Properties

Label 828.2.e.f.91.15
Level $828$
Weight $2$
Character 828.91
Analytic conductor $6.612$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,2,Mod(91,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 828.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.61161328736\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 276)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.15
Character \(\chi\) \(=\) 828.91
Dual form 828.2.e.f.91.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.279557 + 1.38631i) q^{2} +(-1.84370 + 0.775104i) q^{4} -1.27568i q^{5} -2.49131 q^{7} +(-1.58995 - 2.33924i) q^{8} +(1.76848 - 0.356624i) q^{10} +5.92184 q^{11} -2.46678 q^{13} +(-0.696464 - 3.45372i) q^{14} +(2.79843 - 2.85811i) q^{16} -6.74152i q^{17} +2.53999 q^{19} +(0.988782 + 2.35196i) q^{20} +(1.65549 + 8.20949i) q^{22} +(4.75259 + 0.642542i) q^{23} +3.37265 q^{25} +(-0.689606 - 3.41972i) q^{26} +(4.59322 - 1.93103i) q^{28} -5.45110 q^{29} +3.02410i q^{31} +(4.74454 + 3.08047i) q^{32} +(9.34581 - 1.88464i) q^{34} +3.17811i q^{35} -4.92988i q^{37} +(0.710072 + 3.52121i) q^{38} +(-2.98411 + 2.02826i) q^{40} +9.26643 q^{41} +10.1120 q^{43} +(-10.9181 + 4.59004i) q^{44} +(0.437861 + 6.76818i) q^{46} -9.93569i q^{47} -0.793365 q^{49} +(0.942849 + 4.67553i) q^{50} +(4.54799 - 1.91201i) q^{52} +2.08399i q^{53} -7.55435i q^{55} +(3.96106 + 5.82778i) q^{56} +(-1.52389 - 7.55690i) q^{58} -7.43825i q^{59} -2.14403i q^{61} +(-4.19233 + 0.845409i) q^{62} +(-2.94411 + 7.43856i) q^{64} +3.14681i q^{65} -3.96649 q^{67} +(5.22538 + 12.4293i) q^{68} +(-4.40583 + 0.888462i) q^{70} +12.1146i q^{71} -4.45034 q^{73} +(6.83433 - 1.37818i) q^{74} +(-4.68297 + 1.96876i) q^{76} -14.7532 q^{77} -3.65421 q^{79} +(-3.64602 - 3.56988i) q^{80} +(2.59050 + 12.8461i) q^{82} -3.03863 q^{83} -8.59999 q^{85} +(2.82688 + 14.0184i) q^{86} +(-9.41544 - 13.8526i) q^{88} -5.81313i q^{89} +6.14552 q^{91} +(-9.26037 + 2.49910i) q^{92} +(13.7739 - 2.77759i) q^{94} -3.24020i q^{95} +4.52256i q^{97} +(-0.221791 - 1.09985i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{2} - 4 q^{8} + 8 q^{16} - 24 q^{25} - 40 q^{26} + 32 q^{29} + 36 q^{32} - 16 q^{41} + 40 q^{49} + 12 q^{50} - 40 q^{52} + 24 q^{58} + 40 q^{62} + 48 q^{64} + 72 q^{70} - 16 q^{77} - 40 q^{82}+ \cdots + 52 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.279557 + 1.38631i 0.197677 + 0.980267i
\(3\) 0 0
\(4\) −1.84370 + 0.775104i −0.921848 + 0.387552i
\(5\) 1.27568i 0.570499i −0.958453 0.285250i \(-0.907923\pi\)
0.958453 0.285250i \(-0.0920765\pi\)
\(6\) 0 0
\(7\) −2.49131 −0.941627 −0.470814 0.882233i \(-0.656040\pi\)
−0.470814 + 0.882233i \(0.656040\pi\)
\(8\) −1.58995 2.33924i −0.562133 0.827047i
\(9\) 0 0
\(10\) 1.76848 0.356624i 0.559242 0.112774i
\(11\) 5.92184 1.78550 0.892751 0.450550i \(-0.148772\pi\)
0.892751 + 0.450550i \(0.148772\pi\)
\(12\) 0 0
\(13\) −2.46678 −0.684162 −0.342081 0.939670i \(-0.611132\pi\)
−0.342081 + 0.939670i \(0.611132\pi\)
\(14\) −0.696464 3.45372i −0.186138 0.923047i
\(15\) 0 0
\(16\) 2.79843 2.85811i 0.699607 0.714528i
\(17\) 6.74152i 1.63506i −0.575887 0.817529i \(-0.695343\pi\)
0.575887 0.817529i \(-0.304657\pi\)
\(18\) 0 0
\(19\) 2.53999 0.582714 0.291357 0.956614i \(-0.405893\pi\)
0.291357 + 0.956614i \(0.405893\pi\)
\(20\) 0.988782 + 2.35196i 0.221098 + 0.525914i
\(21\) 0 0
\(22\) 1.65549 + 8.20949i 0.352952 + 1.75027i
\(23\) 4.75259 + 0.642542i 0.990984 + 0.133979i
\(24\) 0 0
\(25\) 3.37265 0.674530
\(26\) −0.689606 3.41972i −0.135243 0.670662i
\(27\) 0 0
\(28\) 4.59322 1.93103i 0.868037 0.364930i
\(29\) −5.45110 −1.01224 −0.506122 0.862462i \(-0.668921\pi\)
−0.506122 + 0.862462i \(0.668921\pi\)
\(30\) 0 0
\(31\) 3.02410i 0.543144i 0.962418 + 0.271572i \(0.0875436\pi\)
−0.962418 + 0.271572i \(0.912456\pi\)
\(32\) 4.74454 + 3.08047i 0.838725 + 0.544556i
\(33\) 0 0
\(34\) 9.34581 1.88464i 1.60279 0.323213i
\(35\) 3.17811i 0.537198i
\(36\) 0 0
\(37\) 4.92988i 0.810468i −0.914213 0.405234i \(-0.867190\pi\)
0.914213 0.405234i \(-0.132810\pi\)
\(38\) 0.710072 + 3.52121i 0.115189 + 0.571215i
\(39\) 0 0
\(40\) −2.98411 + 2.02826i −0.471830 + 0.320696i
\(41\) 9.26643 1.44717 0.723587 0.690233i \(-0.242492\pi\)
0.723587 + 0.690233i \(0.242492\pi\)
\(42\) 0 0
\(43\) 10.1120 1.54207 0.771033 0.636795i \(-0.219740\pi\)
0.771033 + 0.636795i \(0.219740\pi\)
\(44\) −10.9181 + 4.59004i −1.64596 + 0.691975i
\(45\) 0 0
\(46\) 0.437861 + 6.76818i 0.0645591 + 0.997914i
\(47\) 9.93569i 1.44927i −0.689133 0.724635i \(-0.742008\pi\)
0.689133 0.724635i \(-0.257992\pi\)
\(48\) 0 0
\(49\) −0.793365 −0.113338
\(50\) 0.942849 + 4.67553i 0.133339 + 0.661220i
\(51\) 0 0
\(52\) 4.54799 1.91201i 0.630693 0.265148i
\(53\) 2.08399i 0.286258i 0.989704 + 0.143129i \(0.0457164\pi\)
−0.989704 + 0.143129i \(0.954284\pi\)
\(54\) 0 0
\(55\) 7.55435i 1.01863i
\(56\) 3.96106 + 5.82778i 0.529319 + 0.778770i
\(57\) 0 0
\(58\) −1.52389 7.55690i −0.200097 0.992269i
\(59\) 7.43825i 0.968378i −0.874963 0.484189i \(-0.839115\pi\)
0.874963 0.484189i \(-0.160885\pi\)
\(60\) 0 0
\(61\) 2.14403i 0.274515i −0.990535 0.137257i \(-0.956171\pi\)
0.990535 0.137257i \(-0.0438287\pi\)
\(62\) −4.19233 + 0.845409i −0.532427 + 0.107367i
\(63\) 0 0
\(64\) −2.94411 + 7.43856i −0.368014 + 0.929820i
\(65\) 3.14681i 0.390314i
\(66\) 0 0
\(67\) −3.96649 −0.484584 −0.242292 0.970203i \(-0.577899\pi\)
−0.242292 + 0.970203i \(0.577899\pi\)
\(68\) 5.22538 + 12.4293i 0.633670 + 1.50727i
\(69\) 0 0
\(70\) −4.40583 + 0.888462i −0.526598 + 0.106192i
\(71\) 12.1146i 1.43773i 0.695148 + 0.718867i \(0.255339\pi\)
