Properties

Label 828.3.t
Level $828$
Weight $3$
Character orbit 828.t
Rep. character $\chi_{828}(55,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $1180$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 828.t (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 92 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(828, [\chi])\).

Total New Old
Modular forms 2960 1220 1740
Cusp forms 2800 1180 1620
Eisenstein series 160 40 120

Trace form

\( 1180 q + 7 q^{2} - 19 q^{4} + 18 q^{5} + 28 q^{8} + 19 q^{10} - 18 q^{13} + 31 q^{14} + 21 q^{16} + 18 q^{17} - 13 q^{20} - 26 q^{22} - 568 q^{25} - 32 q^{26} - 101 q^{28} - 62 q^{29} - 33 q^{32} + 269 q^{34}+ \cdots - 781 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(828, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(828, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(828, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(276, [\chi])\)\(^{\oplus 2}\)