 0.999488i \(-0.510189\pi\)
−0.0320051 + 0.999488i \(0.510189\pi\)
\(462\) 0 0
\(463\) 31.7710 1.47653 0.738263 0.674513i \(-0.235646\pi\)
0.738263 + 0.674513i \(0.235646\pi\)
\(464\) −39.6834 −1.84226
\(465\) −3.08252 −0.142948
\(466\) 5.90290 0.273446
\(467\) −29.1209 −1.34756 −0.673778 0.738934i \(-0.735330\pi\)
−0.673778 + 0.738934i \(0.735330\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 5.90319 0.272294
\(471\) 5.58476 0.257332
\(472\) 25.2152 1.16062
\(473\) 11.4964 0.528605
\(474\) −4.61887 −0.212152
\(475\) −23.9532 −1.09905
\(476\) 0 0
\(477\) 7.79816 0.357053
\(478\) 34.0631 1.55801
\(479\) 9.72184 0.444202 0.222101 0.975024i \(-0.428708\pi\)
0.222101 + 0.975024i \(0.428708\pi\)
\(480\) −1.35426 −0.0618134
\(481\) 0 0
\(482\) −32.2578 −1.46930
\(483\) 0 0
\(484\) −2.71999 −0.123636
\(485\) −7.39254 −0.335678
\(486\) −18.3958 −0.834452
\(487\) −17.1133 −0.775478 −0.387739 0.921769i \(-0.626744\pi\)
−0.387739 + 0.921769i \(0.626744\pi\)
\(488\) 20.3486 0.921137
\(489\) 7.04899 0.318766
\(490\) 0 0
\(491\) −25.7213 −1.16079 −0.580394 0.814336i \(-0.697101\pi\)
−0.580394 + 0.814336i \(0.697101\pi\)
\(492\) −0.313484 −0.0141329
\(493\) −7.71757 −0.347582
\(494\) 0 0
\(495\) 6.96067 0.312859
\(496\) 24.6421 1.10646
\(497\) 0 0
\(498\) 8.84682 0.396435
\(499\) 5.40396 0.241914 0.120957 0.992658i \(-0.461404\pi\)
0.120957 + 0.992658i \(0.461404\pi\)
\(500\) 4.26373 0.190680
\(501\) −3.80241 −0.169879
\(502\) 20.6118 0.919948
\(503\) −12.6169 −0.562562 −0.281281 0.959625i \(-0.590759\pi\)
−0.281281 + 0.959625i \(0.590759\pi\)
\(504\) 0 0
\(505\) 8.60589 0.382957
\(506\) 11.8350 0.526129
\(507\) 0 0
\(508\) −6.53870 −0.290108
\(509\) −1.95876 −0.0868204 −0.0434102 0.999057i \(-0.513822\pi\)
−0.0434102 + 0.999057i \(0.513822\pi\)
\(510\) −0.821385 −0.0363715
\(511\) 0 0
\(512\) −12.1111 −0.535240
\(513\) 18.8559 0.832507
\(514\) −20.4769 −0.903198
\(515\) −11.8275 −0.521181
\(516\) −1.10851 −0.0487994
\(517\) −6.74357 −0.296582
\(518\) 0 0
\(519\) −2.98180 −0.130886
\(520\) 0 0
\(521\) −39.0954 −1.71280 −0.856401 0.516312i \(-0.827305\pi\)
−0.856401 + 0.516312i \(0.827305\pi\)
\(522\) −36.5476 −1.59965
\(523\) −8.71268 −0.380979 −0.190489 0.981689i \(-0.561007\pi\)
−0.190489 + 0.981689i \(0.561007\pi\)
\(524\) −3.97770 −0.173767
\(525\) 0 0
\(526\) −29.7576 −1.29749
\(527\) 4.79235 0.208758
\(528\) 4.82479 0.209972
\(529\) −10.0592 −0.437357
\(530\) 5.23269 0.227293
\(531\) 28.2854 1.22748
\(532\) 0 0
\(533\) 0 0
\(534\) 13.5021 0.584293