−0.695148 + 0.718867i \(0.744661\pi\)
\(72\) 0 0
\(73\) −4.45034 −0.520873 −0.260436 0.965491i \(-0.583866\pi\)
−0.260436 + 0.965491i \(0.583866\pi\)
\(74\) 6.83433 1.37818i 0.794475 0.160211i
\(75\) 0 0
\(76\) −4.68297 + 1.96876i −0.537173 + 0.225832i
\(77\) −14.7532 −1.68128
\(78\) 0 0
\(79\) −3.65421 −0.411131 −0.205565 0.978643i \(-0.565903\pi\)
−0.205565 + 0.978643i \(0.565903\pi\)
\(80\) −3.64602 3.56988i −0.407638 0.399125i
\(81\) 0 0
\(82\) 2.59050 + 12.8461i 0.286073 + 1.41862i
\(83\) −3.03863 −0.333533 −0.166766 0.985996i \(-0.553333\pi\)
−0.166766 + 0.985996i \(0.553333\pi\)
\(84\) 0 0
\(85\) −8.59999 −0.932800
\(86\) 2.82688 + 14.0184i 0.304831 + 1.51164i
\(87\) 0 0
\(88\) −9.41544 13.8526i −1.00369 1.47669i
\(89\) 5.81313i 0.616190i −0.951356 0.308095i \(-0.900309\pi\)
0.951356 0.308095i \(-0.0996915\pi\)
\(90\) 0 0
\(91\) 6.14552 0.644226
\(92\) −9.26037 + 2.49910i −0.965460 + 0.260550i
\(93\) 0 0
\(94\) 13.7739 2.77759i 1.42067 0.286487i
\(95\) 3.24020i 0.332438i
\(96\) 0 0
\(97\) 4.52256i 0.459197i 0.973285 + 0.229598i \(0.0737412\pi\)
−0.973285 + 0.229598i \(0.926259\pi\)
\(98\) −0.221791 1.09985i −0.0224042 0.111101i
\(99\) 0 0
\(100\) −6.21814 + 2.61416i −0.621814 + 0.261416i
\(101\) 9.44751 0.940062 0.470031 0.882650i \(-0.344243\pi\)
0.470031 + 0.882650i \(0.344243\pi\)
\(102\) 0 0
\(103\) 1.68300 0.165831 0.0829154 0.996557i \(-0.473577\pi\)
0.0829154 + 0.996557i \(0.473577\pi\)
\(104\) 3.92206 + 5.77040i 0.384590 + 0.565834i
\(105\) 0 0
\(106\) −2.88905 + 0.582594i −0.280609 + 0.0565865i
\(107\) −14.4223 −1.39425 −0.697126 0.716949i \(-0.745538\pi\)
−0.697126 + 0.716949i \(0.745538\pi\)
\(108\) 0 0
\(109\) 11.3390i 1.08608i −0.839707 0.543040i \(-0.817273\pi\)
0.839707 0.543040i \(-0.182727\pi\)
\(110\) 10.4726 2.11187i 0.998528 0.201359i
\(111\) 0 0
\(112\) −6.97175 + 7.12045i −0.658769 + 0.672819i
\(113\) 17.9670i 1.69019i −0.534612 0.845097i \(-0.679542\pi\)
0.534612 0.845097i \(-0.320458\pi\)
\(114\) 0 0
\(115\) 0.819675 6.06277i 0.0764351 0.565356i
\(116\) 10.0502 4.22517i 0.933135 0.392297i
\(117\) 0 0
\(118\) 10.3117 2.07942i 0.949269 0.191426i
\(119\) 16.7952i 1.53962i
\(120\) 0 0
\(121\) 24.0682 2.18802
\(122\) 2.97228 0.599378i 0.269098 0.0542652i
\(123\) 0 0
\(124\) −2.34399 5.57552i −0.210497 0.500696i
\(125\) 10.6808i 0.955319i
\(126\) 0 0
\(127\) 0.555947i 0.0493323i 0.999696 + 0.0246662i \(0.00785228\pi\)
−0.999696 + 0.0246662i \(0.992148\pi\)
\(128\) −11.1352 2.00194i −0.984220 0.176948i
\(129\) 0 0
\(130\) −4.36245 + 0.879714i −0.382612 + 0.0771560i
\(131\) 0.593855i 0.0518854i −0.999663 0.0259427i \(-0.991741\pi\)
0.999663 0.0259427i \(-0.00825874\pi\)
\(132\) 0 0
\(133\) −6.32791 −0.548699
\(134\) −1.10886 5.49877i −0.0957909 0.475021i
\(135\) 0 0
\(136\) −15.7700 + 10.7187i −1.35227 + 0.919119i
\(137\) 12.1761i 1.04027i −0.854083 0.520136i \(-0.825881\pi\)
0.854083 0.520136i \(-0.174119\pi\)
\(138\) 0 0
\(139\) 12.5827i 1.06725i 0.845721 + 0.533626i \(0.179171\pi\)
−0.845721 + 0.533626i \(0.820829\pi\)
\(140\) −2.46336 5.85946i −0.208192 0.495215i
\(141\) 0 0
\(142\) −16.7945 + 3.38671i −1.40936 + 0.284206i
\(143\) −14.6079 −1.22157
\(144\) 0 0
\(145\) 6.95383i 0.577485i
\(146\) −1.24412 6.16954i −0.102964 0.510595i
\(147\) 0 0
\(148\) 3.82117 + 9.08921i 0.314099 + 0.747128i
\(149\) 17.4838i 1.43233i 0.697932 + 0.716164i \(0.254104\pi\)
−0.697932 + 0.716164i \(0.745896\pi\)
\(150\) 0 0
\(151\) 22.2343i 1.80940i 0.426046 + 0.904701i \(0.359906\pi\)
−0.426046 + 0.904701i \(0.640094\pi\)
\(152\) −4.03846 5.94165i −0.327562 0.481932i
\(153\) 0 0
\(154\) −4.12435 20.4524i −0.332350 1.64810i
\(155\) 3.85777 0.309864
\(156\) 0 0
\(157\) 18.2974i 1.46029i 0.683290 + 0.730147i \(0.260548\pi\)
−0.683290 + 0.730147i \(0.739452\pi\)
\(158\) −1.02156 5.06586i −0.0812710 0.403018i
\(159\) 0 0
\(160\) 3.92969 6.05250i 0.310669 0.478492i
\(161\) −11.8402 1.60077i −0.933138 0.126158i
\(162\) 0 0
\(163\) 2.10553i 0.164918i 0.996594 + 0.0824591i \(0.0262774\pi\)
−0.996594 + 0.0824591i \(0.973723\pi\)
\(164\) −17.0845 + 7.18245i −1.33407 + 0.560855i
\(165\) 0 0
\(166\) −0.849471 4.21247i −0.0659317 0.326951i
\(167\) 4.43024i 0.342823i −0.985200 0.171411i \(-0.945167\pi\)
0.985200 0.171411i \(-0.0548327\pi\)
\(168\) 0 0
\(169\) −6.91499 −0.531922
\(170\) −2.40419 11.9222i −0.184393 0.914393i
\(171\) 0 0
\(172\) −18.6435 + 7.83786i −1.42155 + 0.597631i
\(173\) 5.29846 0.402835 0.201417 0.979505i \(-0.435445\pi\)
0.201417 + 0.979505i \(0.435445\pi\)
\(174\) 0 0
\(175\) −8.40233 −0.635156
\(176\) 16.5718 16.9253i 1.24915 1.27579i
\(177\) 0 0
\(178\) 8.05878 1.62510i 0.604031 0.121806i
\(179\) 6.37775i 0.476696i −0.971180 0.238348i \(-0.923394\pi\)
0.971180 0.238348i \(-0.0766058\pi\)
\(180\) 0 0
\(181\) 20.8442i 1.54934i −0.632368 0.774668i \(-0.717917\pi\)
0.632368 0.774668i \(-0.282083\pi\)
\(182\) 1.71802 + 8.51958i 0.127348 + 0.631513i
\(183\) 0 0
\(184\) −6.05333 12.1391i −0.446257 0.894905i
\(185\) −6.28893 −0.462372
\(186\) 0 0
\(187\) 39.9222i 2.91940i
\(188\) 7.70120 + 18.3184i 0.561668 + 1.33601i
\(189\) 0 0
\(190\) 4.49192 0.905822i 0.325878 0.0657152i
\(191\) 0.120078 0.00868856 0.00434428 0.999991i \(-0.498617\pi\)
0.00434428 + 0.999991i \(0.498617\pi\)
\(192\) 0 0
\(193\) −5.99420 −0.431472 −0.215736 0.976452i \(-0.569215\pi\)
−0.215736 + 0.976452i \(0.569215\pi\)
\(194\) −6.26966 + 1.26431i −0.450135 + 0.0907725i
\(195\) 0 0
\(196\) 1.46272 0.614940i 0.104480 0.0439243i
\(197\) 12.4182 0.884761 0.442380 0.896827i \(-0.354134\pi\)
0.442380 + 0.896827i \(0.354134\pi\)
\(198\) 0 0
