Properties

Label 828.2.e.f.91.10
Level $828$
Weight $2$
Character 828.91
Analytic conductor $6.612$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,2,Mod(91,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 828.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.61161328736\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 276)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.10
Character \(\chi\) \(=\) 828.91
Dual form 828.2.e.f.91.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.714279 - 1.22058i) q^{2} +(-0.979610 + 1.74366i) q^{4} +3.78153i q^{5} +1.02234 q^{7} +(2.82799 - 0.0497743i) q^{8} +(4.61564 - 2.70107i) q^{10} -4.16390 q^{11} +5.75925 q^{13} +(-0.730233 - 1.24784i) q^{14} +(-2.08073 - 3.41622i) q^{16} +2.80681i q^{17} -4.00376 q^{19} +(-6.59371 - 3.70442i) q^{20} +(2.97419 + 5.08236i) q^{22} +(4.42742 - 1.84336i) q^{23} -9.29995 q^{25} +(-4.11371 - 7.02960i) q^{26} +(-1.00149 + 1.78261i) q^{28} -0.341603 q^{29} +5.39782i q^{31} +(-2.68354 + 4.97982i) q^{32} +(3.42593 - 2.00485i) q^{34} +3.86599i q^{35} +10.6917i q^{37} +(2.85981 + 4.88690i) q^{38} +(0.188223 + 10.6941i) q^{40} -8.31977 q^{41} -8.92015 q^{43} +(4.07900 - 7.26045i) q^{44} +(-5.41237 - 4.08732i) q^{46} +2.69990i q^{47} -5.95483 q^{49} +(6.64276 + 11.3513i) q^{50} +(-5.64182 + 10.0422i) q^{52} +0.814576i q^{53} -15.7459i q^{55} +(2.89115 - 0.0508860i) q^{56} +(0.244000 + 0.416952i) q^{58} -2.67041i q^{59} +7.77081i q^{61} +(6.58844 - 3.85555i) q^{62} +(7.99505 - 0.281522i) q^{64} +21.7787i q^{65} +14.8080 q^{67} +(-4.89414 - 2.74958i) q^{68} +(4.71873 - 2.76140i) q^{70} -2.36679i q^{71} +5.19128 q^{73} +(13.0501 - 7.63689i) q^{74} +(3.92213 - 6.98122i) q^{76} -4.25691 q^{77} -6.91022 q^{79} +(12.9185 - 7.86833i) q^{80} +(5.94264 + 10.1549i) q^{82} +1.12198 q^{83} -10.6140 q^{85} +(6.37147 + 10.8877i) q^{86} +(-11.7755 + 0.207255i) q^{88} -9.76786i q^{89} +5.88788 q^{91} +(-1.12294 + 9.52570i) q^{92} +(3.29543 - 1.92848i) q^{94} -15.1403i q^{95} -10.8995i q^{97} +(4.25341 + 7.26832i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{2} - 4 q^{8} + 8 q^{16} - 24 q^{25} - 40 q^{26} + 32 q^{29} + 36 q^{32} - 16 q^{41} + 40 q^{49} + 12 q^{50} - 40 q^{52} + 24 q^{58} + 40 q^{62} + 48 q^{64} + 72 q^{70} - 16 q^{77} - 40 q^{82}+ \cdots + 52 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.714279 1.22058i −0.505072 0.863077i
\(3\) 0 0
\(4\) −0.979610 + 1.74366i −0.489805 + 0.871832i
\(5\) 3.78153i 1.69115i 0.533856 + 0.845575i \(0.320742\pi\)
−0.533856 + 0.845575i \(0.679258\pi\)
\(6\) 0 0
\(7\) 1.02234 0.386407 0.193203 0.981159i \(-0.438112\pi\)
0.193203 + 0.981159i \(0.438112\pi\)
\(8\) 2.82799 0.0497743i 0.999845 0.0175979i
\(9\) 0 0
\(10\) 4.61564 2.70107i 1.45959 0.854152i
\(11\) −4.16390 −1.25546 −0.627732 0.778430i \(-0.716017\pi\)
−0.627732 + 0.778430i \(0.716017\pi\)
\(12\) 0 0
\(13\) 5.75925 1.59733 0.798664 0.601778i \(-0.205541\pi\)
0.798664 + 0.601778i \(0.205541\pi\)
\(14\) −0.730233 1.24784i −0.195163 0.333499i
\(15\) 0 0
\(16\) −2.08073 3.41622i −0.520182 0.854056i