\(535\) 2.62140 0.113333
\(536\) 9.21304 0.397943
\(537\) −9.06571 −0.391214
\(538\) −44.2809 −1.90909
\(539\) 0 0
\(540\) −1.40052 −0.0602689
\(541\) −21.4994 −0.924330 −0.462165 0.886794i \(-0.652927\pi\)
−0.462165 + 0.886794i \(0.652927\pi\)
\(542\) 27.9026 1.19852
\(543\) 2.74235 0.117686
\(544\) 2.10546 0.0902707
\(545\) −16.3783 −0.701569
\(546\) 0 0
\(547\) −30.2968 −1.29540 −0.647699 0.761896i \(-0.724269\pi\)
−0.647699 + 0.761896i \(0.724269\pi\)
\(548\) −1.15299 −0.0492531
\(549\) 22.8262 0.974197
\(550\) −11.7789 −0.502256
\(551\) 56.9707 2.42703
\(552\) 4.33134 0.184354
\(553\) 0 0
\(554\) 20.8932 0.887668
\(555\) 2.90984 0.123516
\(556\) −9.50738 −0.403203
\(557\) −17.6840 −0.749296 −0.374648 0.927167i \(-0.622236\pi\)
−0.374648 + 0.927167i \(0.622236\pi\)
\(558\) 22.6948 0.960749
\(559\) 0 0
\(560\) 0 0
\(561\) 0.938317 0.0396158
\(562\) −46.5676 −1.96433
\(563\) −41.7390 −1.75909 −0.879545 0.475816i \(-0.842153\pi\)
−0.879545 + 0.475816i \(0.842153\pi\)
\(564\) 0.650230 0.0273796
\(565\) 19.1770 0.806784
\(566\) −15.3777 −0.646375
\(567\) 0 0
\(568\) 6.22681 0.261271
\(569\) 5.46775 0.229220 0.114610 0.993411i \(-0.463438\pi\)
0.114610 + 0.993411i \(0.463438\pi\)
\(570\) 6.06342 0.253969
\(571\) 9.35242 0.391387 0.195693 0.980665i \(-0.437304\pi\)
0.195693 + 0.980665i \(0.437304\pi\)
\(572\) 0 0
\(573\) −0.246437 −0.0102951
\(574\) 0 0
\(575\) −12.8795 −0.537113
\(576\) −15.7594 −0.656640
\(577\) −3.36925 −0.140264 −0.0701318 0.997538i \(-0.522342\pi\)
−0.0701318 + 0.997538i \(0.522342\pi\)
\(578\) −25.1527 −1.04621
\(579\) 1.81632 0.0754836
\(580\) −4.23151 −0.175704
\(581\) 0 0
\(582\) −4.71923 −0.195618
\(583\) −5.97761 −0.247567
\(584\) 14.1026 0.583568
\(585\) 0 0
\(586\) 12.2985 0.508045
\(587\) −13.1528 −0.542873 −0.271437 0.962456i \(-0.587499\pi\)
−0.271437 + 0.962456i \(0.587499\pi\)
\(588\) 0 0
\(589\) −35.3769 −1.45768
\(590\) 18.9799 0.781390
\(591\) 3.64224 0.149822
\(592\) −23.2616 −0.956048
\(593\) 38.5916 1.58477 0.792384 0.610022i \(-0.208839\pi\)
0.792384 + 0.610022i \(0.208839\pi\)
\(594\) 9.27234 0.380449
\(595\) 0 0
\(596\) −6.01038 −0.246195
\(597\) −3.67211 −0.150289
\(598\) 0 0
\(599\) 18.4152 0.752426 0.376213 0.926533i \(-0.377226\pi\)
0.376213 + 0.926533i \(0.377226\pi\)
\(600\) −4.31084 −0.175989
\(601\) −41.4037 −1.68889 −0.844445 0.535642i \(-0.820070\pi\)
−0.844445 + 0.535642i \(0.820070\pi\)
\(602\) 0 0
\(603\) 10.3348 0.420865
\(604\) 6.36338 0.258922
\(605\) 7.77099 0.315936
\(606\) 5.49380 0.223170