\(199\) −9.56523 −0.678061 −0.339030 0.940775i \(-0.610099\pi\)
−0.339030 + 0.940775i \(0.610099\pi\)
\(200\) −5.36235 7.88945i −0.379175 0.557868i
\(201\) 0 0
\(202\) 2.64112 + 13.0971i 0.185828 + 0.921512i
\(203\) 13.5804 0.953157
\(204\) 0 0
\(205\) 11.8210i 0.825612i
\(206\) 0.470494 + 2.33315i 0.0327809 + 0.162558i
\(207\) 0 0
\(208\) −6.90311 + 7.05034i −0.478644 + 0.488853i
\(209\) 15.0414 1.04044
\(210\) 0 0
\(211\) 2.54447i 0.175169i −0.996157 0.0875843i \(-0.972085\pi\)
0.996157 0.0875843i \(-0.0279147\pi\)
\(212\) −1.61531 3.84224i −0.110940 0.263886i
\(213\) 0 0
\(214\) −4.03184 19.9937i −0.275611 1.36674i
\(215\) 12.8996i 0.879748i
\(216\) 0 0
\(217\) 7.53398i 0.511440i
\(218\) 15.7193 3.16990i 1.06465 0.214693i
\(219\) 0 0
\(220\) 5.85541 + 13.9279i 0.394772 + 0.939020i
\(221\) 16.6298i 1.11864i
\(222\) 0 0
\(223\) 8.25462i 0.552770i 0.961047 + 0.276385i \(0.0891365\pi\)
−0.961047 + 0.276385i \(0.910864\pi\)
\(224\) −11.8201 7.67442i −0.789766 0.512769i
\(225\) 0 0
\(226\) 24.9078 5.02281i 1.65684 0.334112i
\(227\) 10.9045 0.723755 0.361877 0.932226i \(-0.382136\pi\)
0.361877 + 0.932226i \(0.382136\pi\)
\(228\) 0 0
\(229\) 14.3196i 0.946264i −0.880992 0.473132i \(-0.843123\pi\)
0.880992 0.473132i \(-0.156877\pi\)
\(230\) 8.63400 0.558569i 0.569309 0.0368309i
\(231\) 0 0
\(232\) 8.66698 + 12.7514i 0.569015 + 0.837173i
\(233\) −10.5570 −0.691615 −0.345808 0.938305i \(-0.612395\pi\)
−0.345808 + 0.938305i \(0.612395\pi\)
\(234\) 0 0
\(235\) −12.6747 −0.826808
\(236\) 5.76542 + 13.7139i 0.375297 + 0.892697i
\(237\) 0 0
\(238\) −23.2833 + 4.69522i −1.50923 + 0.304346i
\(239\) 4.84386i 0.313323i 0.987652 + 0.156662i \(0.0500732\pi\)
−0.987652 + 0.156662i \(0.949927\pi\)
\(240\) 0 0
\(241\) 22.0218i 1.41855i 0.704933 + 0.709274i \(0.250977\pi\)
−0.704933 + 0.709274i \(0.749023\pi\)
\(242\) 6.72844 + 33.3659i 0.432521 + 2.14484i
\(243\) 0 0
\(244\) 1.66185 + 3.95294i 0.106389 + 0.253061i
\(245\) 1.01208i 0.0646592i
\(246\) 0 0
\(247\) −6.26560 −0.398671
\(248\) 7.07410 4.80817i 0.449206 0.305319i
\(249\) 0 0
\(250\) 14.8069 2.98589i 0.936468 0.188844i
\(251\) −1.49664 −0.0944669 −0.0472334 0.998884i \(-0.515040\pi\)
−0.0472334 + 0.998884i \(0.515040\pi\)
\(252\) 0 0
\(253\) 28.1441 + 3.80503i 1.76940 + 0.239220i
\(254\) −0.770713 + 0.155419i −0.0483588 + 0.00975185i
\(255\) 0 0
\(256\) −0.337613 15.9964i −0.0211008 0.999777i
\(257\) −15.3146 −0.955301 −0.477650 0.878550i \(-0.658511\pi\)
−0.477650 + 0.878550i \(0.658511\pi\)
\(258\) 0 0
\(259\) 12.2819i 0.763159i
\(260\) −2.43911 5.80176i −0.151267 0.359810i
\(261\) 0 0
\(262\) 0.823266 0.166016i 0.0508615 0.0102565i
\(263\) 2.19677 0.135458 0.0677292 0.997704i \(-0.478425\pi\)
0.0677292 + 0.997704i \(0.478425\pi\)
\(264\) 0 0
\(265\) 2.65849 0.163310
\(266\) −1.76901 8.77242i −0.108465 0.537872i
\(267\) 0 0
\(268\) 7.31299 3.07444i 0.446712 0.187801i
\(269\) 8.15180 0.497024 0.248512 0.968629i \(-0.420058\pi\)
0.248512 + 0.968629i \(0.420058\pi\)
\(270\) 0 0
\(271\) 17.0762i 1.03731i −0.854984 0.518654i \(-0.826433\pi\)
0.854984 0.518654i \(-0.173567\pi\)
\(272\) −19.2680 18.8656i −1.16829 1.14390i
\(273\) 0 0
\(274\) 16.8798 3.40391i 1.01975 0.205638i
\(275\) 19.9723 1.20438
\(276\) 0 0
\(277\) 13.9801 0.839982 0.419991 0.907528i \(-0.362033\pi\)
0.419991 + 0.907528i \(0.362033\pi\)
\(278\) −17.4435 + 3.51759i −1.04619 + 0.210971i
\(279\) 0 0
\(280\) 7.43436 5.05303i 0.444288 0.301976i
\(281\) 22.1413i 1.32084i 0.750896 + 0.660420i \(0.229622\pi\)
−0.750896 + 0.660420i \(0.770378\pi\)
\(282\) 0 0
\(283\) 14.2647 0.847946 0.423973 0.905675i \(-0.360635\pi\)
0.423973 + 0.905675i \(0.360635\pi\)
\(284\) −9.39004 22.3356i −0.557197 1.32537i
\(285\) 0 0
\(286\) −4.08374 20.2510i −0.241477 1.19747i
\(287\) −23.0856 −1.36270
\(288\) 0 0
\(289\) −28.4481 −1.67341
\(290\) −9.64015 + 1.94399i −0.566089 + 0.114155i
\(291\) 0 0
\(292\) 8.20507 3.44948i 0.480166 0.201865i
\(293\) 9.44315i 0.551675i −0.961204 0.275837i \(-0.911045\pi\)
0.961204 0.275837i \(-0.0889552\pi\)
\(294\) 0 0
\(295\) −9.48880 −0.552459
\(296\) −11.5322 + 7.83827i −0.670295 + 0.455590i
\(297\) 0 0
\(298\) −24.2379 + 4.88772i −1.40407 + 0.283138i
\(299\) −11.7236 1.58501i −0.677994 0.0916635i
\(300\) 0 0
\(301\) −25.1922 −1.45205
\(302\) −30.8236 + 6.21576i −1.77370 + 0.357677i
\(303\) 0 0
\(304\) 7.10798 7.25958i 0.407670 0.416365i
\(305\) −2.73508 −0.156610
\(306\) 0 0
\(307\) 16.9520i 0.967504i 0.875205 + 0.483752i \(0.160726\pi\)
−0.875205 + 0.483752i \(0.839274\pi\)
\(308\) 27.2003 11.4352i 1.54988 0.651583i
\(309\) 0 0
\(310\) 1.07847 + 5.34805i 0.0612528 + 0.303749i
\(311\) 19.6873i 1.11636i 0.829719 + 0.558182i \(0.188501\pi\)
−0.829719 + 0.558182i \(0.811499\pi\)
\(312\) 0 0
\(313\) 1.61663i 0.0913772i −0.998956 0.0456886i \(-0.985452\pi\)
0.998956 0.0456886i \(-0.0145482\pi\)
\(314\) −25.3658 + 5.11518i −1.43148 + 0.288666i
\(315\) 0 0
\(316\) 6.73725 2.83239i 0.379000 0.159335i
\(317\) 24.6211 1.38286 0.691430 0.722444i \(-0.256981\pi\)
0.691430 + 0.722444i \(0.256981\pi\)
\(318\) 0 0
\(319\) −32.2806 −1.80736
\(320\) 9.48919 + 3.75573i 0.530462 + 0.209952i
\(321\) 0 0
\(322\) −1.09085 16.8617i −0.0607906 0.939663i
\(323\) 17.1234i 0.952771i
\(324\) 0 0
\(325\) −8.31959 −0.461488
\(326\) −2.91892 + 0.588617i −0.161664 + 0.0326005i
\(327\) 0 0
\(328\) −14.7332 21.6764i −0.813503 1.19688i
\(329\) 24.7529i 1.36467i
\(330\) 0 0
\(331\) 24.9576i 1.37179i 0.727699 + 0.685896i \(0.240590\pi\)
−0.727699 + 0.685896i \(0.759410\pi\)
\(332\) 5.60231 2.35525i 0.307467 0.129261i
\(333\) 0 0
\(334\) 6.14168 1.23851i 0.336058 0.0677681i
