Defining parameters
| Level: | \( N \) | \(=\) | \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 828.v (of order \(22\) and degree \(10\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 69 \) |
| Character field: | \(\Q(\zeta_{22})\) | ||
| Sturm bound: | \(432\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(828, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 3000 | 160 | 2840 |
| Cusp forms | 2760 | 160 | 2600 |
| Eisenstein series | 240 | 0 | 240 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(828, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{3}^{\mathrm{old}}(828, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(828, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(138, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(276, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(414, [\chi])\)\(^{\oplus 2}\)