\(607\) 12.3051 0.499449 0.249724 0.968317i \(-0.419660\pi\)
0.249724 + 0.968317i \(0.419660\pi\)
\(608\) −15.5424 −0.630327
\(609\) 0 0
\(610\) 15.3167 0.620155
\(611\) 0 0
\(612\) 1.04345 0.0421789
\(613\) 26.2224 1.05911 0.529556 0.848275i \(-0.322358\pi\)
0.529556 + 0.848275i \(0.322358\pi\)
\(614\) 1.97816 0.0798319
\(615\) 0.895620 0.0361149
\(616\) 0 0
\(617\) −18.8252 −0.757873 −0.378936 0.925423i \(-0.623710\pi\)
−0.378936 + 0.925423i \(0.623710\pi\)
\(618\) −7.55038 −0.303721
\(619\) −15.8083 −0.635389 −0.317695 0.948193i \(-0.602909\pi\)
−0.317695 + 0.948193i \(0.602909\pi\)
\(620\) 2.62762 0.105528
\(621\) 10.1387 0.406852
\(622\) 38.4994 1.54369
\(623\) 0 0
\(624\) 0 0
\(625\) 5.72006 0.228802
\(626\) 3.69473 0.147671
\(627\) −6.92661 −0.276622
\(628\) −4.76060 −0.189969
\(629\) −4.52389 −0.180379
\(630\) 0 0
\(631\) −16.6763 −0.663875 −0.331937 0.943301i \(-0.607702\pi\)
−0.331937 + 0.943301i \(0.607702\pi\)
\(632\) −14.9441 −0.594445
\(633\) −1.85457 −0.0737125
\(634\) −30.7511 −1.22128
\(635\) 18.6810 0.741333
\(636\) 0.576375 0.0228548
\(637\) 0 0
\(638\) 28.0152 1.10913
\(639\) 6.98497 0.276321
\(640\) −16.1108 −0.636837
\(641\) 49.2464 1.94512 0.972559 0.232658i \(-0.0747422\pi\)
0.972559 + 0.232658i \(0.0747422\pi\)
\(642\) 1.67344 0.0660454
\(643\) 42.8711 1.69067 0.845335 0.534236i \(-0.179401\pi\)
0.845335 + 0.534236i \(0.179401\pi\)
\(644\) 0 0
\(645\) 3.16700 0.124701
\(646\) −9.42672 −0.370889
\(647\) 4.25859 0.167422 0.0837112 0.996490i \(-0.473323\pi\)
0.0837112 + 0.996490i \(0.473323\pi\)
\(648\) −16.9882 −0.667359
\(649\) −21.6819 −0.851089
\(650\) 0 0
\(651\) 0 0
\(652\) −6.00875 −0.235321
\(653\) −2.09552 −0.0820040 −0.0410020 0.999159i \(-0.513055\pi\)
−0.0410020 + 0.999159i \(0.513055\pi\)
\(654\) −10.4555 −0.408843
\(655\) 11.3643 0.444038
\(656\) −7.15971 −0.279540
\(657\) 15.8196 0.617183
\(658\) 0 0
\(659\) 25.4518 0.991463 0.495732 0.868476i \(-0.334900\pi\)
0.495732 + 0.868476i \(0.334900\pi\)
\(660\) 0.514475 0.0200259
\(661\) 27.8108 1.08171 0.540857 0.841115i \(-0.318100\pi\)
0.540857 + 0.841115i \(0.318100\pi\)
\(662\) 6.10639 0.237332
\(663\) 0 0
\(664\) 28.6234 1.11080
\(665\) 0 0
\(666\) −21.4235 −0.830143
\(667\) 30.6329 1.18611
\(668\) 3.24128 0.125409
\(669\) −2.38207 −0.0920960
\(670\) 6.93481 0.267915
\(671\) −17.4972 −0.675472
\(672\) 0 0
\(673\) 15.5207 0.598278 0.299139 0.954210i \(-0.403301\pi\)
0.299139 + 0.954210i \(0.403301\pi\)
\(674\) −11.1020 −0.427633
\(675\) −10.0907 −0.388392