\(335\) 5.05995i 0.276455i
\(336\) 0 0
\(337\) 16.3446i 0.890347i 0.895444 + 0.445173i \(0.146858\pi\)
−0.895444 + 0.445173i \(0.853142\pi\)
\(338\) −1.93314 9.58630i −0.105149 0.521426i
\(339\) 0 0
\(340\) 15.8558 6.66589i 0.859899 0.361508i
\(341\) 17.9082i 0.969786i
\(342\) 0 0
\(343\) 19.4157 1.04835
\(344\) −16.0776 23.6544i −0.866846 1.27536i
\(345\) 0 0
\(346\) 1.48122 + 7.34530i 0.0796311 + 0.394886i
\(347\) 18.8134i 1.00995i 0.863133 + 0.504977i \(0.168499\pi\)
−0.863133 + 0.504977i \(0.831501\pi\)
\(348\) 0 0
\(349\) 13.5829 0.727078 0.363539 0.931579i \(-0.381568\pi\)
0.363539 + 0.931579i \(0.381568\pi\)
\(350\) −2.34893 11.6482i −0.125556 0.622623i
\(351\) 0 0
\(352\) 28.0964 + 18.2421i 1.49754 + 0.972306i
\(353\) −31.5063 −1.67691 −0.838456 0.544969i \(-0.816541\pi\)
−0.838456 + 0.544969i \(0.816541\pi\)
\(354\) 0 0
\(355\) 15.4542 0.820226
\(356\) 4.50578 + 10.7176i 0.238806 + 0.568033i
\(357\) 0 0
\(358\) 8.84152 1.78295i 0.467289 0.0942316i
\(359\) 18.4884 0.975779 0.487890 0.872905i \(-0.337767\pi\)
0.487890 + 0.872905i \(0.337767\pi\)
\(360\) 0 0
\(361\) −12.5485 −0.660445
\(362\) 28.8965 5.82714i 1.51876 0.306268i
\(363\) 0 0
\(364\) −11.3305 + 4.76342i −0.593878 + 0.249671i
\(365\) 5.67719i 0.297158i
\(366\) 0 0
\(367\) −3.17955 −0.165971 −0.0829855 0.996551i \(-0.526446\pi\)
−0.0829855 + 0.996551i \(0.526446\pi\)
\(368\) 15.1362 11.7853i 0.789031 0.614353i
\(369\) 0 0
\(370\) −1.75812 8.71839i −0.0914001 0.453248i
\(371\) 5.19187i 0.269548i
\(372\) 0 0
\(373\) 17.7910i 0.921186i 0.887612 + 0.460593i \(0.152363\pi\)
−0.887612 + 0.460593i \(0.847637\pi\)
\(374\) 55.3444 11.1605i 2.86179 0.577098i
\(375\) 0 0
\(376\) −23.2420 + 15.7973i −1.19861 + 0.814682i
\(377\) 13.4467 0.692539
\(378\) 0 0
\(379\) −13.2435 −0.680273 −0.340136 0.940376i \(-0.610473\pi\)
−0.340136 + 0.940376i \(0.610473\pi\)
\(380\) 2.51150 + 5.97395i 0.128837 + 0.306457i
\(381\) 0 0
\(382\) 0.0335687 + 0.166465i 0.00171753 + 0.00851711i
\(383\) 9.71405 0.496365 0.248182 0.968713i \(-0.420167\pi\)
0.248182 + 0.968713i \(0.420167\pi\)
\(384\) 0 0
\(385\) 18.8202i 0.959168i
\(386\) −1.67572 8.30980i −0.0852920 0.422958i
\(387\) 0 0
\(388\) −3.50546 8.33823i −0.177963 0.423309i
\(389\) 27.6072i 1.39974i 0.714271 + 0.699870i \(0.246759\pi\)
−0.714271 + 0.699870i \(0.753241\pi\)
\(390\) 0 0
\(391\) 4.33171 32.0397i 0.219064 1.62032i
\(392\) 1.26141 + 1.85587i 0.0637109 + 0.0937357i
\(393\) 0 0
\(394\) 3.47160 + 17.2155i 0.174897 + 0.867302i
\(395\) 4.66159i 0.234550i
\(396\) 0 0
\(397\) 12.2838 0.616508 0.308254 0.951304i \(-0.400255\pi\)
0.308254 + 0.951304i \(0.400255\pi\)
\(398\) −2.67403 13.2603i −0.134037 0.664681i
\(399\) 0 0
\(400\) 9.43812 9.63942i 0.471906 0.481971i
\(401\) 17.1714i 0.857499i 0.903423 + 0.428750i \(0.141046\pi\)
−0.903423 + 0.428750i \(0.858954\pi\)
\(402\) 0 0
\(403\) 7.45979i 0.371599i
\(404\) −17.4183 + 7.32280i −0.866594 + 0.364323i
\(405\) 0 0
\(406\) 3.79650 + 18.8266i 0.188417 + 0.934348i
\(407\) 29.1940i 1.44709i
\(408\) 0 0
\(409\) 24.7976 1.22616 0.613082 0.790019i \(-0.289930\pi\)
0.613082 + 0.790019i \(0.289930\pi\)
\(410\) 16.3875 3.30463i 0.809320 0.163204i
\(411\) 0 0
\(412\) −3.10294 + 1.30450i −0.152871 + 0.0642681i
\(413\) 18.5310i 0.911851i
\(414\) 0 0
\(415\) 3.87631i 0.190280i
\(416\) −11.7037 7.59885i −0.573823 0.372564i
\(417\) 0 0
\(418\) 4.20494 + 20.8520i 0.205670 + 1.01991i
\(419\) 14.3462 0.700856 0.350428 0.936590i \(-0.386036\pi\)
0.350428 + 0.936590i \(0.386036\pi\)
\(420\) 0 0
\(421\) 34.0216i 1.65811i 0.559166 + 0.829056i \(0.311121\pi\)
−0.559166 + 0.829056i \(0.688879\pi\)
\(422\) 3.52742 0.711325i 0.171712 0.0346267i
\(423\) 0 0
\(424\) 4.87496 3.31344i 0.236749 0.160915i
\(425\) 22.7368i 1.10290i
\(426\) 0 0
\(427\) 5.34144i 0.258491i
\(428\) 26.5902 11.1787i 1.28529 0.540345i
\(429\) 0 0
\(430\) 17.8829 3.60619i 0.862388 0.173906i
\(431\) −24.1892 −1.16515 −0.582575 0.812777i \(-0.697955\pi\)
−0.582575 + 0.812777i \(0.697955\pi\)
\(432\) 0 0
\(433\) 26.3588i 1.26672i −0.773856 0.633362i \(-0.781675\pi\)
0.773856 0.633362i \(-0.218325\pi\)
\(434\) 10.4444 2.10618i 0.501347 0.101100i
\(435\) 0 0
\(436\) 8.78891 + 20.9057i 0.420912 + 1.00120i
\(437\) 12.0715 + 1.63205i 0.577460 + 0.0780715i
\(438\) 0 0
\(439\) 3.36175i 0.160448i 0.996777 + 0.0802238i \(0.0255635\pi\)
−0.996777 + 0.0802238i \(0.974437\pi\)
\(440\) −17.6715 + 12.0110i −0.842454 + 0.572604i
\(441\) 0 0
\(442\) −23.0541 + 4.64899i −1.09657 + 0.221130i
\(443\) 24.2964i 1.15436i 0.816618 + 0.577179i \(0.195846\pi\)
−0.816618 + 0.577179i \(0.804154\pi\)
\(444\) 0 0
\(445\) −7.41566 −0.351536
\(446\) −11.4434 + 2.30764i −0.541862 + 0.109270i
\(447\) 0 0
\(448\) 7.33470 18.5318i 0.346532 0.875544i
\(449\) 2.97429 0.140365 0.0701826 0.997534i \(-0.477642\pi\)
0.0701826 + 0.997534i \(0.477642\pi\)
\(450\) 0 0
\(451\) 54.8744 2.58393
\(452\) 13.9263 + 33.1257i 0.655039 + 1.55810i
\(453\) 0 0
\(454\) 3.04842 + 15.1169i 0.143070 + 0.709473i
\(455\) 7.83969i 0.367530i
\(456\) 0 0
\(457\) 30.9823i 1.44929i 0.689123 + 0.724644i \(0.257996\pi\)
−0.689123 + 0.724644i \(0.742004\pi\)
\(458\) 19.8513 4.00314i 0.927592 0.187054i
\(459\) 0 0
\(460\) 3.18805 + 11.8132i 0.148643 + 0.550795i
\(461\) −42.5845 −1.98336 −0.991679 0.128738i \(-0.958907\pi\)
−0.991679 + 0.128738i \(0.958907\pi\)
\(462\) 0 0
\(463\) 28.2192i 1.31146i −0.754997 0.655728i \(-0.772362\pi\)
0.754997 0.655728i \(-0.227638\pi\)
\(464\) −15.2545 + 15.5799i −0.708173 + 0.723277i
\(465\) 0 0
\(466\) −2.95130 14.6353i −0.136716 0.677968i
