Properties

Label 8281.2.a.by.1.6
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8281,2,Mod(1,8281)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8281, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8281.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-4,0,4,6,4,0,-12,4,-12,-4,-2,0,0,-20,8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7674048.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 7x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.38595\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.38595 q^{2} +2.82577 q^{3} -0.0791355 q^{4} -0.518957 q^{5} +3.91639 q^{6} -2.88158 q^{8} +4.98500 q^{9} -0.719250 q^{10} +1.62416 q^{11} -0.223619 q^{12} -1.46646 q^{15} -3.83547 q^{16} -1.94825 q^{17} +6.90897 q^{18} -2.49115 q^{19} +0.0410679 q^{20} +2.25101 q^{22} -9.14058 q^{23} -8.14270 q^{24} -4.73068 q^{25} +5.60916 q^{27} -5.22996 q^{29} -2.03244 q^{30} -5.79391 q^{31} +0.447392 q^{32} +4.58951 q^{33} -2.70019 q^{34} -0.394491 q^{36} -10.2293 q^{37} -3.45262 q^{38} +1.49542 q^{40} +4.20903 q^{41} -0.997311 q^{43} -0.128529 q^{44} -2.58700 q^{45} -12.6684 q^{46} +4.51725 q^{47} -10.8382 q^{48} -6.55650 q^{50} -5.50532 q^{51} -8.89651 q^{53} +7.77403 q^{54} -0.842869 q^{55} -7.03944 q^{57} -7.24847 q^{58} -6.20526 q^{59} +0.116049 q^{60} +13.4707 q^{61} -8.03008 q^{62} +8.29100 q^{64} +6.36084 q^{66} +8.37266 q^{67} +0.154176 q^{68} -25.8292 q^{69} -5.19809 q^{71} -14.3647 q^{72} +11.8395 q^{73} -14.1773 q^{74} -13.3678 q^{75} +0.197139 q^{76} +0.982310 q^{79} +1.99044 q^{80} +0.895217 q^{81} +5.83352 q^{82} +8.91851 q^{83} +1.01106 q^{85} -1.38223 q^{86} -14.7787 q^{87} -4.68015 q^{88} +12.0190 q^{89} -3.58546 q^{90} +0.723345 q^{92} -16.3723 q^{93} +6.26070 q^{94} +1.29280 q^{95} +1.26423 q^{96} -4.42228 q^{97} +8.09643 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{2} + 4 q^{4} + 6 q^{5} + 4 q^{6} - 12 q^{8} + 4 q^{9} - 12 q^{10} - 4 q^{11} - 2 q^{12} - 20 q^{15} + 8 q^{16} + 4 q^{17} + 16 q^{18} + 2 q^{19} + 26 q^{20} - 6 q^{22} - 12 q^{23} + 2 q^{24}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38595 0.980016 0.490008 0.871718i \(-0.336994\pi\)
0.490008 + 0.871718i \(0.336994\pi\)
\(3\) 2.82577 1.63146 0.815731 0.578432i \(-0.196335\pi\)
0.815731 + 0.578432i \(0.196335\pi\)
\(4\) −0.0791355 −0.0395678
\(5\) −0.518957 −0.232085 −0.116042 0.993244i \(-0.537021\pi\)
−0.116042 + 0.993244i \(0.537021\pi\)
\(6\) 3.91639 1.59886
\(7\) 0 0
\(8\) −2.88158 −1.01879
\(9\) 4.98500 1.66167
\(10\) −0.719250 −0.227447
\(11\) 1.62416 0.489702 0.244851 0.969561i \(-0.421261\pi\)
0.244851 + 0.969561i \(0.421261\pi\)
\(12\) −0.223619 −0.0645533
\(13\) 0 0
\(14\) 0 0
\(15\) −1.46646 −0.378637
\(16\) −3.83547 −0.958867
\(17\) −1.94825 −0.472521 −0.236260 0.971690i \(-0.575922\pi\)
−0.236260 + 0.971690i \(0.575922\pi\)
\(18\) 6.90897 1.62846
\(19\) −2.49115 −0.571510 −0.285755 0.958303i \(-0.592244\pi\)
−0.285755 + 0.958303i \(0.592244\pi\)
\(20\) 0.0410679 0.00918307
\(21\) 0 0
\(22\) 2.25101 0.479916
\(23\) −9.14058 −1.90594 −0.952971 0.303060i \(-0.901992\pi\)
−0.952971 + 0.303060i \(0.901992\pi\)
\(24\) −8.14270 −1.66212
\(25\) −4.73068 −0.946137
\(26\) 0 0
\(27\) 5.60916 1.07948
\(28\) 0 0
\(29\) −5.22996 −0.971179 −0.485589 0.874187i \(-0.661395\pi\)
−0.485589 + 0.874187i \(0.661395\pi\)
\(30\) −2.03244 −0.371071
\(31\) −5.79391 −1.04062 −0.520308 0.853978i \(-0.674183\pi\)
−0.520308 + 0.853978i \(0.674183\pi\)
\(32\) 0.447392 0.0790885
\(33\) 4.58951 0.798931
\(34\) −2.70019 −0.463078
\(35\) 0 0
\(36\) −0.394491 −0.0657484
\(37\) −10.2293 −1.68168 −0.840840 0.541284i \(-0.817938\pi\)
−0.840840 + 0.541284i \(0.817938\pi\)
\(38\) −3.45262 −0.560089
\(39\) 0 0
\(40\) 1.49542 0.236446
\(41\) 4.20903 0.657340 0.328670 0.944445i \(-0.393400\pi\)
0.328670 + 0.944445i \(0.393400\pi\)
\(42\) 0 0
\(43\) −0.997311 −0.152088 −0.0760442 0.997104i \(-0.524229\pi\)
−0.0760442 + 0.997104i \(0.524229\pi\)
\(44\) −0.128529 −0.0193764
\(45\) −2.58700 −0.385647
\(46\) −12.6684 −1.86786
\(47\) 4.51725 0.658909 0.329455 0.944171i \(-0.393135\pi\)
0.329455 + 0.944171i \(0.393135\pi\)
\(48\) −10.8382 −1.56435
\(49\) 0 0
\(50\) −6.55650 −0.927230
\(51\) −5.50532 −0.770899
\(52\) 0 0
\(53\) −8.89651 −1.22203 −0.611015 0.791619i \(-0.709238\pi\)
−0.611015 + 0.791619i \(0.709238\pi\)
\(54\) 7.77403 1.05791
\(55\) −0.842869 −0.113652
\(56\) 0 0
\(57\) −7.03944 −0.932397
\(58\) −7.24847 −0.951771
\(59\) −6.20526 −0.807856 −0.403928 0.914791i \(-0.632355\pi\)
−0.403928 + 0.914791i \(0.632355\pi\)
\(60\) 0.116049 0.0149818
\(61\) 13.4707 1.72475 0.862375 0.506270i \(-0.168976\pi\)
0.862375 + 0.506270i \(0.168976\pi\)
\(62\) −8.03008 −1.01982
\(63\) 0 0
\(64\) 8.29100 1.03637
\(65\) 0 0
\(66\) 6.36084 0.782965
\(67\) 8.37266 1.02288 0.511442 0.859318i \(-0.329112\pi\)
0.511442 + 0.859318i \(0.329112\pi\)
\(68\) 0.154176 0.0186966
\(69\) −25.8292 −3.10947
\(70\) 0 0
