Defining parameters
| Level: | \( N \) | \(=\) | \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 828.p (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 207 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(432\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(828, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 588 | 96 | 492 |
| Cusp forms | 564 | 96 | 468 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(828, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 828.3.p.a | $96$ | $22.561$ | None | \(0\) | \(-2\) | \(0\) | \(0\) | ||
Decomposition of \(S_{3}^{\mathrm{old}}(828, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(828, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(414, [\chi])\)\(^{\oplus 2}\)