\(467\) 16.9236 0.783130 0.391565 0.920150i \(-0.371934\pi\)
0.391565 + 0.920150i \(0.371934\pi\)
\(468\) 0 0
\(469\) 9.88176 0.456297
\(470\) −3.54331 17.5711i −0.163441 0.810492i
\(471\) 0 0
\(472\) −17.3999 + 11.8265i −0.800894 + 0.544357i
\(473\) 59.8817 2.75336
\(474\) 0 0
\(475\) 8.56650 0.393058
\(476\) −13.0180 30.9653i −0.596681 1.41929i
\(477\) 0 0
\(478\) −6.71508 + 1.35414i −0.307141 + 0.0619368i
\(479\) −25.7641 −1.17719 −0.588595 0.808428i \(-0.700319\pi\)
−0.588595 + 0.808428i \(0.700319\pi\)
\(480\) 0 0
\(481\) 12.1609i 0.554491i
\(482\) −30.5290 + 6.15635i −1.39056 + 0.280414i
\(483\) 0 0
\(484\) −44.3745 + 18.6554i −2.01702 + 0.847972i
\(485\) 5.76932 0.261971
\(486\) 0 0
\(487\) 21.2924i 0.964850i 0.875937 + 0.482425i \(0.160244\pi\)
−0.875937 + 0.482425i \(0.839756\pi\)
\(488\) −5.01540 + 3.40890i −0.227037 + 0.154314i
\(489\) 0 0
\(490\) −1.40305 + 0.282933i −0.0633833 + 0.0127816i
\(491\) 7.54351i 0.340434i −0.985407 0.170217i \(-0.945553\pi\)
0.985407 0.170217i \(-0.0544468\pi\)
\(492\) 0 0
\(493\) 36.7487i 1.65508i
\(494\) −1.75159 8.68605i −0.0788079 0.390804i
\(495\) 0 0
\(496\) 8.64322 + 8.46272i 0.388092 + 0.379987i
\(497\) 30.1811i 1.35381i
\(498\) 0 0
\(499\) 18.4954i 0.827970i −0.910284 0.413985i \(-0.864137\pi\)
0.910284 0.413985i \(-0.135863\pi\)
\(500\) 8.27872 + 19.6921i 0.370236 + 0.880658i
\(501\) 0 0
\(502\) −0.418395 2.07480i −0.0186739 0.0926028i
\(503\) −41.5195 −1.85126 −0.925632 0.378425i \(-0.876466\pi\)
−0.925632 + 0.378425i \(0.876466\pi\)
\(504\) 0 0
\(505\) 12.0520i 0.536305i
\(506\) 2.59294 + 40.0801i 0.115270 + 1.78178i
\(507\) 0 0
\(508\) −0.430917 1.02500i −0.0191188 0.0454769i
\(509\) 0.524721 0.0232579 0.0116289 0.999932i \(-0.496298\pi\)
0.0116289 + 0.999932i \(0.496298\pi\)
\(510\) 0 0
\(511\) 11.0872 0.490468
\(512\) 22.0816 4.93995i 0.975878 0.218317i
\(513\) 0 0
\(514\) −4.28131 21.2308i −0.188841 0.936450i
\(515\) 2.14696i 0.0946064i
\(516\) 0 0
\(517\) 58.8376i 2.58767i
\(518\) −17.0265 + 3.43349i −0.748100 + 0.150859i
\(519\) 0 0
\(520\) 7.36116 5.00328i 0.322808 0.219408i
\(521\) 14.1174i 0.618493i 0.950982 + 0.309247i \(0.100077\pi\)
−0.950982 + 0.309247i \(0.899923\pi\)
\(522\) 0 0
\(523\) 26.2501 1.14784 0.573918 0.818913i \(-0.305423\pi\)
0.573918 + 0.818913i \(0.305423\pi\)
\(524\) 0.460300 + 1.09489i 0.0201083 + 0.0478304i
\(525\) 0 0
\(526\) 0.614122 + 3.04539i 0.0267770 + 0.132786i
\(527\) 20.3870 0.888072
\(528\) 0 0
\(529\) 22.1743 + 6.10748i 0.964099 + 0.265543i
\(530\) 0.743201 + 3.68549i 0.0322826 + 0.160087i
\(531\) 0 0
\(532\) 11.6667 4.90479i 0.505817 0.212650i
\(533\) −22.8583 −0.990101
\(534\) 0 0
\(535\) 18.3981i 0.795420i
\(536\) 6.30652 + 9.27858i 0.272400 + 0.400773i
\(537\) 0 0
\(538\) 2.27889 + 11.3009i 0.0982501 + 0.487216i
\(539\) −4.69818 −0.202365
\(540\) 0 0
\(541\) 22.3639 0.961498 0.480749 0.876858i \(-0.340365\pi\)
0.480749 + 0.876858i \(0.340365\pi\)
\(542\) 23.6729 4.77378i 1.01684 0.205052i
\(543\) 0 0
\(544\) 20.7671 31.9854i 0.890381 1.37136i
\(545\) −14.4649 −0.619608
\(546\) 0 0
\(547\) 20.2548i 0.866033i −0.901386 0.433017i \(-0.857449\pi\)
0.901386 0.433017i \(-0.142551\pi\)
\(548\) 9.43773 + 22.4490i 0.403160 + 0.958973i
\(549\) 0 0
\(550\) 5.58340 + 27.6878i 0.238077 + 1.18061i
\(551\) −13.8457 −0.589848
\(552\) 0 0
\(553\) 9.10378 0.387132
\(554\) 3.90823 + 19.3807i 0.166045 + 0.823407i
\(555\) 0 0
\(556\) −9.75291 23.1987i −0.413616 0.983843i
\(557\) 28.8162i 1.22098i −0.792023 0.610491i \(-0.790972\pi\)
0.792023 0.610491i \(-0.209028\pi\)
\(558\) 0 0
\(559\) −24.9441 −1.05502
\(560\) 9.08338 + 8.89370i 0.383843 + 0.375827i
\(561\) 0 0
\(562\) −30.6947 + 6.18977i −1.29478 + 0.261100i
\(563\) −20.5741 −0.867095 −0.433548 0.901131i \(-0.642738\pi\)
−0.433548 + 0.901131i \(0.642738\pi\)
\(564\) 0 0
\(565\) −22.9201 −0.964255
\(566\) 3.98779 + 19.7752i 0.167619 + 0.831214i
\(567\) 0 0
\(568\) 28.3389 19.2616i 1.18907 0.808197i
\(569\) 33.7758i 1.41596i 0.706234 + 0.707979i \(0.250393\pi\)
−0.706234 + 0.707979i \(0.749607\pi\)
\(570\) 0 0
\(571\) 34.0122 1.42337 0.711684 0.702500i \(-0.247933\pi\)
0.711684 + 0.702500i \(0.247933\pi\)
\(572\) 26.9325 11.3226i 1.12610 0.473423i
\(573\) 0 0
\(574\) −6.45374 32.0037i −0.269374 1.33581i
\(575\) 16.0288 + 2.16707i 0.668449 + 0.0903730i
\(576\) 0 0
\(577\) −32.4491 −1.35088 −0.675438 0.737417i \(-0.736045\pi\)
−0.675438 + 0.737417i \(0.736045\pi\)
\(578\) −7.95286 39.4377i −0.330795 1.64039i
\(579\) 0 0
\(580\) −5.38995 12.8208i −0.223805 0.532353i
\(581\) 7.57017 0.314064
\(582\) 0 0
\(583\) 12.3411i 0.511114i
\(584\) 7.07582 + 10.4104i 0.292800 + 0.430787i
\(585\) 0 0
\(586\) 13.0911 2.63990i 0.540789 0.109053i
\(587\) 4.92756i 0.203382i 0.994816 + 0.101691i \(0.0324254\pi\)
−0.994816 + 0.101691i \(0.967575\pi\)
\(588\) 0 0
\(589\) 7.68118i 0.316498i
\(590\) −2.65266 13.1544i −0.109208 0.541558i
\(591\) 0 0
\(592\) −14.0902 13.7959i −0.579102 0.567009i
\(593\) 19.1860 0.787875 0.393938 0.919137i \(-0.371113\pi\)
0.393938 + 0.919137i \(0.371113\pi\)
\(594\) 0 0
\(595\) 21.4253 0.878350
\(596\) −13.5518 32.2348i −0.555102 1.32039i
\(597\) 0 0
\(598\) −1.08011 16.6956i −0.0441689 0.682735i
\(599\) 35.3094i 1.44270i −0.692568 0.721352i \(-0.743521\pi\)
0.692568 0.721352i \(-0.256479\pi\)
\(600\) 0 0
\(601\) −35.4004 −1.44401 −0.722006 0.691887i \(-0.756780\pi\)
−0.722006 + 0.691887i \(0.756780\pi\)
\(602\) −7.04265 34.9241i −0.287037 1.42340i
\(603\) 0 0
\(604\) −17.2339 40.9933i −0.701238 1.66799i
\(605\) 30.7032i 1.24826i
\(606\) 0 0
\(607\) 41.3927i 1.68008i 0.542525 + 0.840039i \(0.317468\pi\)