\(71\) −5.19809 −0.616900 −0.308450 0.951241i \(-0.599810\pi\)
−0.308450 + 0.951241i \(0.599810\pi\)
\(72\) −14.3647 −1.69289
\(73\) 11.8395 1.38571 0.692856 0.721076i \(-0.256352\pi\)
0.692856 + 0.721076i \(0.256352\pi\)
\(74\) −14.1773 −1.64807
\(75\) −13.3678 −1.54359
\(76\) 0.197139 0.0226134
\(77\) 0 0
\(78\) 0 0
\(79\) 0.982310 0.110518 0.0552592 0.998472i \(-0.482401\pi\)
0.0552592 + 0.998472i \(0.482401\pi\)
\(80\) 1.99044 0.222538
\(81\) 0.895217 0.0994686
\(82\) 5.83352 0.644204
\(83\) 8.91851 0.978934 0.489467 0.872022i \(-0.337191\pi\)
0.489467 + 0.872022i \(0.337191\pi\)
\(84\) 0 0
\(85\) 1.01106 0.109665
\(86\) −1.38223 −0.149049
\(87\) −14.7787 −1.58444
\(88\) −4.68015 −0.498906
\(89\) 12.0190 1.27401 0.637005 0.770860i \(-0.280173\pi\)
0.637005 + 0.770860i \(0.280173\pi\)
\(90\) −3.58546 −0.377941
\(91\) 0 0
\(92\) 0.723345 0.0754139
\(93\) −16.3723 −1.69773
\(94\) 6.26070 0.645742
\(95\) 1.29280 0.132639
\(96\) 1.26423 0.129030
\(97\) −4.42228 −0.449015 −0.224507 0.974472i \(-0.572077\pi\)
−0.224507 + 0.974472i \(0.572077\pi\)
\(98\) 0 0
\(99\) 8.09643 0.813722
\(100\) 0.374365 0.0374365
\(101\) −18.3026 −1.82118 −0.910591 0.413309i \(-0.864373\pi\)
−0.910591 + 0.413309i \(0.864373\pi\)
\(102\) −7.63012 −0.755494
\(103\) −5.02046 −0.494680 −0.247340 0.968929i \(-0.579556\pi\)
−0.247340 + 0.968929i \(0.579556\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −12.3301 −1.19761
\(107\) 6.14456 0.594017 0.297008 0.954875i \(-0.404011\pi\)
0.297008 + 0.954875i \(0.404011\pi\)
\(108\) −0.443884 −0.0427127
\(109\) 11.8962 1.13945 0.569727 0.821834i \(-0.307049\pi\)
0.569727 + 0.821834i \(0.307049\pi\)
\(110\) −1.16818 −0.111381
\(111\) −28.9056 −2.74359
\(112\) 0 0
\(113\) 3.55612 0.334532 0.167266 0.985912i \(-0.446506\pi\)
0.167266 + 0.985912i \(0.446506\pi\)
\(114\) −9.75633 −0.913764
\(115\) 4.74357 0.442340
\(116\) 0.413875 0.0384274
\(117\) 0 0
\(118\) −8.60020 −0.791713
\(119\) 0 0
\(120\) 4.22571 0.385753
\(121\) −8.36211 −0.760191
\(122\) 18.6698 1.69028
\(123\) 11.8938 1.07243
\(124\) 0.458504 0.0411749
\(125\) 5.04981 0.451668
\(126\) 0 0
\(127\) −1.42350 −0.126315 −0.0631575 0.998004i \(-0.520117\pi\)
−0.0631575 + 0.998004i \(0.520117\pi\)
\(128\) 10.5961 0.936576
\(129\) −2.81818 −0.248127
\(130\) 0 0
\(131\) −8.67374 −0.757828 −0.378914 0.925432i \(-0.623702\pi\)
−0.378914 + 0.925432i \(0.623702\pi\)
\(132\) −0.363193 −0.0316119
\(133\) 0 0
\(134\) 11.6041 1.00244
\(135\) −2.91091 −0.250531
\(136\) 5.61405 0.481401
\(137\) −8.51784 −0.727728 −0.363864 0.931452i \(-0.618543\pi\)
−0.363864 + 0.931452i \(0.618543\pi\)
\(138\) −35.7981 −3.04733
\(139\) 5.03844 0.427355 0.213677 0.976904i \(-0.431456\pi\)
0.213677 + 0.976904i \(0.431456\pi\)
\(140\) 0 0
\(141\) 12.7647 1.07499
\(142\) −7.20431 −0.604572
\(143\) 0 0
\(144\) −19.1198 −1.59332
\(145\) 2.71412 0.225396
\(146\) 16.4090 1.35802
\(147\) 0 0
\(148\) 0.809498 0.0665403
\(149\) 3.36490 0.275663 0.137832 0.990456i \(-0.455987\pi\)
0.137832 + 0.990456i \(0.455987\pi\)
\(150\) −18.5272 −1.51274
\(151\) 12.6566 1.02998 0.514991 0.857196i \(-0.327795\pi\)
0.514991 + 0.857196i \(0.327795\pi\)
\(152\) 7.17847 0.582251
\(153\) −9.71204 −0.785172
\(154\) 0 0
\(155\) 3.00679 0.241511
\(156\) 0 0
\(157\) −10.3691 −0.827547 −0.413773 0.910380i \(-0.635789\pi\)
−0.413773 + 0.910380i \(0.635789\pi\)
\(158\) 1.36143 0.108310
\(159\) −25.1395 −1.99369
\(160\) −0.232177 −0.0183552
\(161\) 0 0
\(162\) 1.24073 0.0974808
\(163\) −15.7534 −1.23390 −0.616950 0.787002i \(-0.711632\pi\)
−0.616950 + 0.787002i \(0.711632\pi\)
\(164\) −0.333084 −0.0260095
\(165\) −2.38176 −0.185420
\(166\) 12.3606 0.959371
\(167\) 16.3986 1.26896 0.634481 0.772939i \(-0.281214\pi\)
0.634481 + 0.772939i \(0.281214\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 1.40128 0.107473
\(171\) −12.4184 −0.949659
\(172\) 0.0789227 0.00601780
\(173\) 0.301355 0.0229116 0.0114558 0.999934i \(-0.496353\pi\)
0.0114558 + 0.999934i \(0.496353\pi\)
\(174\) −20.4825 −1.55278
\(175\) 0 0
\(176\) −6.22941 −0.469559
\(177\) −17.5347 −1.31799
\(178\) 16.6577 1.24855
\(179\) −9.81582 −0.733669 −0.366834 0.930286i \(-0.619558\pi\)
−0.366834 + 0.930286i \(0.619558\pi\)
\(180\) 0.204724 0.0152592
\(181\) 12.4320 0.924062 0.462031 0.886864i \(-0.347121\pi\)
0.462031 + 0.886864i \(0.347121\pi\)
\(182\) 0 0
\(183\) 38.0652 2.81386
\(184\) 26.3393 1.94176
\(185\) 5.30854 0.390292
\(186\) −22.6912 −1.66380
\(187\) −3.16427 −0.231395
\(188\) −0.357475 −0.0260716
\(189\) 0 0
\(190\) 1.79176 0.129988
\(191\) −12.2469 −0.886156 −0.443078 0.896483i \(-0.646114\pi\)
−0.443078 + 0.896483i \(0.646114\pi\)
\(192\) 23.4285 1.69081
\(193\) −11.6338 −0.837422 −0.418711 0.908119i \(-0.637518\pi\)
−0.418711 + 0.908119i \(0.637518\pi\)
\(194\) −6.12908 −0.440042
\(195\) 0 0
\(196\) 0 0
\(197\) 1.80114 0.128326 0.0641631 0.997939i \(-0.479562\pi\)
0.0641631 + 0.997939i \(0.479562\pi\)