\(676\) 0 0
\(677\) 34.5626 1.32835 0.664175 0.747577i \(-0.268783\pi\)
0.664175 + 0.747577i \(0.268783\pi\)
\(678\) 12.2422 0.470158
\(679\) 0 0
\(680\) −2.65755 −0.101912
\(681\) −11.8285 −0.453269
\(682\) −17.3965 −0.666147
\(683\) 47.0064 1.79865 0.899325 0.437281i \(-0.144058\pi\)
0.899325 + 0.437281i \(0.144058\pi\)
\(684\) −7.70269 −0.294520
\(685\) 3.29407 0.125860
\(686\) 0 0
\(687\) 10.6228 0.405284
\(688\) −25.3174 −0.965218
\(689\) 0 0
\(690\) 3.26027 0.124116
\(691\) 19.0060 0.723023 0.361512 0.932368i \(-0.382261\pi\)
0.361512 + 0.932368i \(0.382261\pi\)
\(692\) 2.54177 0.0966235
\(693\) 0 0
\(694\) 15.6556 0.594280
\(695\) 27.1625 1.03033
\(696\) 10.2530 0.388638
\(697\) −1.39241 −0.0527413
\(698\) −9.77644 −0.370044
\(699\) −1.85761 −0.0702612
\(700\) 0 0
\(701\) −45.4648 −1.71718 −0.858591 0.512662i \(-0.828659\pi\)
−0.858591 + 0.512662i \(0.828659\pi\)
\(702\) 0 0
\(703\) 33.3951 1.25952
\(704\) 12.0802 0.455290
\(705\) −1.85770 −0.0699651
\(706\) 53.1193 1.99917
\(707\) 0 0
\(708\) 2.09062 0.0785702
\(709\) −9.78779 −0.367588 −0.183794 0.982965i \(-0.558838\pi\)
−0.183794 + 0.982965i \(0.558838\pi\)
\(710\) 4.68702 0.175901
\(711\) −16.7637 −0.628687
\(712\) 43.6854 1.63718
\(713\) −19.0220 −0.712378
\(714\) 0 0
\(715\) 0 0
\(716\) 7.72786 0.288804
\(717\) −10.7195 −0.400326
\(718\) 29.0517 1.08420
\(719\) −27.8403 −1.03827 −0.519133 0.854693i \(-0.673745\pi\)
−0.519133 + 0.854693i \(0.673745\pi\)
\(720\) −15.3288 −0.571271
\(721\) 0 0
\(722\) 40.0485 1.49045
\(723\) 10.1514 0.377533
\(724\) −2.33766 −0.0868783
\(725\) −30.4879 −1.13229
\(726\) 4.96082 0.184113
\(727\) −14.5650 −0.540186 −0.270093 0.962834i \(-0.587055\pi\)
−0.270093 + 0.962834i \(0.587055\pi\)
\(728\) 0 0
\(729\) −14.9199 −0.552589
\(730\) 10.6152 0.392887
\(731\) −4.92370 −0.182109
\(732\) 1.68712 0.0623577
\(733\) 17.6606 0.652309 0.326155 0.945316i \(-0.394247\pi\)
0.326155 + 0.945316i \(0.394247\pi\)
\(734\) −48.2902 −1.78243
\(735\) 0 0
\(736\) −8.35705 −0.308045
\(737\) −7.92205 −0.291812
\(738\) −6.59394 −0.242726
\(739\) 8.96559 0.329804 0.164902 0.986310i \(-0.447269\pi\)
0.164902 + 0.986310i \(0.447269\pi\)
\(740\) −2.48042 −0.0911822
\(741\) 0 0
\(742\) 0 0
\(743\) −26.3679 −0.967343 −0.483671 0.875250i \(-0.660697\pi\)
−0.483671 + 0.875250i \(0.660697\pi\)
\(744\) −6.36674 −0.233416
\(745\) 17.1716 0.629119
\(746\) −4.56618 −0.167180
\(747\) 32.1086 1.17479
\(748\) −0.799847 −0.0292453
\(749\) 0 0
\(750\) −7.77635 −0.283952