−0.542525 + 0.840039i \(0.682532\pi\)
\(608\) 12.0511 + 7.82437i 0.488736 + 0.317320i
\(609\) 0 0
\(610\) −0.764612 3.79167i −0.0309583 0.153520i
\(611\) 24.5092i 0.991535i
\(612\) 0 0
\(613\) 21.8461i 0.882354i −0.897420 0.441177i \(-0.854561\pi\)
0.897420 0.441177i \(-0.145439\pi\)
\(614\) −23.5007 + 4.73906i −0.948413 + 0.191253i
\(615\) 0 0
\(616\) 23.4568 + 34.5112i 0.945101 + 1.39050i
\(617\) 23.4324i 0.943354i −0.881771 0.471677i \(-0.843649\pi\)
0.881771 0.471677i \(-0.156351\pi\)
\(618\) 0 0
\(619\) −18.8898 −0.759247 −0.379624 0.925141i \(-0.623946\pi\)
−0.379624 + 0.925141i \(0.623946\pi\)
\(620\) −7.11255 + 2.99017i −0.285647 + 0.120088i
\(621\) 0 0
\(622\) −27.2926 + 5.50372i −1.09433 + 0.220679i
\(623\) 14.4823i 0.580221i
\(624\) 0 0
\(625\) 3.23804 0.129522
\(626\) 2.24114 0.451940i 0.0895741 0.0180631i
\(627\) 0 0
\(628\) −14.1824 33.7349i −0.565940 1.34617i
\(629\) −33.2349 −1.32516
\(630\) 0 0
\(631\) −17.4008 −0.692717 −0.346358 0.938102i \(-0.612582\pi\)
−0.346358 + 0.938102i \(0.612582\pi\)
\(632\) 5.81001 + 8.54808i 0.231110 + 0.340024i
\(633\) 0 0
\(634\) 6.88301 + 34.1324i 0.273359 + 1.35557i
\(635\) 0.709208 0.0281441
\(636\) 0 0
\(637\) 1.95706 0.0775414
\(638\) −9.02426 44.7508i −0.357274 1.77170i
\(639\) 0 0
\(640\) −2.55383 + 14.2049i −0.100949 + 0.561497i
\(641\) 7.29894i 0.288291i −0.989557 0.144145i \(-0.953957\pi\)
0.989557 0.144145i \(-0.0460433\pi\)
\(642\) 0 0
\(643\) −6.74160 −0.265863 −0.132931 0.991125i \(-0.542439\pi\)
−0.132931 + 0.991125i \(0.542439\pi\)
\(644\) 23.0705 6.22605i 0.909104 0.245341i
\(645\) 0 0
\(646\) 23.7383 4.78697i 0.933970 0.188341i
\(647\) 4.47981i 0.176120i 0.996115 + 0.0880598i \(0.0280667\pi\)
−0.996115 + 0.0880598i \(0.971933\pi\)
\(648\) 0 0
\(649\) 44.0482i 1.72904i
\(650\) −2.32580 11.5335i −0.0912255 0.452382i
\(651\) 0 0
\(652\) −1.63201 3.88196i −0.0639144 0.152029i
\(653\) −0.978338 −0.0382853 −0.0191427 0.999817i \(-0.506094\pi\)
−0.0191427 + 0.999817i \(0.506094\pi\)
\(654\) 0 0
\(655\) −0.757567 −0.0296006
\(656\) 25.9314 26.4845i 1.01245 1.03405i
\(657\) 0 0
\(658\) −34.3151 + 6.91985i −1.33774 + 0.269764i
\(659\) 33.2279 1.29437 0.647187 0.762331i \(-0.275945\pi\)
0.647187 + 0.762331i \(0.275945\pi\)
\(660\) 0 0
\(661\) 10.6444i 0.414021i −0.978339 0.207010i \(-0.933627\pi\)
0.978339 0.207010i \(-0.0663734\pi\)
\(662\) −34.5989 + 6.97707i −1.34472 + 0.271172i
\(663\) 0 0
\(664\) 4.83127 + 7.10809i 0.187490 + 0.275847i
\(665\) 8.07236i 0.313033i
\(666\) 0 0
\(667\) −25.9069 3.50256i −1.00312 0.135620i
\(668\) 3.43390 + 8.16802i 0.132862 + 0.316030i
\(669\) 0 0
\(670\) −7.01465 + 1.41455i −0.270999 + 0.0546487i
\(671\) 12.6966i 0.490147i
\(672\) 0 0
\(673\) 15.5105 0.597885 0.298943 0.954271i \(-0.403366\pi\)
0.298943 + 0.954271i \(0.403366\pi\)
\(674\) −22.6586 + 4.56925i −0.872778 + 0.176001i
\(675\) 0 0
\(676\) 12.7491 5.35984i 0.490352 0.206148i
\(677\) 10.7034i 0.411365i 0.978619 + 0.205683i \(0.0659415\pi\)
−0.978619 + 0.205683i \(0.934059\pi\)
\(678\) 0 0
\(679\) 11.2671i 0.432392i
\(680\) 13.6736 + 20.1175i 0.524357 + 0.771469i
\(681\) 0 0
\(682\) −24.8263 + 5.00638i −0.950649 + 0.191704i
\(683\) 36.5249i 1.39759i 0.715324 + 0.698793i \(0.246279\pi\)
−0.715324 + 0.698793i \(0.753721\pi\)
\(684\) 0 0
\(685\) −15.5327 −0.593475
\(686\) 5.42780 + 26.9161i 0.207234 + 1.02766i
\(687\) 0 0
\(688\) 28.2977 28.9013i 1.07884 1.10185i
\(689\) 5.14075i 0.195847i
\(690\) 0 0
\(691\) 47.9613i 1.82453i −0.409596 0.912267i \(-0.634330\pi\)
0.409596 0.912267i \(-0.365670\pi\)
\(692\) −9.76876 + 4.10686i −0.371352 + 0.156119i
\(693\) 0 0
\(694\) −26.0811 + 5.25941i −0.990025 + 0.199645i
\(695\) 16.0515 0.608866
\(696\) 0 0
\(697\) 62.4698i 2.36621i
\(698\) 3.79721 + 18.8301i 0.143726 + 0.712731i
\(699\) 0 0
\(700\) 15.4913 6.51268i 0.585517 0.246156i
\(701\) 35.8504i 1.35405i −0.735960 0.677025i \(-0.763269\pi\)
0.735960 0.677025i \(-0.236731\pi\)
\(702\) 0 0
\(703\) 12.5219i 0.472271i
\(704\) −17.4346 + 44.0500i −0.657090 + 1.66020i
\(705\) 0 0
\(706\) −8.80782 43.6774i −0.331486 1.64382i
\(707\) −23.5367 −0.885188
\(708\) 0 0
\(709\) 18.1038i 0.679902i 0.940443 + 0.339951i \(0.110410\pi\)
−0.940443 + 0.339951i \(0.889590\pi\)
\(710\) 4.32034 + 21.4243i 0.162140 + 0.804041i
\(711\) 0 0
\(712\) −13.5983 + 9.24258i −0.509618 + 0.346380i
\(713\) −1.94311 + 14.3723i −0.0727700 + 0.538247i
\(714\) 0 0
\(715\) 18.6349i 0.696907i
\(716\) 4.94342 + 11.7586i 0.184744 + 0.439441i
\(717\) 0 0
\(718\) 5.16856 + 25.6306i 0.192889 + 0.956525i
\(719\) 4.13110i 0.154064i 0.997029 + 0.0770319i \(0.0245443\pi\)
−0.997029 + 0.0770319i \(0.975456\pi\)
\(720\) 0 0
\(721\) −4.19287 −0.156151
\(722\) −3.50801 17.3960i −0.130555 0.647412i
\(723\) 0 0
\(724\) 16.1564 + 38.4303i 0.600449 + 1.42825i
\(725\) −18.3847 −0.682789
\(726\) 0 0
\(727\) −47.9031 −1.77663 −0.888314 0.459237i \(-0.848123\pi\)
−0.888314 + 0.459237i \(0.848123\pi\)
\(728\) −9.77108 14.3759i −0.362140 0.532805i
\(729\) 0 0
\(730\) −7.87033 + 1.58710i −0.291294 + 0.0587412i
\(731\) 68.1703i 2.52137i
\(732\) 0 0
\(733\) 15.5853i 0.575657i −0.957682 0.287829i \(-0.907067\pi\)
0.957682 0.287829i \(-0.0929334\pi\)
\(734\) −0.888865 4.40783i −0.0328086 0.162696i
\(735\) 0 0
\(736\) 20.5695 + 17.6888i 0.758204 + 0.652018i
\(737\) −23.4889 −0.865225
\(738\) 0 0
\(739\) 1.51685i 0.0557982i −0.999611 0.0278991i \(-0.991118\pi\)
0.999611 0.0278991i \(-0.00888172\pi\)
\(740\) 11.5949 4.87458i 0.426236 0.179193i
\(741\) 0 0
\(742\) 7.19752 1.45142i 0.264229 0.0532834i
\(743\) −13.3402 −0.489406 −0.244703 0.969598i \(-0.578690\pi\)
