Properties

Label 828.3.p
Level $828$
Weight $3$
Character orbit 828.p
Rep. character $\chi_{828}(229,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $1$
Sturm bound $432$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 828.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 207 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(432\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(828, [\chi])\).

Total New Old
Modular forms 588 96 492
Cusp forms 564 96 468
Eisenstein series 24 0 24

Trace form

\( 96 q - 2 q^{3} + 6 q^{9} + 33 q^{23} + 246 q^{25} + 106 q^{27} - 42 q^{29} - 30 q^{31} - 90 q^{39} + 84 q^{41} - 84 q^{47} + 384 q^{49} - 132 q^{55} - 144 q^{59} + 215 q^{69} + 348 q^{71} + 64 q^{75} + 114 q^{77}+ \cdots - 384 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(828, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
828.3.p.a 828.p 207.f $96$ $22.561$ None 828.3.p.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{3}^{\mathrm{old}}(828, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(828, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(414, [\chi])\)\(^{\oplus 2}\)