\(751\) −20.2876 −0.740305 −0.370152 0.928971i \(-0.620695\pi\)
−0.370152 + 0.928971i \(0.620695\pi\)
\(752\) 14.8507 0.541550
\(753\) −6.48641 −0.236378
\(754\) 0 0
\(755\) −18.1801 −0.661642
\(756\) 0 0
\(757\) 24.9984 0.908584 0.454292 0.890853i \(-0.349892\pi\)
0.454292 + 0.890853i \(0.349892\pi\)
\(758\) 15.6791 0.569492
\(759\) −3.72440 −0.135187
\(760\) 19.6179 0.711616
\(761\) 20.1422 0.730154 0.365077 0.930977i \(-0.381043\pi\)
0.365077 + 0.930977i \(0.381043\pi\)
\(762\) 11.9255 0.432016
\(763\) 0 0
\(764\) 0.210070 0.00760006
\(765\) −2.98112 −0.107783
\(766\) 5.73573 0.207240
\(767\) 0 0
\(768\) −4.69889 −0.169557
\(769\) 8.67220 0.312727 0.156364 0.987700i \(-0.450023\pi\)
0.156364 + 0.987700i \(0.450023\pi\)
\(770\) 0 0
\(771\) 6.44398 0.232074
\(772\) −1.54828 −0.0557237
\(773\) 2.34567 0.0843679 0.0421839 0.999110i \(-0.486568\pi\)
0.0421839 + 0.999110i \(0.486568\pi\)
\(774\) −23.3168 −0.838106
\(775\) 18.9319 0.680055
\(776\) −15.2688 −0.548119
\(777\) 0 0
\(778\) 35.2396 1.26340
\(779\) 10.2787 0.368273
\(780\) 0 0
\(781\) −5.35426 −0.191591
\(782\) −5.06870 −0.181256
\(783\) 23.9999 0.857687
\(784\) 0 0
\(785\) 13.6010 0.485440
\(786\) 7.25468 0.258766
\(787\) −34.1166 −1.21613 −0.608063 0.793889i \(-0.708053\pi\)
−0.608063 + 0.793889i \(0.708053\pi\)
\(788\) −3.10474 −0.110602
\(789\) 9.36455 0.333387
\(790\) −11.2487 −0.400210
\(791\) 0 0
\(792\) 14.3768 0.510858
\(793\) 0 0
\(794\) −45.2973 −1.60754
\(795\) −1.64670 −0.0584024
\(796\) 3.13020 0.110947
\(797\) −34.0844 −1.20733 −0.603666 0.797237i \(-0.706294\pi\)
−0.603666 + 0.797237i \(0.706294\pi\)
\(798\) 0 0
\(799\) 2.88815 0.102175
\(800\) 8.31749 0.294068
\(801\) 49.0044 1.73148
\(802\) 12.6249 0.445800
\(803\) −12.1264 −0.427932
\(804\) 0.763862 0.0269393
\(805\) 0 0
\(806\) 0 0
\(807\) 13.9350 0.490534
\(808\) 17.7749 0.625319
\(809\) −26.5205 −0.932413 −0.466206 0.884676i \(-0.654380\pi\)
−0.466206 + 0.884676i \(0.654380\pi\)
\(810\) −12.7873 −0.449300
\(811\) 52.5463 1.84515 0.922575 0.385818i \(-0.126081\pi\)
0.922575 + 0.385818i \(0.126081\pi\)
\(812\) 0 0
\(813\) −8.78080 −0.307956
\(814\) 16.4220 0.575590
\(815\) 17.1669 0.601331
\(816\) −2.06637 −0.0723373
\(817\) 36.3465 1.27160
\(818\) −12.9391 −0.452403
\(819\) 0 0
\(820\) −0.763451 −0.0266609
\(821\) −30.7546 −1.07334 −0.536671 0.843791i \(-0.680318\pi\)
−0.536671 + 0.843791i \(0.680318\pi\)
\(822\) 2.10286 0.0733455
\(823\) −29.7038 −1.03541 −0.517705 0.855559i \(-0.673213\pi\)
−0.517705 + 0.855559i \(0.673213\pi\)
\(824\) −24.4289 −0.851021