−0.244703 + 0.969598i \(0.578690\pi\)
\(744\) 0 0
\(745\) 22.3037 0.817143
\(746\) −24.6639 + 4.97362i −0.903008 + 0.182097i
\(747\) 0 0
\(748\) 30.9439 + 73.6044i 1.13142 + 2.69124i
\(749\) 35.9303 1.31287
\(750\) 0 0
\(751\) −2.46508 −0.0899519 −0.0449760 0.998988i \(-0.514321\pi\)
−0.0449760 + 0.998988i \(0.514321\pi\)
\(752\) −28.3973 27.8043i −1.03554 1.01392i
\(753\) 0 0
\(754\) 3.75911 + 18.6412i 0.136899 + 0.678873i
\(755\) 28.3638 1.03226
\(756\) 0 0
\(757\) 4.61509i 0.167738i −0.996477 0.0838692i \(-0.973272\pi\)
0.996477 0.0838692i \(-0.0267278\pi\)
\(758\) −3.70231 18.3596i −0.134474 0.666849i
\(759\) 0 0
\(760\) −7.57962 + 5.15176i −0.274942 + 0.186874i
\(761\) 35.9097 1.30172 0.650862 0.759196i \(-0.274408\pi\)
0.650862 + 0.759196i \(0.274408\pi\)
\(762\) 0 0
\(763\) 28.2490i 1.02268i
\(764\) −0.221388 + 0.0930732i −0.00800953 + 0.00336727i
\(765\) 0 0
\(766\) 2.71563 + 13.4667i 0.0981198 + 0.486570i
\(767\) 18.3485i 0.662527i
\(768\) 0 0
\(769\) 22.0207i 0.794087i −0.917800 0.397044i \(-0.870036\pi\)
0.917800 0.397044i \(-0.129964\pi\)
\(770\) −26.0906 + 5.26133i −0.940241 + 0.189605i
\(771\) 0 0
\(772\) 11.0515 4.64613i 0.397751 0.167218i
\(773\) 26.2098i 0.942700i −0.881946 0.471350i \(-0.843767\pi\)
0.881946 0.471350i \(-0.156233\pi\)
\(774\) 0 0
\(775\) 10.1992i 0.366367i
\(776\) 10.5794 7.19065i 0.379777 0.258129i
\(777\) 0 0
\(778\) −38.2720 + 7.71778i −1.37212 + 0.276696i
\(779\) 23.5366 0.843288
\(780\) 0 0
\(781\) 71.7405i 2.56708i
\(782\) 45.6278 2.95185i 1.63165 0.105558i
\(783\) 0 0
\(784\) −2.22017 + 2.26753i −0.0792919 + 0.0809830i
\(785\) 23.3416 0.833097
\(786\) 0 0
\(787\) 30.7607 1.09650 0.548250 0.836315i \(-0.315294\pi\)
0.548250 + 0.836315i \(0.315294\pi\)
\(788\) −22.8954 + 9.62541i −0.815615 + 0.342891i
\(789\) 0 0
\(790\) −6.46239 + 1.30318i −0.229922 + 0.0463650i
\(791\) 44.7614i 1.59153i
\(792\) 0 0
\(793\) 5.28885i 0.187813i
\(794\) 3.43403 + 17.0292i 0.121869 + 0.604343i
\(795\) 0 0
\(796\) 17.6354 7.41405i 0.625069 0.262784i
\(797\) 54.7924i 1.94085i −0.241408 0.970424i \(-0.577609\pi\)
0.241408 0.970424i \(-0.422391\pi\)
\(798\) 0 0
\(799\) −66.9816 −2.36964
\(800\) 16.0017 + 10.3894i 0.565745 + 0.367320i
\(801\) 0 0
\(802\) −23.8048 + 4.80039i −0.840578 + 0.169508i
\(803\) −26.3542 −0.930020
\(804\) 0 0
\(805\) −2.04207 + 15.1042i −0.0719734 + 0.532355i
\(806\) 10.3416 2.08544i 0.364266 0.0734564i
\(807\) 0 0
\(808\) −15.0211 22.1000i −0.528440 0.777476i
\(809\) −42.9727 −1.51084 −0.755421 0.655240i \(-0.772567\pi\)
−0.755421 + 0.655240i \(0.772567\pi\)
\(810\) 0 0
\(811\) 1.35261i 0.0474966i 0.999718 + 0.0237483i \(0.00756003\pi\)
−0.999718 + 0.0237483i \(0.992440\pi\)
\(812\) −25.0381 + 10.5262i −0.878665 + 0.369398i
\(813\) 0 0
\(814\) 40.4719 8.16139i 1.41854 0.286057i
\(815\) 2.68598 0.0940857
\(816\) 0 0
\(817\) 25.6844 0.898583
\(818\) 6.93235 + 34.3771i 0.242384 + 1.20197i
\(819\) 0 0
\(820\) 9.16248 + 21.7943i 0.319968 + 0.761088i
\(821\) 8.46867 0.295559 0.147779 0.989020i \(-0.452787\pi\)
0.147779 + 0.989020i \(0.452787\pi\)
\(822\) 0 0
\(823\) 28.1188i 0.980160i −0.871677 0.490080i \(-0.836967\pi\)
0.871677 0.490080i \(-0.163033\pi\)
\(824\) −2.67588 3.93694i −0.0932189 0.137150i
\(825\) 0 0
\(826\) −25.6897 + 5.18047i −0.893858 + 0.180252i
\(827\) 9.58345 0.333249 0.166625 0.986020i \(-0.446713\pi\)
0.166625 + 0.986020i \(0.446713\pi\)
\(828\) 0 0
\(829\) −16.3484 −0.567803 −0.283902 0.958853i \(-0.591629\pi\)
−0.283902 + 0.958853i \(0.591629\pi\)
\(830\) −5.37375 + 1.08365i −0.186526 + 0.0376140i
\(831\) 0 0
\(832\) 7.26248 18.3493i 0.251781 0.636148i
\(833\) 5.34848i 0.185314i
\(834\) 0 0
\(835\) −5.65155 −0.195580
\(836\) −27.7318 + 11.6587i −0.959124 + 0.403223i
\(837\) 0 0
\(838\) 4.01057 + 19.8882i 0.138543 + 0.687026i
\(839\) 46.3381 1.59977 0.799884 0.600155i \(-0.204894\pi\)
0.799884 + 0.600155i \(0.204894\pi\)
\(840\) 0 0
\(841\) 0.714489 0.0246376
\(842\) −47.1644 + 9.51098i −1.62539 + 0.327770i
\(843\) 0 0
\(844\) 1.97223 + 4.69123i 0.0678869 + 0.161479i
\(845\) 8.82129i 0.303461i
\(846\) 0 0
\(847\) −59.9614 −2.06030
\(848\) 5.95628 + 5.83189i 0.204539 + 0.200268i
\(849\) 0 0
\(850\) 31.5202 6.35623i 1.08113 0.218017i
\(851\) 3.16766 23.4297i 0.108586 0.803161i
\(852\) 0 0
\(853\) −22.0557 −0.755173 −0.377587 0.925974i \(-0.623246\pi\)
−0.377587 + 0.925974i \(0.623246\pi\)
\(854\) −7.40488 + 1.49324i −0.253390 + 0.0510976i
\(855\) 0 0
\(856\) 22.9307 + 33.7371i 0.783754 + 1.15311i
\(857\) −44.6464 −1.52509 −0.762546 0.646935i \(-0.776051\pi\)
−0.762546 + 0.646935i \(0.776051\pi\)
\(858\) 0 0
\(859\) 28.3561i 0.967496i 0.875207 + 0.483748i \(0.160725\pi\)
−0.875207 + 0.483748i \(0.839275\pi\)
\(860\) 9.99857 + 23.7830i 0.340948 + 0.810994i
\(861\) 0 0
\(862\) −6.76225 33.5336i −0.230323 1.14216i
\(863\) 48.0292i 1.63493i −0.575975 0.817467i \(-0.695377\pi\)
0.575975 0.817467i \(-0.304623\pi\)
\(864\) 0 0
\(865\) 6.75912i 0.229817i
\(866\) 36.5414 7.36879i 1.24173 0.250402i
\(867\) 0 0
\(868\) 5.83962 + 13.8904i 0.198209 + 0.471469i
\(869\) −21.6397 −0.734075
\(870\) 0 0
\(871\) 9.78445 0.331534
\(872\) −26.5247 + 18.0285i −0.898239 + 0.610521i
\(873\) 0 0
\(874\) 1.11216 + 17.1911i 0.0376195 + 0.581498i
\(875\) 26.6092i 0.899554i
\(876\) 0 0
\(877\) −36.8661 −1.24488 −0.622440 0.782668i \(-0.713858\pi\)
−0.622440 + 0.782668i \(0.713858\pi\)
\(878\) −4.66042 + 0.939801i −0.157281 + 0.0317167i
\(879\) 0 0
\(880\) −21.5912 21.1403i −0.727839 0.712639i
\(881\) 39.9739i 1.34675i −0.739299 0.673377i \(-0.764843\pi\)