\(198\) 11.2213 0.797461
\(199\) −6.59313 −0.467375 −0.233687 0.972312i \(-0.575079\pi\)
−0.233687 + 0.972312i \(0.575079\pi\)
\(200\) 13.6319 0.963918
\(201\) 23.6592 1.66879
\(202\) −25.3666 −1.78479
\(203\) 0 0
\(204\) 0.435667 0.0305028
\(205\) −2.18431 −0.152559
\(206\) −6.95811 −0.484795
\(207\) −45.5658 −3.16704
\(208\) 0 0
\(209\) −4.04603 −0.279870
\(210\) 0 0
\(211\) 10.7199 0.737990 0.368995 0.929431i \(-0.379702\pi\)
0.368995 + 0.929431i \(0.379702\pi\)
\(212\) 0.704030 0.0483530
\(213\) −14.6886 −1.00645
\(214\) 8.51607 0.582146
\(215\) 0.517562 0.0352974
\(216\) −16.1633 −1.09977
\(217\) 0 0
\(218\) 16.4876 1.11668
\(219\) 33.4558 2.26074
\(220\) 0.0667009 0.00449697
\(221\) 0 0
\(222\) −40.0617 −2.68877
\(223\) −12.8878 −0.863034 −0.431517 0.902105i \(-0.642021\pi\)
−0.431517 + 0.902105i \(0.642021\pi\)
\(224\) 0 0
\(225\) −23.5825 −1.57216
\(226\) 4.92862 0.327847
\(227\) 0.699155 0.0464045 0.0232023 0.999731i \(-0.492614\pi\)
0.0232023 + 0.999731i \(0.492614\pi\)
\(228\) 0.557070 0.0368929
\(229\) −18.2868 −1.20843 −0.604214 0.796822i \(-0.706513\pi\)
−0.604214 + 0.796822i \(0.706513\pi\)
\(230\) 6.57436 0.433501
\(231\) 0 0
\(232\) 15.0706 0.989431
\(233\) 26.7796 1.75439 0.877194 0.480137i \(-0.159413\pi\)
0.877194 + 0.480137i \(0.159413\pi\)
\(234\) 0 0
\(235\) −2.34426 −0.152923
\(236\) 0.491057 0.0319651
\(237\) 2.77579 0.180307
\(238\) 0 0
\(239\) −16.6177 −1.07491 −0.537454 0.843293i \(-0.680614\pi\)
−0.537454 + 0.843293i \(0.680614\pi\)
\(240\) 5.62454 0.363063
\(241\) 17.4129 1.12166 0.560830 0.827931i \(-0.310482\pi\)
0.560830 + 0.827931i \(0.310482\pi\)
\(242\) −11.5895 −0.745000
\(243\) −14.2978 −0.917204
\(244\) −1.06601 −0.0682445
\(245\) 0 0
\(246\) 16.4842 1.05099
\(247\) 0 0
\(248\) 16.6956 1.06017
\(249\) 25.2017 1.59709
\(250\) 6.99879 0.442642
\(251\) 6.44982 0.407109 0.203554 0.979064i \(-0.434751\pi\)
0.203554 + 0.979064i \(0.434751\pi\)
\(252\) 0 0
\(253\) −14.8458 −0.933345
\(254\) −1.97290 −0.123791
\(255\) 2.85703 0.178914
\(256\) −1.89624 −0.118515
\(257\) 3.67156 0.229025 0.114513 0.993422i \(-0.463469\pi\)
0.114513 + 0.993422i \(0.463469\pi\)
\(258\) −3.90586 −0.243168
\(259\) 0 0
\(260\) 0 0
\(261\) −26.0713 −1.61377
\(262\) −12.0214 −0.742684
\(263\) 18.3193 1.12961 0.564807 0.825223i \(-0.308950\pi\)
0.564807 + 0.825223i \(0.308950\pi\)
\(264\) −13.2250 −0.813945
\(265\) 4.61690 0.283614
\(266\) 0 0
\(267\) 33.9629 2.07850
\(268\) −0.662575 −0.0404732
\(269\) −27.5429 −1.67932 −0.839661 0.543111i \(-0.817246\pi\)
−0.839661 + 0.543111i \(0.817246\pi\)
\(270\) −4.03439 −0.245525
\(271\) −6.51923 −0.396015 −0.198007 0.980201i \(-0.563447\pi\)
−0.198007 + 0.980201i \(0.563447\pi\)
\(272\) 7.47246 0.453084
\(273\) 0 0
\(274\) −11.8053 −0.713186
\(275\) −7.68338 −0.463325
\(276\) 2.04401 0.123035
\(277\) 5.44186 0.326970 0.163485 0.986546i \(-0.447727\pi\)
0.163485 + 0.986546i \(0.447727\pi\)
\(278\) 6.98304 0.418815
\(279\) −28.8826 −1.72916
\(280\) 0 0
\(281\) 3.54237 0.211320 0.105660 0.994402i \(-0.466304\pi\)
0.105660 + 0.994402i \(0.466304\pi\)
\(282\) 17.6913 1.05350
\(283\) 14.1391 0.840484 0.420242 0.907412i \(-0.361945\pi\)
0.420242 + 0.907412i \(0.361945\pi\)
\(284\) 0.411354 0.0244094
\(285\) 3.65317 0.216395
\(286\) 0 0
\(287\) 0 0
\(288\) 2.23025 0.131419
\(289\) −13.2043 −0.776724
\(290\) 3.76165 0.220891
\(291\) −12.4964 −0.732551
\(292\) −0.936928 −0.0548295
\(293\) −8.34931 −0.487772 −0.243886 0.969804i \(-0.578422\pi\)
−0.243886 + 0.969804i \(0.578422\pi\)
\(294\) 0 0
\(295\) 3.22027 0.187491
\(296\) 29.4765 1.71328
\(297\) 9.11017 0.528626
\(298\) 4.66359 0.270155
\(299\) 0 0
\(300\) 1.05787 0.0610762
\(301\) 0 0
\(302\) 17.5415 1.00940
\(303\) −51.7192 −2.97119
\(304\) 9.55474 0.548002
\(305\) −6.99073 −0.400288
\(306\) −13.4604 −0.769481
\(307\) 8.33362 0.475625 0.237813 0.971311i \(-0.423570\pi\)
0.237813 + 0.971311i \(0.423570\pi\)
\(308\) 0 0
\(309\) −14.1867 −0.807052
\(310\) 4.16727 0.236685
\(311\) 14.6227 0.829176 0.414588 0.910009i \(-0.363926\pi\)
0.414588 + 0.910009i \(0.363926\pi\)
\(312\) 0 0
\(313\) −17.1328 −0.968404 −0.484202 0.874956i \(-0.660890\pi\)
−0.484202 + 0.874956i \(0.660890\pi\)
\(314\) −14.3711 −0.811009
\(315\) 0 0
\(316\) −0.0777356 −0.00437297
\(317\) −14.0000 −0.786320 −0.393160 0.919470i \(-0.628618\pi\)
−0.393160 + 0.919470i \(0.628618\pi\)
\(318\) −34.8422 −1.95385
\(319\) −8.49428 −0.475589
\(320\) −4.30267 −0.240527
\(321\) 17.3631 0.969116
\(322\) 0 0
\(323\) 4.85340 0.270050
\(324\) −0.0708435 −0.00393575
\(325\) 0 0
\(326\) −21.8334 −1.20924
\(327\) 33.6161 1.85897
\(328\) −12.1287 −0.669694
\(329\) 0 0
\(330\) −3.30100 −0.181714
\(331\) 6.91996 0.380355 0.190178 0.981750i \(-0.439094\pi\)
0.190178 + 0.981750i \(0.439094\pi\)
\(332\) −0.705771 −0.0387342
\(333\) −50.9928 −2.79439
\(334\) 22.7277 1.24360
\(335\) −4.34505 −0.237395
\(336\) 0 0
\(337\) −11.1559 −0.607703 −0.303852 0.952719i \(-0.598273\pi\)
