Properties

Label 828.3.bb
Level $828$
Weight $3$
Character orbit 828.bb
Rep. character $\chi_{828}(29,\cdot)$
Character field $\Q(\zeta_{66})$
Dimension $960$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 828.bb (of order \(66\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 207 \)
Character field: \(\Q(\zeta_{66})\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(828, [\chi])\).

Total New Old
Modular forms 5880 960 4920
Cusp forms 5640 960 4680
Eisenstein series 240 0 240

Trace form

\( 960 q - 2 q^{3} - 18 q^{5} + 26 q^{9} - 78 q^{15} - 77 q^{21} - 99 q^{23} - 246 q^{25} - 59 q^{27} + 126 q^{29} + 30 q^{31} + 248 q^{33} + 84 q^{37} + 6 q^{39} + 72 q^{41} - 74 q^{45} + 72 q^{47} + 120 q^{49}+ \cdots - 1488 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(828, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(828, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(828, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(414, [\chi])\)\(^{\oplus 2}\)