0.739299 0.673377i \(-0.235157\pi\)
\(882\) 0 0
\(883\) 27.9445i 0.940406i 0.882558 + 0.470203i \(0.155819\pi\)
−0.882558 + 0.470203i \(0.844181\pi\)
\(884\) −12.8899 30.6604i −0.433533 1.03122i
\(885\) 0 0
\(886\) −33.6823 + 6.79223i −1.13158 + 0.228190i
\(887\) 20.8547i 0.700233i 0.936706 + 0.350117i \(0.113858\pi\)
−0.936706 + 0.350117i \(0.886142\pi\)
\(888\) 0 0
\(889\) 1.38504i 0.0464526i
\(890\) −2.07310 10.2804i −0.0694905 0.344599i
\(891\) 0 0
\(892\) −6.39819 15.2190i −0.214227 0.509570i
\(893\) 25.2366i 0.844509i
\(894\) 0 0
\(895\) −8.13594 −0.271955
\(896\) 27.7412 + 4.98746i 0.926769 + 0.166619i
\(897\) 0 0
\(898\) 0.831483 + 4.12327i 0.0277469 + 0.137595i
\(899\) 16.4847i 0.549794i
\(900\) 0 0
\(901\) 14.0492 0.468048
\(902\) 15.3405 + 76.0727i 0.510783 + 2.53294i
\(903\) 0 0
\(904\) −42.0292 + 28.5667i −1.39787 + 0.950114i
\(905\) −26.5904 −0.883896
\(906\) 0 0
\(907\) −12.8699 −0.427337 −0.213669 0.976906i \(-0.568541\pi\)
−0.213669 + 0.976906i \(0.568541\pi\)
\(908\) −20.1045 + 8.45210i −0.667192 + 0.280493i
\(909\) 0 0
\(910\) 10.8682 2.19164i 0.360278 0.0726522i
\(911\) −12.5529 −0.415896 −0.207948 0.978140i \(-0.566678\pi\)
−0.207948 + 0.978140i \(0.566678\pi\)
\(912\) 0 0
\(913\) −17.9943 −0.595524
\(914\) −42.9509 + 8.66131i −1.42069 + 0.286491i
\(915\) 0 0
\(916\) 11.0992 + 26.4009i 0.366727 + 0.872311i
\(917\) 1.47948i 0.0488567i
\(918\) 0 0
\(919\) 25.9215 0.855070 0.427535 0.903999i \(-0.359382\pi\)
0.427535 + 0.903999i \(0.359382\pi\)
\(920\) −15.4855 + 7.72208i −0.510543 + 0.254590i
\(921\) 0 0
\(922\) −11.9048 59.0352i −0.392064 1.94422i
\(923\) 29.8840i 0.983643i
\(924\) 0 0
\(925\) 16.6268i 0.546685i
\(926\) 39.1204 7.88887i 1.28558 0.259244i
\(927\) 0 0
\(928\) −25.8630 16.7920i −0.848994 0.551223i
\(929\) 40.8765 1.34111 0.670557 0.741858i \(-0.266055\pi\)
0.670557 + 0.741858i \(0.266055\pi\)
\(930\) 0 0
\(931\) −2.01514 −0.0660435
\(932\) 19.4640 8.18281i 0.637564 0.268037i
\(933\) 0 0
\(934\) 4.73111 + 23.4613i 0.154807 + 0.767676i
\(935\) −50.9278 −1.66552
\(936\) 0 0
\(937\) 14.6250i 0.477778i 0.971047 + 0.238889i \(0.0767832\pi\)
−0.971047 + 0.238889i \(0.923217\pi\)
\(938\) 2.76252 + 13.6992i 0.0901993 + 0.447293i
\(939\) 0 0
\(940\) 23.3683 9.82423i 0.762191 0.320431i
\(941\) 6.12552i 0.199686i −0.995003 0.0998431i \(-0.968166\pi\)
0.995003 0.0998431i \(-0.0318341\pi\)
\(942\) 0 0
\(943\) 44.0396 + 5.95407i 1.43413 + 0.193891i
\(944\) −21.2594 20.8154i −0.691933 0.677484i
\(945\) 0 0
\(946\) 16.7404 + 83.0145i 0.544276 + 2.69903i
\(947\) 6.15274i 0.199937i −0.994991 0.0999686i \(-0.968126\pi\)
0.994991 0.0999686i \(-0.0318742\pi\)
\(948\) 0 0
\(949\) 10.9780 0.356361
\(950\) 2.39483 + 11.8758i 0.0776984 + 0.385302i
\(951\) 0 0
\(952\) 39.2881 26.7036i 1.27333 0.865468i
\(953\) 10.5440i 0.341552i 0.985310 + 0.170776i \(0.0546275\pi\)
−0.985310 + 0.170776i \(0.945373\pi\)
\(954\) 0 0
\(955\) 0.153181i 0.00495682i
\(956\) −3.75450 8.93061i −0.121429 0.288837i
\(957\) 0 0
\(958\) −7.20253 35.7169i −0.232703 1.15396i
\(959\) 30.3344i 0.979549i
\(960\) 0 0
\(961\) 21.8548 0.704994
\(962\) −16.8588 + 3.39968i −0.543550 + 0.109610i
\(963\) 0 0
\(964\) −17.0692 40.6015i −0.549761 1.30769i
\(965\) 7.64665i 0.246154i
\(966\) 0 0
\(967\) 13.7270i 0.441430i −0.975338 0.220715i \(-0.929161\pi\)
0.975338 0.220715i \(-0.0708391\pi\)
\(968\) −38.2673 56.3014i −1.22996 1.80960i
\(969\) 0 0
\(970\) 1.61286 + 7.99805i 0.0517857 + 0.256802i
\(971\) 4.43428 0.142303 0.0711514 0.997466i \(-0.477333\pi\)
0.0711514 + 0.997466i \(0.477333\pi\)
\(972\) 0 0
\(973\) 31.3475i 1.00495i
\(974\) −29.5178 + 5.95244i −0.945811 + 0.190728i
\(975\) 0 0
\(976\) −6.12787 5.99991i −0.196148 0.192052i
\(977\) 7.21336i 0.230776i 0.993321 + 0.115388i \(0.0368111\pi\)
−0.993321 + 0.115388i \(0.963189\pi\)
\(978\) 0 0
\(979\) 34.4244i 1.10021i
\(980\) −0.784464 1.86596i −0.0250588 0.0596059i
\(981\) 0 0
\(982\) 10.4576 2.10884i 0.333716 0.0672959i
\(983\) 51.7339 1.65006 0.825028 0.565092i \(-0.191159\pi\)
0.825028 + 0.565092i \(0.191159\pi\)
\(984\) 0 0
\(985\) 15.8416i 0.504756i
\(986\) −50.9450 + 10.2734i −1.62242 + 0.327170i
\(987\) 0 0
\(988\) 11.5519 4.85649i 0.367514 0.154506i
\(989\) 48.0583 + 6.49739i 1.52816 + 0.206605i
\(990\) 0 0
\(991\) 5.11827i 0.162587i 0.996690 + 0.0812936i \(0.0259051\pi\)
−0.996690 + 0.0812936i \(0.974095\pi\)
\(992\) −9.31566 + 14.3480i −0.295772 + 0.455548i
\(993\) 0 0
\(994\) 41.8403 8.43735i 1.32709 0.267617i
\(995\) 12.2021i 0.386833i
\(996\) 0 0
\(997\) 30.9514 0.980242 0.490121 0.871654i \(-0.336953\pi\)
0.490121 + 0.871654i \(0.336953\pi\)
\(998\) 25.6404 5.17053i 0.811632 0.163670i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 828.2.e.f.91.15 24
3.2 odd 2 276.2.e.a.91.10 yes 24
4.3 odd 2 inner 828.2.e.f.91.13 24
12.11 even 2 276.2.e.a.91.12 yes 24
23.22 odd 2 inner 828.2.e.f.91.16 24
24.5 odd 2 4416.2.i.d.1471.9 24
24.11 even 2 4416.2.i.d.1471.12 24
69.68 even 2 276.2.e.a.91.9 24
92.91 even 2 inner 828.2.e.f.91.14 24
276.275 odd 2 276.2.e.a.91.11 yes 24
552.275 odd 2 4416.2.i.d.1471.11 24
552.413 even 2 4416.2.i.d.1471.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
276.2.e.a.91.9 24 69.68 even 2
276.2.e.a.91.10 yes 24 3.2 odd 2
276.2.e.a.91.11 yes 24 276.275 odd 2
276.2.e.a.91.12 yes 24 12.11 even 2
828.2.e.f.91.13 24 4.3 odd 2 inner
828.2.e.f.91.14 24 92.91 even 2 inner
828.2.e.f.91.15 24 1.1 even 1 trivial
828.2.e.f.91.16 24 23.22 odd 2 inner
4416.2.i.d.1471.9 24 24.5 odd 2
4416.2.i.d.1471.10 24 552.413 even 2
4416.2.i.d.1471.11 24 552.275 odd 2
4416.2.i.d.1471.12 24 24.11 even 2