−0.303852 + 0.952719i \(0.598273\pi\)
\(338\) 0 0
\(339\) 10.0488 0.545776
\(340\) −0.0800108 −0.00433919
\(341\) −9.41023 −0.509593
\(342\) −17.2113 −0.930682
\(343\) 0 0
\(344\) 2.87383 0.154947
\(345\) 13.4043 0.721661
\(346\) 0.417663 0.0224537
\(347\) −4.92511 −0.264393 −0.132197 0.991223i \(-0.542203\pi\)
−0.132197 + 0.991223i \(0.542203\pi\)
\(348\) 1.16952 0.0626928
\(349\) −1.52335 −0.0815430 −0.0407715 0.999168i \(-0.512982\pi\)
−0.0407715 + 0.999168i \(0.512982\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.726636 0.0387298
\(353\) 17.9280 0.954212 0.477106 0.878846i \(-0.341686\pi\)
0.477106 + 0.878846i \(0.341686\pi\)
\(354\) −24.3022 −1.29165
\(355\) 2.69759 0.143173
\(356\) −0.951129 −0.0504097
\(357\) 0 0
\(358\) −13.6043 −0.719007
\(359\) −20.0014 −1.05563 −0.527816 0.849359i \(-0.676989\pi\)
−0.527816 + 0.849359i \(0.676989\pi\)
\(360\) 7.45466 0.392895
\(361\) −12.7941 −0.673376
\(362\) 17.2301 0.905596
\(363\) −23.6294 −1.24022
\(364\) 0 0
\(365\) −6.14421 −0.321602
\(366\) 52.7566 2.75763
\(367\) −27.4157 −1.43109 −0.715544 0.698568i \(-0.753821\pi\)
−0.715544 + 0.698568i \(0.753821\pi\)
\(368\) 35.0584 1.82754
\(369\) 20.9820 1.09228
\(370\) 7.35739 0.382492
\(371\) 0 0
\(372\) 1.29563 0.0671752
\(373\) −15.8929 −0.822901 −0.411451 0.911432i \(-0.634978\pi\)
−0.411451 + 0.911432i \(0.634978\pi\)
\(374\) −4.38553 −0.226771
\(375\) 14.2696 0.736880
\(376\) −13.0168 −0.671292
\(377\) 0 0
\(378\) 0 0
\(379\) −8.77900 −0.450947 −0.225474 0.974249i \(-0.572393\pi\)
−0.225474 + 0.974249i \(0.572393\pi\)
\(380\) −0.102307 −0.00524822
\(381\) −4.02249 −0.206078
\(382\) −16.9736 −0.868447
\(383\) −7.96237 −0.406858 −0.203429 0.979090i \(-0.565209\pi\)
−0.203429 + 0.979090i \(0.565209\pi\)
\(384\) 29.9423 1.52799
\(385\) 0 0
\(386\) −16.1240 −0.820688
\(387\) −4.97159 −0.252720
\(388\) 0.349960 0.0177665
\(389\) 32.0434 1.62467 0.812333 0.583194i \(-0.198197\pi\)
0.812333 + 0.583194i \(0.198197\pi\)
\(390\) 0 0
\(391\) 17.8082 0.900598
\(392\) 0 0
\(393\) −24.5100 −1.23637
\(394\) 2.49630 0.125762
\(395\) −0.509777 −0.0256496
\(396\) −0.640716 −0.0321972
\(397\) 6.43457 0.322942 0.161471 0.986877i \(-0.448376\pi\)
0.161471 + 0.986877i \(0.448376\pi\)
\(398\) −9.13777 −0.458035
\(399\) 0 0
\(400\) 18.1444 0.907219
\(401\) −0.533577 −0.0266456 −0.0133228 0.999911i \(-0.504241\pi\)
−0.0133228 + 0.999911i \(0.504241\pi\)
\(402\) 32.7906 1.63545
\(403\) 0 0
\(404\) 1.44839 0.0720601
\(405\) −0.464579 −0.0230851
\(406\) 0 0
\(407\) −16.6139 −0.823522
\(408\) 15.8640 0.785387
\(409\) 39.7528 1.96565 0.982824 0.184547i \(-0.0590817\pi\)
0.982824 + 0.184547i \(0.0590817\pi\)
\(410\) −3.02735 −0.149510
\(411\) −24.0695 −1.18726
\(412\) 0.397296 0.0195734
\(413\) 0 0
\(414\) −63.1520 −3.10375
\(415\) −4.62832 −0.227195
\(416\) 0 0
\(417\) 14.2375 0.697213
\(418\) −5.60761 −0.274277
\(419\) −23.8176 −1.16357 −0.581783 0.813344i \(-0.697645\pi\)
−0.581783 + 0.813344i \(0.697645\pi\)
\(420\) 0 0
\(421\) 23.2419 1.13274 0.566370 0.824151i \(-0.308347\pi\)
0.566370 + 0.824151i \(0.308347\pi\)
\(422\) 14.8573 0.723243
\(423\) 22.5185 1.09489
\(424\) 25.6360 1.24500
\(425\) 9.21657 0.447069
\(426\) −20.3578 −0.986336
\(427\) 0 0
\(428\) −0.486253 −0.0235039
\(429\) 0 0
\(430\) 0.717316 0.0345920
\(431\) 2.70689 0.130386 0.0651932 0.997873i \(-0.479234\pi\)
0.0651932 + 0.997873i \(0.479234\pi\)
\(432\) −21.5137 −1.03508
\(433\) 5.81890 0.279638 0.139819 0.990177i \(-0.455348\pi\)
0.139819 + 0.990177i \(0.455348\pi\)
\(434\) 0 0
\(435\) 7.66950 0.367724
\(436\) −0.941416 −0.0450856
\(437\) 22.7706 1.08927
\(438\) 46.3682 2.21556
\(439\) −38.1702 −1.82176 −0.910882 0.412668i \(-0.864597\pi\)
−0.910882 + 0.412668i \(0.864597\pi\)
\(440\) 2.42880 0.115788
\(441\) 0 0
\(442\) 0 0
\(443\) −31.6740 −1.50488 −0.752440 0.658661i \(-0.771123\pi\)
−0.752440 + 0.658661i \(0.771123\pi\)
\(444\) 2.28746 0.108558
\(445\) −6.23734 −0.295678
\(446\) −17.8619 −0.845787
\(447\) 9.50845 0.449734
\(448\) 0 0
\(449\) −31.4049 −1.48209 −0.741045 0.671455i \(-0.765669\pi\)
−0.741045 + 0.671455i \(0.765669\pi\)
\(450\) −32.6842 −1.54075
\(451\) 6.83614 0.321901
\(452\) −0.281416 −0.0132367
\(453\) 35.7648 1.68037
\(454\) 0.968995 0.0454772
\(455\) 0 0
\(456\) 20.2847 0.949920
\(457\) −31.8281 −1.48886 −0.744429 0.667702i \(-0.767278\pi\)
−0.744429 + 0.667702i \(0.767278\pi\)
\(458\) −25.3447 −1.18428
\(459\) −10.9281 −0.510078
\(460\) −0.375385 −0.0175024
\(461\) −1.16631 −0.0543203 −0.0271601 0.999631i \(-0.508646\pi\)
−0.0271601 + 0.999631i \(0.508646\pi\)
\(462\) 0 0
\(463\) 20.3441 0.945469 0.472734 0.881205i \(-0.343267\pi\)
0.472734 + 0.881205i \(0.343267\pi\)
\(464\) 20.0593 0.931231
\(465\) 8.49651 0.394016
\(466\) 37.1152 1.71933
\(467\) 1.56939 0.0726229 0.0363114 0.999341i \(-0.488439\pi\)
0.0363114 + 0.999341i \(0.488439\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −3.24903 −0.149867