\(825\) 3.70677 0.129053
\(826\) 0 0
\(827\) 14.8351 0.515866 0.257933 0.966163i \(-0.416959\pi\)
0.257933 + 0.966163i \(0.416959\pi\)
\(828\) −4.14170 −0.143934
\(829\) 14.5849 0.506554 0.253277 0.967394i \(-0.418492\pi\)
0.253277 + 0.967394i \(0.418492\pi\)
\(830\) 21.5453 0.747849
\(831\) −6.57499 −0.228084
\(832\) 0 0
\(833\) 0 0
\(834\) 17.3399 0.600432
\(835\) −9.26030 −0.320466
\(836\) 5.90443 0.204209
\(837\) −14.9031 −0.515128
\(838\) −20.2368 −0.699069
\(839\) 36.8086 1.27077 0.635386 0.772194i \(-0.280841\pi\)
0.635386 + 0.772194i \(0.280841\pi\)
\(840\) 0 0
\(841\) 43.5128 1.50044
\(842\) −13.8318 −0.476674
\(843\) 14.6546 0.504730
\(844\) 1.58088 0.0544163
\(845\) 0 0
\(846\) 13.6772 0.470232
\(847\) 0 0
\(848\) 13.1639 0.452051
\(849\) 4.83929 0.166084
\(850\) 5.04470 0.173032
\(851\) 17.9564 0.615537
\(852\) 0.516270 0.0176871
\(853\) −4.10728 −0.140630 −0.0703152 0.997525i \(-0.522401\pi\)
−0.0703152 + 0.997525i \(0.522401\pi\)
\(854\) 0 0
\(855\) 22.0065 0.752607
\(856\) 5.41433 0.185058
\(857\) −38.3312 −1.30937 −0.654684 0.755902i \(-0.727199\pi\)
−0.654684 + 0.755902i \(0.727199\pi\)
\(858\) 0 0
\(859\) −39.4369 −1.34557 −0.672785 0.739838i \(-0.734902\pi\)
−0.672785 + 0.739838i \(0.734902\pi\)
\(860\) −2.69964 −0.0920569
\(861\) 0 0
\(862\) −13.9260 −0.474322
\(863\) −38.6440 −1.31546 −0.657728 0.753255i \(-0.728483\pi\)
−0.657728 + 0.753255i \(0.728483\pi\)
\(864\) −6.54750 −0.222750
\(865\) −7.26180 −0.246909
\(866\) −0.268820 −0.00913488
\(867\) 7.91541 0.268821
\(868\) 0 0
\(869\) 12.8500 0.435908
\(870\) 7.71757 0.261650
\(871\) 0 0
\(872\) −33.8283 −1.14557
\(873\) −17.1279 −0.579692
\(874\) 37.4169 1.26564
\(875\) 0 0
\(876\) 1.16926 0.0395055
\(877\) −58.0741 −1.96102 −0.980512 0.196458i \(-0.937056\pi\)
−0.980512 + 0.196458i \(0.937056\pi\)
\(878\) 14.8342 0.500630
\(879\) −3.87026 −0.130541
\(880\) 11.7502 0.396098
\(881\) 21.6236 0.728519 0.364259 0.931298i \(-0.381322\pi\)
0.364259 + 0.931298i \(0.381322\pi\)
\(882\) 0 0
\(883\) −22.7329 −0.765022 −0.382511 0.923951i \(-0.624941\pi\)
−0.382511 + 0.923951i \(0.624941\pi\)
\(884\) 0 0
\(885\) −5.97287 −0.200776
\(886\) −21.5690 −0.724624
\(887\) −16.3317 −0.548365 −0.274182 0.961678i \(-0.588407\pi\)
−0.274182 + 0.961678i \(0.588407\pi\)
\(888\) 6.01008 0.201685
\(889\) 0 0
\(890\) 32.8827 1.10223
\(891\) 14.6077 0.489376
\(892\) 2.03054 0.0679874
\(893\) −21.3201 −0.713451
\(894\) 10.9620 0.366623
\(895\) −22.0784 −0.738000
\(896\) 0 0
\(897\) 0 0