\(471\) −29.3008 −1.35011
\(472\) 17.8810 0.823039
\(473\) −1.61979 −0.0744781
\(474\) 3.84711 0.176703
\(475\) 11.7849 0.540727
\(476\) 0 0
\(477\) −44.3491 −2.03060
\(478\) −23.0313 −1.05343
\(479\) −7.71918 −0.352699 −0.176349 0.984328i \(-0.556429\pi\)
−0.176349 + 0.984328i \(0.556429\pi\)
\(480\) −0.656080 −0.0299458
\(481\) 0 0
\(482\) 24.1334 1.09925
\(483\) 0 0
\(484\) 0.661740 0.0300791
\(485\) 2.29498 0.104209
\(486\) −19.8161 −0.898875
\(487\) −0.0761801 −0.00345205 −0.00172602 0.999999i \(-0.500549\pi\)
−0.00172602 + 0.999999i \(0.500549\pi\)
\(488\) −38.8170 −1.75716
\(489\) −44.5155 −2.01306
\(490\) 0 0
\(491\) 1.78715 0.0806529 0.0403264 0.999187i \(-0.487160\pi\)
0.0403264 + 0.999187i \(0.487160\pi\)
\(492\) −0.941220 −0.0424335
\(493\) 10.1893 0.458902
\(494\) 0 0
\(495\) −4.20170 −0.188852
\(496\) 22.2223 0.997813
\(497\) 0 0
\(498\) 34.9284 1.56518
\(499\) 8.33493 0.373123 0.186561 0.982443i \(-0.440266\pi\)
0.186561 + 0.982443i \(0.440266\pi\)
\(500\) −0.399619 −0.0178715
\(501\) 46.3387 2.07026
\(502\) 8.93914 0.398973
\(503\) −1.44048 −0.0642277 −0.0321138 0.999484i \(-0.510224\pi\)
−0.0321138 + 0.999484i \(0.510224\pi\)
\(504\) 0 0
\(505\) 9.49829 0.422668
\(506\) −20.5755 −0.914693
\(507\) 0 0
\(508\) 0.112649 0.00499801
\(509\) 14.8256 0.657135 0.328568 0.944480i \(-0.393434\pi\)
0.328568 + 0.944480i \(0.393434\pi\)
\(510\) 3.95970 0.175339
\(511\) 0 0
\(512\) −23.8204 −1.05272
\(513\) −13.9733 −0.616935
\(514\) 5.08860 0.224449
\(515\) 2.60540 0.114808
\(516\) 0.223018 0.00981781
\(517\) 7.33674 0.322670
\(518\) 0 0
\(519\) 0.851561 0.0373794
\(520\) 0 0
\(521\) 0.334388 0.0146498 0.00732489 0.999973i \(-0.497668\pi\)
0.00732489 + 0.999973i \(0.497668\pi\)
\(522\) −36.1336 −1.58153
\(523\) 32.5065 1.42141 0.710705 0.703490i \(-0.248376\pi\)
0.710705 + 0.703490i \(0.248376\pi\)
\(524\) 0.686401 0.0299856
\(525\) 0 0
\(526\) 25.3896 1.10704
\(527\) 11.2880 0.491713
\(528\) −17.6029 −0.766068
\(529\) 60.5502 2.63262
\(530\) 6.39881 0.277947
\(531\) −30.9332 −1.34239
\(532\) 0 0
\(533\) 0 0
\(534\) 47.0710 2.03696
\(535\) −3.18876 −0.137862
\(536\) −24.1265 −1.04211
\(537\) −27.7373 −1.19695
\(538\) −38.1732 −1.64576
\(539\) 0 0
\(540\) 0.230357 0.00991297
\(541\) 10.6015 0.455796 0.227898 0.973685i \(-0.426815\pi\)
0.227898 + 0.973685i \(0.426815\pi\)
\(542\) −9.03534 −0.388101
\(543\) 35.1300 1.50757
\(544\) −0.871633 −0.0373709
\(545\) −6.17364 −0.264450
\(546\) 0 0
\(547\) 10.2327 0.437519 0.218760 0.975779i \(-0.429799\pi\)
0.218760 + 0.975779i \(0.429799\pi\)
\(548\) 0.674064 0.0287946
\(549\) 67.1515 2.86596
\(550\) −10.6488 −0.454067
\(551\) 13.0286 0.555038
\(552\) 74.4290 3.16791
\(553\) 0 0
\(554\) 7.54216 0.320436
\(555\) 15.0007 0.636746
\(556\) −0.398720 −0.0169095
\(557\) 31.9930 1.35559 0.677793 0.735253i \(-0.262937\pi\)
0.677793 + 0.735253i \(0.262937\pi\)
\(558\) −40.0300 −1.69460
\(559\) 0 0
\(560\) 0 0
\(561\) −8.94152 −0.377511
\(562\) 4.90956 0.207097
\(563\) −10.7913 −0.454800 −0.227400 0.973801i \(-0.573022\pi\)
−0.227400 + 0.973801i \(0.573022\pi\)
\(564\) −1.01014 −0.0425348
\(565\) −1.84547 −0.0776397
\(566\) 19.5962 0.823688
\(567\) 0 0
\(568\) 14.9787 0.628494
\(569\) −24.6014 −1.03134 −0.515672 0.856786i \(-0.672458\pi\)
−0.515672 + 0.856786i \(0.672458\pi\)
\(570\) 5.06312 0.212071
\(571\) 16.5724 0.693534 0.346767 0.937951i \(-0.387279\pi\)
0.346767 + 0.937951i \(0.387279\pi\)
\(572\) 0 0
\(573\) −34.6070 −1.44573
\(574\) 0 0
\(575\) 43.2412 1.80328
\(576\) 41.3306 1.72211
\(577\) −14.6611 −0.610348 −0.305174 0.952297i \(-0.598715\pi\)
−0.305174 + 0.952297i \(0.598715\pi\)
\(578\) −18.3005 −0.761202
\(579\) −32.8746 −1.36622
\(580\) −0.214784 −0.00891840
\(581\) 0 0
\(582\) −17.3194 −0.717912
\(583\) −14.4493 −0.598431
\(584\) −34.1166 −1.41175
\(585\) 0 0
\(586\) −11.5717 −0.478024
\(587\) 35.3336 1.45837 0.729186 0.684315i \(-0.239899\pi\)
0.729186 + 0.684315i \(0.239899\pi\)
\(588\) 0 0
\(589\) 14.4335 0.594723
\(590\) 4.46313 0.183744
\(591\) 5.08963 0.209359
\(592\) 39.2340 1.61251
\(593\) −16.4294 −0.674675 −0.337338 0.941384i \(-0.609526\pi\)
−0.337338 + 0.941384i \(0.609526\pi\)
\(594\) 12.6263 0.518062
\(595\) 0 0
\(596\) −0.266283 −0.0109074
\(597\) −18.6307 −0.762504
\(598\) 0 0
\(599\) 12.0819 0.493653 0.246826 0.969060i \(-0.420612\pi\)
0.246826 + 0.969060i \(0.420612\pi\)
\(600\) 38.5206 1.57259
\(601\) −7.81486 −0.318775 −0.159387 0.987216i \(-0.550952\pi\)
−0.159387 + 0.987216i \(0.550952\pi\)
\(602\) 0 0
\(603\) 41.7377 1.69969
\(604\) −1.00159 −0.0407541
\(605\) 4.33957 0.176429
\(606\) −71.6803 −2.91181
\(607\) −35.5649 −1.44354 −0.721768 0.692135i \(-0.756670\pi\)
−0.721768 + 0.692135i \(0.756670\pi\)
\(608\) −1.11452 −0.0451999
\(609\) 0 0
\(610\) −9.68882 −0.392289
\(611\) 0 0
\(612\) 0.768568 0.0310675
\(613\) 11.9368 0.482122 0.241061 0.970510i \(-0.422505\pi\)
0.241061 + 0.970510i \(0.422505\pi\)
\(614\) 11.5500 0.466120
\(615\) −6.17236 −0.248893
\(616\) 0 0
\(617\) −23.5702 −0.948901 −0.474450 0.880282i \(-0.657353\pi\)
−0.474450 + 0.880282i \(0.657353\pi\)
\(618\) −19.6621 −0.790924
\(619\) −28.5571 −1.14781 −0.573904 0.818923i \(-0.694572\pi\)
−0.573904 + 0.818923i \(0.694572\pi\)
\(620\) −0.237944 −0.00955606
\(621\) −51.2710 −2.05743
\(622\) 20.2663 0.812607
\(623\) 0 0
\(624\) 0 0
\(625\) 21.0328 0.841311
\(626\) −23.7453 −0.949052
\(627\) −11.4332 −0.456597
\(628\) 0.820567 0.0327442
\(629\) 19.9292 0.794628
\(630\) 0 0
\(631\) 44.9925 1.79112 0.895561 0.444938i \(-0.146774\pi\)
0.895561 + 0.444938i \(0.146774\pi\)
\(632\) −2.83061 −0.112596
\(633\) 30.2921 1.20400
\(634\) −19.4034 −0.770607
\(635\) 0.738735 0.0293158
\(636\) 1.98943 0.0788860
\(637\) 0 0
\(638\) −11.7727 −0.466085
\(639\) −25.9125 −1.02508
\(640\) −5.49894 −0.217365
\(641\) −2.53300 −0.100048 −0.0500238 0.998748i \(-0.515930\pi\)
−0.0500238 + 0.998748i \(0.515930\pi\)
\(642\) 24.0645 0.949749
\(643\) −18.3771 −0.724721 −0.362360 0.932038i \(-0.618029\pi\)
−0.362360 + 0.932038i \(0.618029\pi\)
\(644\) 0 0
\(645\) 1.46251 0.0575863
\(646\) 6.72658 0.264654
\(647\) −20.9287 −0.822791 −0.411396 0.911457i \(-0.634959\pi\)
−0.411396 + 0.911457i \(0.634959\pi\)
\(648\) −2.57964 −0.101338
\(649\) −10.0783 −0.395609
\(650\) 0 0
\(651\) 0 0
\(652\) 1.24665 0.0488227
\(653\) −48.1160 −1.88292 −0.941461 0.337121i \(-0.890547\pi\)
−0.941461 + 0.337121i \(0.890547\pi\)
\(654\) 46.5903 1.82183
\(655\) 4.50130 0.175880
\(656\) −16.1436 −0.630302
\(657\) 59.0200 2.30259
\(658\) 0 0
\(659\) −2.21638 −0.0863379 −0.0431690 0.999068i \(-0.513745\pi\)
−0.0431690 + 0.999068i \(0.513745\pi\)
\(660\) 0.188482 0.00733664
\(661\) 0.637434 0.0247933 0.0123966 0.999923i \(-0.496054\pi\)
0.0123966 + 0.999923i \(0.496054\pi\)
\(662\) 9.59073 0.372754
\(663\) 0 0
\(664\) −25.6994 −0.997331
\(665\) 0 0
\(666\) −70.6736 −2.73855
\(667\) 47.8048 1.85101
\(668\) −1.29771 −0.0502100
\(669\) −36.4181 −1.40801
\(670\) −6.02203 −0.232651
\(671\) 21.8786 0.844614
\(672\) 0 0
\(673\) 15.4069 0.593891 0.296945 0.954895i \(-0.404032\pi\)
0.296945 + 0.954895i \(0.404032\pi\)
\(674\) −15.4616 −0.595559
\(675\) −26.5352 −1.02134
\(676\) 0 0
\(677\) 11.6812 0.448945 0.224473 0.974480i \(-0.427934\pi\)
0.224473 + 0.974480i \(0.427934\pi\)
\(678\) 13.9272 0.534869
\(679\) 0 0
\(680\) −2.91345 −0.111726
\(681\) 1.97565 0.0757072
\(682\) −13.0421 −0.499409
\(683\) −22.9114 −0.876680 −0.438340 0.898809i \(-0.644433\pi\)
−0.438340 + 0.898809i \(0.644433\pi\)
\(684\) 0.982737 0.0375759
\(685\) 4.42039 0.168895
\(686\) 0 0
\(687\) −51.6745 −1.97150
\(688\) 3.82515 0.145833
\(689\) 0 0
\(690\) 18.5777 0.707239
\(691\) −47.2325 −1.79681 −0.898405 0.439167i \(-0.855274\pi\)
−0.898405 + 0.439167i \(0.855274\pi\)
\(692\) −0.0238479 −0.000906560 0
\(693\) 0 0
\(694\) −6.82596 −0.259110
\(695\) −2.61473 −0.0991825
\(696\) 42.5860 1.61422
\(697\) −8.20026 −0.310607
\(698\) −2.11129 −0.0799135
\(699\) 75.6730 2.86222
\(700\) 0 0
\(701\) −12.2098 −0.461158 −0.230579 0.973054i \(-0.574062\pi\)
−0.230579 + 0.973054i \(0.574062\pi\)
\(702\) 0 0
\(703\) 25.4827 0.961097
\(704\) 13.4659 0.507515
\(705\) −6.62435 −0.249488
\(706\) 24.8474 0.935144
\(707\) 0 0
\(708\) 1.38762 0.0521498
\(709\) 17.8875 0.671778 0.335889 0.941902i \(-0.390963\pi\)
0.335889 + 0.941902i \(0.390963\pi\)
\(710\) 3.73873 0.140312
\(711\) 4.89681 0.183645
\(712\) −34.6337 −1.29795
\(713\) 52.9597 1.98336
\(714\) 0 0
\(715\) 0 0
\(716\) 0.776780 0.0290296
\(717\) −46.9578 −1.75367
\(718\) −27.7210 −1.03454
\(719\) −9.12634 −0.340355 −0.170178 0.985413i \(-0.554434\pi\)
−0.170178 + 0.985413i \(0.554434\pi\)
\(720\) 9.92235 0.369784
\(721\) 0 0
\(722\) −17.7321 −0.659920
\(723\) 49.2048 1.82995
\(724\) −0.983812 −0.0365631
\(725\) 24.7413 0.918868
\(726\) −32.7493 −1.21544
\(727\) 33.6859 1.24934 0.624670 0.780889i \(-0.285233\pi\)
0.624670 + 0.780889i \(0.285233\pi\)
\(728\) 0 0
\(729\) −43.0880 −1.59585
\(730\) −8.51558 −0.315176
\(731\) 1.94301 0.0718650
\(732\) −3.01231 −0.111338
\(733\) −46.4344 −1.71509 −0.857547 0.514406i \(-0.828013\pi\)
−0.857547 + 0.514406i \(0.828013\pi\)
\(734\) −37.9968 −1.40249
\(735\) 0 0
\(736\) −4.08942 −0.150738
\(737\) 13.5985 0.500908
\(738\) 29.0801 1.07045
\(739\) −1.85025 −0.0680627 −0.0340314 0.999421i \(-0.510835\pi\)
−0.0340314 + 0.999421i \(0.510835\pi\)
\(740\) −0.420095 −0.0154430
\(741\) 0 0
\(742\) 0 0
\(743\) −33.1509 −1.21619 −0.608094 0.793865i \(-0.708066\pi\)
−0.608094 + 0.793865i \(0.708066\pi\)
\(744\) 47.1781 1.72963
\(745\) −1.74624 −0.0639773
\(746\) −22.0268 −0.806457
\(747\) 44.4588 1.62666
\(748\) 0.250407 0.00915577
\(749\) 0 0
\(750\) 19.7770 0.722154
\(751\) −20.7743 −0.758064 −0.379032 0.925384i \(-0.623743\pi\)
−0.379032 + 0.925384i \(0.623743\pi\)
\(752\) −17.3258 −0.631806
\(753\) 18.2257 0.664182
\(754\) 0 0