\(898\) −33.1012 −1.10460
\(899\) −45.0280 −1.50177
\(900\) 4.12209 0.137403
\(901\) 2.56010 0.0852893
\(902\) 5.05453 0.168297
\(903\) 0 0
\(904\) 39.6089 1.31737
\(905\) 6.67866 0.222006
\(906\) −11.6058 −0.385575
\(907\) 14.4096 0.478463 0.239232 0.970963i \(-0.423105\pi\)
0.239232 + 0.970963i \(0.423105\pi\)
\(908\) 10.0829 0.334614
\(909\) 19.9391 0.661339
\(910\) 0 0
\(911\) −1.32236 −0.0438118 −0.0219059 0.999760i \(-0.506973\pi\)
−0.0219059 + 0.999760i \(0.506973\pi\)
\(912\) 15.2538 0.505104
\(913\) −24.6125 −0.814556
\(914\) 15.0581 0.498079
\(915\) −4.82008 −0.159347
\(916\) −9.05513 −0.299190
\(917\) 0 0
\(918\) −3.97117 −0.131068
\(919\) −27.4458 −0.905354 −0.452677 0.891675i \(-0.649531\pi\)
−0.452677 + 0.891675i \(0.649531\pi\)
\(920\) 10.5484 0.347772
\(921\) −0.622515 −0.0205126
\(922\) −2.13669 −0.0703682
\(923\) 0 0
\(924\) 0 0
\(925\) −17.8714 −0.587607
\(926\) 49.3940 1.62319
\(927\) −27.4033 −0.900042
\(928\) −19.7825 −0.649391
\(929\) −28.6389 −0.939611 −0.469805 0.882770i \(-0.655676\pi\)
−0.469805 + 0.882770i \(0.655676\pi\)
\(930\) −4.79235 −0.157147
\(931\) 0 0
\(932\) 1.58348 0.0518685
\(933\) −12.1156 −0.396646
\(934\) −45.2739 −1.48141
\(935\) 2.28515 0.0747326
\(936\) 0 0
\(937\) 27.9990 0.914688 0.457344 0.889290i \(-0.348801\pi\)
0.457344 + 0.889290i \(0.348801\pi\)
\(938\) 0 0
\(939\) −1.16271 −0.0379437
\(940\) 1.58356 0.0516499
\(941\) 28.9003 0.942124 0.471062 0.882100i \(-0.343871\pi\)
0.471062 + 0.882100i \(0.343871\pi\)
\(942\) 8.68255 0.282893
\(943\) 5.52680 0.179977
\(944\) 47.7480 1.55406
\(945\) 0 0
\(946\) 17.8733 0.581111
\(947\) 30.1235 0.978881 0.489441 0.872037i \(-0.337201\pi\)
0.489441 + 0.872037i \(0.337201\pi\)
\(948\) −1.23903 −0.0402418
\(949\) 0 0
\(950\) −37.2398 −1.20822
\(951\) 9.67719 0.313805
\(952\) 0 0
\(953\) 4.93022 0.159705 0.0798527 0.996807i \(-0.474555\pi\)
0.0798527 + 0.996807i \(0.474555\pi\)
\(954\) 12.1237 0.392519
\(955\) −0.600167 −0.0194210
\(956\) 9.13757 0.295530
\(957\) −8.81625 −0.284989
\(958\) 15.1144 0.488325
\(959\) 0 0
\(960\) 3.32783 0.107405
\(961\) −3.03914 −0.0980368
\(962\) 0 0
\(963\) 6.07357 0.195718
\(964\) −8.65330 −0.278704
\(965\) 4.42341 0.142395
\(966\) 0 0
\(967\) 29.1431 0.937180 0.468590 0.883416i \(-0.344762\pi\)
0.468590 + 0.883416i \(0.344762\pi\)
\(968\) 16.0505 0.515882
\(969\) 2.96654 0.0952989
\(970\) −11.4931 −0.369021
\(971\) 14.5769 0.467794 0.233897 0.972261i \(-0.424852\pi\)
0.233897 + 0.972261i \(0.424852\pi\)
\(972\) −4.93476 −0.158282