\(755\) −6.56824 −0.239043
\(756\) 0 0
\(757\) 43.6150 1.58521 0.792607 0.609733i \(-0.208723\pi\)
0.792607 + 0.609733i \(0.208723\pi\)
\(758\) −12.1673 −0.441936
\(759\) −41.9508 −1.52272
\(760\) −3.72532 −0.135131
\(761\) 12.3902 0.449145 0.224573 0.974457i \(-0.427901\pi\)
0.224573 + 0.974457i \(0.427901\pi\)
\(762\) −5.57497 −0.201960
\(763\) 0 0
\(764\) 0.969167 0.0350632
\(765\) 5.04013 0.182226
\(766\) −11.0355 −0.398728
\(767\) 0 0
\(768\) −5.35835 −0.193353
\(769\) −5.55359 −0.200268 −0.100134 0.994974i \(-0.531927\pi\)
−0.100134 + 0.994974i \(0.531927\pi\)
\(770\) 0 0
\(771\) 10.3750 0.373646
\(772\) 0.920651 0.0331349
\(773\) −43.8042 −1.57553 −0.787764 0.615977i \(-0.788761\pi\)
−0.787764 + 0.615977i \(0.788761\pi\)
\(774\) −6.89039 −0.247670
\(775\) 27.4092 0.984566
\(776\) 12.7432 0.457454
\(777\) 0 0
\(778\) 44.4107 1.59220
\(779\) −10.4853 −0.375677
\(780\) 0 0
\(781\) −8.44253 −0.302098
\(782\) 24.6813 0.882600
\(783\) −29.3357 −1.04837
\(784\) 0 0
\(785\) 5.38113 0.192061
\(786\) −33.9697 −1.21166
\(787\) 24.8009 0.884057 0.442029 0.897001i \(-0.354259\pi\)
0.442029 + 0.897001i \(0.354259\pi\)
\(788\) −0.142535 −0.00507758
\(789\) 51.7661 1.84292
\(790\) −0.706526 −0.0251371
\(791\) 0 0
\(792\) −23.3305 −0.829015
\(793\) 0 0
\(794\) 8.91801 0.316489
\(795\) 13.0463 0.462706
\(796\) 0.521751 0.0184930
\(797\) 16.4715 0.583451 0.291725 0.956502i \(-0.405771\pi\)
0.291725 + 0.956502i \(0.405771\pi\)
\(798\) 0 0
\(799\) −8.80076 −0.311348
\(800\) −2.11647 −0.0748285
\(801\) 59.9146 2.11698
\(802\) −0.739513 −0.0261131
\(803\) 19.2293 0.678587
\(804\) −1.87229 −0.0660305
\(805\) 0 0
\(806\) 0 0
\(807\) −77.8301 −2.73975
\(808\) 52.7406 1.85541
\(809\) 1.38194 0.0485863 0.0242932 0.999705i \(-0.492266\pi\)
0.0242932 + 0.999705i \(0.492266\pi\)
\(810\) −0.643885 −0.0226238
\(811\) 6.83571 0.240034 0.120017 0.992772i \(-0.461705\pi\)
0.120017 + 0.992772i \(0.461705\pi\)
\(812\) 0 0
\(813\) −18.4219 −0.646083
\(814\) −23.0261 −0.807066
\(815\) 8.17533 0.286369
\(816\) 21.1155 0.739190
\(817\) 2.48446 0.0869201
\(818\) 55.0954 1.92637
\(819\) 0 0
\(820\) 0.172856 0.00603640
\(821\) 10.5425 0.367936 0.183968 0.982932i \(-0.441106\pi\)
0.183968 + 0.982932i \(0.441106\pi\)
\(822\) −33.3592 −1.16353
\(823\) 14.8330 0.517047 0.258524 0.966005i \(-0.416764\pi\)
0.258524 + 0.966005i \(0.416764\pi\)
\(824\) 14.4669 0.503977
\(825\) −21.7115 −0.755898
\(826\) 0 0
\(827\) 55.6758 1.93604 0.968018 0.250879i \(-0.0807197\pi\)
0.968018 + 0.250879i \(0.0807197\pi\)
\(828\) 3.60587 0.125313
\(829\) 0.0464848 0.00161448 0.000807242 1.00000i \(-0.499743\pi\)
0.000807242 1.00000i \(0.499743\pi\)
\(830\) −6.41464 −0.222655
\(831\) 15.3775 0.533438
\(832\) 0 0
\(833\) 0 0
\(834\) 19.7325 0.683280
\(835\) −8.51016 −0.294506
\(836\) 0.320185 0.0110738
\(837\) −32.4990 −1.12333
\(838\) −33.0100 −1.14031
\(839\) 25.5475 0.881999 0.440999 0.897507i \(-0.354624\pi\)
0.440999 + 0.897507i \(0.354624\pi\)
\(840\) 0 0
\(841\) −1.64755 −0.0568120
\(842\) 32.2121 1.11010
\(843\) 10.0099 0.344761
\(844\) −0.848327 −0.0292006
\(845\) 0 0
\(846\) 31.2096 1.07301
\(847\) 0 0
\(848\) 34.1223 1.17176
\(849\) 39.9540 1.37122
\(850\) 12.7737 0.438135
\(851\) 93.5013 3.20518
\(852\) 1.16239 0.0398229
\(853\) 22.6671 0.776105 0.388053 0.921637i \(-0.373148\pi\)
0.388053 + 0.921637i \(0.373148\pi\)
\(854\) 0 0
\(855\) 6.44462 0.220401
\(856\) −17.7061 −0.605181
\(857\) 37.0535 1.26572 0.632862 0.774264i \(-0.281880\pi\)
0.632862 + 0.774264i \(0.281880\pi\)
\(858\) 0 0
\(859\) 4.24339 0.144782 0.0723912 0.997376i \(-0.476937\pi\)
0.0723912 + 0.997376i \(0.476937\pi\)
\(860\) −0.0409575 −0.00139664
\(861\) 0 0
\(862\) 3.75162 0.127781
\(863\) −7.50051 −0.255320 −0.127660 0.991818i \(-0.540747\pi\)
−0.127660 + 0.991818i \(0.540747\pi\)
\(864\) 2.50949 0.0853746
\(865\) −0.156390 −0.00531743
\(866\) 8.06472 0.274050
\(867\) −37.3124 −1.26720
\(868\) 0 0
\(869\) 1.59543 0.0541212
\(870\) 10.6296 0.360376
\(871\) 0 0
\(872\) −34.2800 −1.16087
\(873\) −22.0451 −0.746113
\(874\) 31.5590 1.06750
\(875\) 0 0
\(876\) −2.64755 −0.0894523
\(877\) −28.2897 −0.955274 −0.477637 0.878557i \(-0.658507\pi\)
−0.477637 + 0.878557i \(0.658507\pi\)
\(878\) −52.9021 −1.78536
\(879\) −23.5933 −0.795781
\(880\) 3.23280 0.108978
\(881\) 39.5721 1.33322 0.666609 0.745408i \(-0.267745\pi\)
0.666609 + 0.745408i \(0.267745\pi\)
\(882\) 0 0
\(883\) 28.3609 0.954419 0.477209 0.878790i \(-0.341648\pi\)
0.477209 + 0.878790i \(0.341648\pi\)
\(884\) 0 0
\(885\) 9.09974 0.305884
\(886\) −43.8987 −1.47481
\(887\) 43.7186 1.46793 0.733963 0.679189i \(-0.237669\pi\)
0.733963 + 0.679189i \(0.237669\pi\)
\(888\) 83.2938 2.79516
\(889\) 0 0
\(890\) −8.64465 −0.289769
\(891\) 1.45398 0.0487100
\(892\) 1.01989 0.0341483
\(893\) −11.2532 −0.376573
\(894\) 13.1783 0.440747
\(895\) 5.09399 0.170273
\(896\) 0 0
\(897\) 0 0
\(898\) −43.5257 −1.45247
\(899\) 30.3019 1.01062
\(900\) 1.86621 0.0622070
\(901\) 17.3326 0.577434
\(902\) 9.47456 0.315468
\(903\) 0 0
\(904\) −10.2473 −0.340819
\(905\) −6.45167 −0.214461
\(906\) 49.5683 1.64679
\(907\) −36.6985 −1.21855 −0.609277 0.792957i \(-0.708540\pi\)
−0.609277 + 0.792957i \(0.708540\pi\)
\(908\) −0.0553280 −0.00183612
\(909\) −91.2387 −3.02620
\(910\) 0 0
\(911\) −35.5211 −1.17686 −0.588432 0.808546i \(-0.700255\pi\)
−0.588432 + 0.808546i \(0.700255\pi\)
\(912\) 26.9995 0.894044
\(913\) 14.4851 0.479386
\(914\) −44.1123 −1.45911
\(915\) −19.7542 −0.653054
\(916\) 1.44714 0.0478148
\(917\) 0 0
\(918\) −15.1458 −0.499885
\(919\) 21.9334 0.723516 0.361758 0.932272i \(-0.382177\pi\)
0.361758 + 0.932272i \(0.382177\pi\)
\(920\) −13.6690 −0.450653
\(921\) 23.5489 0.775964
\(922\) −1.61644 −0.0532348
\(923\) 0 0
\(924\) 0 0
\(925\) 48.3914 1.59110
\(926\) 28.1959 0.926575
\(927\) −25.0270 −0.821993
\(928\) −2.33984 −0.0768090
\(929\) 15.5172 0.509102 0.254551 0.967059i \(-0.418072\pi\)
0.254551 + 0.967059i \(0.418072\pi\)
\(930\) 11.7758 0.386142
\(931\) 0 0
\(932\) −2.11922 −0.0694172
\(933\) 41.3204 1.35277
\(934\) 2.17510 0.0711716
\(935\) 1.64212 0.0537031
\(936\) 0 0
\(937\) −40.8110 −1.33324 −0.666618 0.745399i \(-0.732259\pi\)
−0.666618 + 0.745399i \(0.732259\pi\)
\(938\) 0 0
\(939\) −48.4135 −1.57991
\(940\) 0.185514 0.00605081
\(941\) 51.5936 1.68190 0.840952 0.541109i \(-0.181996\pi\)
0.840952 + 0.541109i \(0.181996\pi\)
\(942\) −40.6096 −1.32313
\(943\) −38.4730 −1.25285
\(944\) 23.8001 0.774627
\(945\) 0 0
\(946\) −2.24495 −0.0729898
\(947\) −4.98209 −0.161896 −0.0809482 0.996718i \(-0.525795\pi\)
−0.0809482 + 0.996718i \(0.525795\pi\)
\(948\) −0.219663 −0.00713433
\(949\) 0 0
\(950\) 16.3333 0.529921
\(951\) −39.5609 −1.28285
\(952\) 0 0
\(953\) 30.2325 0.979328 0.489664 0.871911i \(-0.337119\pi\)
0.489664 + 0.871911i \(0.337119\pi\)
\(954\) −61.4657 −1.99003
\(955\) 6.35562 0.205663
\(956\) 1.31505 0.0425317
\(957\) −24.0029 −0.775904
\(958\) −10.6984 −0.345650
\(959\) 0 0
\(960\) −12.1584 −0.392410
\(961\) 2.56939 0.0828835
\(962\) 0 0
\(963\) 30.6306 0.987058
\(964\) −1.37798 −0.0443816
\(965\) 6.03746 0.194353
\(966\) 0 0
\(967\) −29.9990 −0.964703 −0.482352 0.875978i \(-0.660217\pi\)
−0.482352 + 0.875978i \(0.660217\pi\)
\(968\) 24.0961 0.774478
\(969\) 13.7146 0.440577
\(970\) 3.18073 0.102127
\(971\) −44.1240 −1.41601 −0.708003 0.706209i \(-0.750404\pi\)
−0.708003 + 0.706209i \(0.750404\pi\)
\(972\) 1.13146 0.0362917
\(973\) 0 0
\(974\) −0.105582 −0.00338306
\(975\) 0 0
\(976\) −51.6665 −1.65380
\(977\) 15.0024 0.479970 0.239985 0.970777i \(-0.422858\pi\)
0.239985 + 0.970777i \(0.422858\pi\)
\(978\) −61.6964 −1.97283
\(979\) 19.5207 0.623886
\(980\) 0 0
\(981\) 59.3028 1.89339
\(982\) 2.47690 0.0790411
\(983\) 6.01856 0.191962 0.0959812 0.995383i \(-0.469401\pi\)
0.0959812 + 0.995383i \(0.469401\pi\)
\(984\) −34.2729 −1.09258
\(985\) −0.934717 −0.0297825
\(986\) 14.1219 0.449732
\(987\) 0 0
\(988\) 0 0
\(989\) 9.11600 0.289872
\(990\) −5.82336 −0.185078
\(991\) 33.8400 1.07496 0.537482 0.843275i \(-0.319376\pi\)
0.537482 + 0.843275i \(0.319376\pi\)
\(992\) −2.59215 −0.0823008
\(993\) 19.5542 0.620535
\(994\) 0 0
\(995\) 3.42155 0.108471
\(996\) −1.99435 −0.0631934
\(997\) −26.3215 −0.833610 −0.416805 0.908996i \(-0.636850\pi\)
−0.416805 + 0.908996i \(0.636850\pi\)
\(998\) 11.5518 0.365666
\(999\) −57.3775 −1.81534
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.by.1.6 6
7.6 odd 2 1183.2.a.m.1.6 6
13.6 odd 12 637.2.q.h.491.2 12
13.11 odd 12 637.2.q.h.589.2 12
13.12 even 2 8281.2.a.ch.1.1 6
91.6 even 12 91.2.q.a.36.2 12
91.11 odd 12 637.2.u.i.30.5 12
91.19 even 12 637.2.u.h.361.5 12
91.24 even 12 637.2.u.h.30.5 12
91.32 odd 12 637.2.k.g.569.2 12
91.34 even 4 1183.2.c.i.337.10 12
91.37 odd 12 637.2.k.g.459.5 12
91.45 even 12 637.2.k.h.569.2 12
91.58 odd 12 637.2.u.i.361.5 12
91.76 even 12 91.2.q.a.43.2 yes 12
91.83 even 4 1183.2.c.i.337.3 12
91.89 even 12 637.2.k.h.459.5 12
91.90 odd 2 1183.2.a.p.1.1 6
273.167 odd 12 819.2.ct.a.316.5 12
273.188 odd 12 819.2.ct.a.127.5 12
364.167 odd 12 1456.2.cc.c.225.1 12
364.279 odd 12 1456.2.cc.c.673.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.q.a.36.2 12 91.6 even 12
91.2.q.a.43.2 yes 12 91.76 even 12
637.2.k.g.459.5 12 91.37 odd 12
637.2.k.g.569.2 12 91.32 odd 12
637.2.k.h.459.5 12 91.89 even 12
637.2.k.h.569.2 12 91.45 even 12
637.2.q.h.491.2 12 13.6 odd 12
637.2.q.h.589.2 12 13.11 odd 12
637.2.u.h.30.5 12 91.24 even 12
637.2.u.h.361.5 12 91.19 even 12
637.2.u.i.30.5 12 91.11 odd 12
637.2.u.i.361.5 12 91.58 odd 12
819.2.ct.a.127.5 12 273.188 odd 12
819.2.ct.a.316.5 12 273.167 odd 12
1183.2.a.m.1.6 6 7.6 odd 2
1183.2.a.p.1.1 6 91.90 odd 2
1183.2.c.i.337.3 12 91.83 even 4
1183.2.c.i.337.10 12 91.34 even 4
1456.2.cc.c.225.1 12 364.167 odd 12
1456.2.cc.c.673.1 12 364.279 odd 12
8281.2.a.by.1.6 6 1.1 even 1 trivial
8281.2.a.ch.1.1 6 13.12 even 2