\(973\) 0 0
\(974\) −26.6058 −0.852506
\(975\) 0 0
\(976\) 38.5324 1.23339
\(977\) 52.5218 1.68032 0.840161 0.542337i \(-0.182460\pi\)
0.840161 + 0.542337i \(0.182460\pi\)
\(978\) 10.9590 0.350429
\(979\) −37.5639 −1.20055
\(980\) 0 0
\(981\) −37.9472 −1.21156
\(982\) −39.9886 −1.27609
\(983\) −6.03769 −0.192572 −0.0962862 0.995354i \(-0.530696\pi\)
−0.0962862 + 0.995354i \(0.530696\pi\)
\(984\) 1.84985 0.0589709
\(985\) 8.87022 0.282629
\(986\) −11.9984 −0.382107
\(987\) 0 0
\(988\) 0 0
\(989\) 19.5433 0.621441
\(990\) 10.8217 0.343935
\(991\) 31.3484 0.995813 0.497907 0.867231i \(-0.334102\pi\)
0.497907 + 0.867231i \(0.334102\pi\)
\(992\) 12.2842 0.390025
\(993\) −1.92165 −0.0609816
\(994\) 0 0
\(995\) −8.94296 −0.283511
\(996\) 2.37320 0.0751976
\(997\) 5.48033 0.173564 0.0867819 0.996227i \(-0.472342\pi\)
0.0867819 + 0.996227i \(0.472342\pi\)
\(998\) 8.40146 0.265944
\(999\) 14.0683 0.445101
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.bz.1.5 6
7.2 even 3 1183.2.e.h.508.2 12
7.4 even 3 1183.2.e.h.170.2 12
7.6 odd 2 8281.2.a.ca.1.5 6
13.3 even 3 637.2.f.k.295.2 12
13.9 even 3 637.2.f.k.393.2 12
13.12 even 2 8281.2.a.ce.1.2 6
91.3 odd 6 637.2.g.l.373.2 12
91.9 even 3 91.2.g.b.81.2 yes 12
91.16 even 3 91.2.h.b.74.5 yes 12
91.25 even 6 1183.2.e.g.170.5 12
91.48 odd 6 637.2.f.j.393.2 12
91.51 even 6 1183.2.e.g.508.5 12
91.55 odd 6 637.2.f.j.295.2 12
91.61 odd 6 637.2.g.l.263.2 12
91.68 odd 6 637.2.h.l.165.5 12
91.74 even 3 91.2.h.b.16.5 yes 12
91.81 even 3 91.2.g.b.9.2 12
91.87 odd 6 637.2.h.l.471.5 12
91.90 odd 2 8281.2.a.cf.1.2 6
273.74 odd 6 819.2.s.d.289.2 12
273.107 odd 6 819.2.s.d.802.2 12
273.191 odd 6 819.2.n.d.172.5 12
273.263 odd 6 819.2.n.d.100.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.2 12 91.81 even 3
91.2.g.b.81.2 yes 12 91.9 even 3
91.2.h.b.16.5 yes 12 91.74 even 3
91.2.h.b.74.5 yes 12 91.16 even 3
637.2.f.j.295.2 12 91.55 odd 6
637.2.f.j.393.2 12 91.48 odd 6
637.2.f.k.295.2 12 13.3 even 3
637.2.f.k.393.2 12 13.9 even 3
637.2.g.l.263.2 12 91.61 odd 6
637.2.g.l.373.2 12 91.3 odd 6
637.2.h.l.165.5 12 91.68 odd 6
637.2.h.l.471.5 12 91.87 odd 6
819.2.n.d.100.5 12 273.263 odd 6
819.2.n.d.172.5 12 273.191 odd 6
819.2.s.d.289.2 12 273.74 odd 6
819.2.s.d.802.2 12 273.107 odd 6
1183.2.e.g.170.5 12 91.25 even 6
1183.2.e.g.508.5 12 91.51 even 6
1183.2.e.h.170.2 12 7.4 even 3
1183.2.e.h.508.2 12 7.2 even 3
8281.2.a.bz.1.5 6 1.1 even 1 trivial
8281.2.a.ca.1.5 6 7.6 odd 2
8281.2.a.ce.1.2 6 13.12 even 2
8281.2.a.cf.1.2 6 91.90 odd 2