\(17\) 2.80681i 0.680752i 0.940289 + 0.340376i \(0.110554\pi\)
−0.940289 + 0.340376i \(0.889446\pi\)
\(18\) 0 0
\(19\) −4.00376 −0.918527 −0.459263 0.888300i \(-0.651887\pi\)
−0.459263 + 0.888300i \(0.651887\pi\)
\(20\) −6.59371 3.70442i −1.47440 0.828334i
\(21\) 0 0
\(22\) 2.97419 + 5.08236i 0.634099 + 1.08356i
\(23\) 4.42742 1.84336i 0.923180 0.384367i
\(24\) 0 0
\(25\) −9.29995 −1.85999
\(26\) −4.11371 7.02960i −0.806765 1.37862i
\(27\) 0 0
\(28\) −1.00149 + 1.78261i −0.189264 + 0.336882i
\(29\) −0.341603 −0.0634341 −0.0317170 0.999497i \(-0.510098\pi\)
−0.0317170 + 0.999497i \(0.510098\pi\)
\(30\) 0 0
\(31\) 5.39782i 0.969477i 0.874659 + 0.484738i \(0.161085\pi\)
−0.874659 + 0.484738i \(0.838915\pi\)
\(32\) −2.68354 + 4.97982i −0.474387 + 0.880316i
\(33\) 0 0
\(34\) 3.42593 2.00485i 0.587542 0.343829i
\(35\) 3.86599i 0.653472i
\(36\) 0 0
\(37\) 10.6917i 1.75771i 0.477087 + 0.878856i \(0.341693\pi\)
−0.477087 + 0.878856i \(0.658307\pi\)
\(38\) 2.85981 + 4.88690i 0.463922 + 0.792759i
\(39\) 0 0
\(40\) 0.188223 + 10.6941i 0.0297606 + 1.69089i
\(41\) −8.31977 −1.29933 −0.649665 0.760221i \(-0.725091\pi\)
−0.649665 + 0.760221i \(0.725091\pi\)
\(42\) 0 0
\(43\) −8.92015 −1.36031 −0.680155 0.733069i \(-0.738087\pi\)
−0.680155 + 0.733069i \(0.738087\pi\)
\(44\) 4.07900 7.26045i 0.614933 1.09455i
\(45\) 0 0
\(46\) −5.41237 4.08732i −0.798011 0.602643i
\(47\) 2.69990i 0.393820i 0.980422 + 0.196910i \(0.0630907\pi\)
−0.980422 + 0.196910i \(0.936909\pi\)
\(48\) 0 0
\(49\) −5.95483 −0.850690
\(50\) 6.64276 + 11.3513i 0.939428 + 1.60531i
\(51\) 0 0
\(52\) −5.64182 + 10.0422i −0.782379 + 1.39260i
\(53\) 0.814576i 0.111891i 0.998434 + 0.0559453i \(0.0178173\pi\)
−0.998434 + 0.0559453i \(0.982183\pi\)
\(54\) 0 0
\(55\) 15.7459i 2.12318i
\(56\) 2.89115 0.0508860i 0.386347 0.00679993i
\(57\) 0 0
\(58\) 0.244000 + 0.416952i 0.0320388 + 0.0547485i
\(59\) 2.67041i 0.347657i −0.984776 0.173829i \(-0.944386\pi\)
0.984776 0.173829i \(-0.0556139\pi\)
\(60\) 0 0
\(61\) 7.77081i 0.994951i 0.867478 + 0.497475i \(0.165740\pi\)
−0.867478 + 0.497475i \(0.834260\pi\)
\(62\) 6.58844 3.85555i 0.836733 0.489655i
\(63\) 0 0
\(64\) 7.99505 0.281522i 0.999381 0.0351903i
\(65\) 21.7787i 2.70132i
\(66\) 0 0
\(67\) 14.8080 1.80909 0.904544 0.426380i \(-0.140211\pi\)
0.904544 + 0.426380i \(0.140211\pi\)
\(68\) −4.89414 2.74958i −0.593501 0.333436i
\(69\) 0 0
\(70\) 4.71873 2.76140i 0.563997 0.330050i
\(71\) 2.36679i 0.280886i −0.990089 0.140443i \(-0.955147\pi\)
0.990089 0.140443i \(-0.0448527\pi\)
\(72\) 0 0
\(73\) 5.19128 0.607594 0.303797 0.952737i \(-0.401746\pi\)
0.303797 + 0.952737i \(0.401746\pi\)
\(74\) 13.0501 7.63689i 1.51704 0.887771i
\(75\) 0 0
\(76\) 3.92213 6.98122i 0.449899 0.800801i
\(77\) −4.25691 −0.485120
\(78\) 0 0
\(79\) −6.91022 −0.777460 −0.388730 0.921352i \(-0.627086\pi\)
−0.388730 + 0.921352i \(0.627086\pi\)
\(80\) 12.9185 7.86833i 1.44434 0.879706i
\(81\) 0 0
\(82\) 5.94264 + 10.1549i 0.656255 + 1.12142i
\(83\) 1.12198 0.123153 0.0615766 0.998102i \(-0.480387\pi\)
0.0615766 + 0.998102i \(0.480387\pi\)
\(84\) 0 0
\(85\) −10.6140 −1.15125
\(86\) 6.37147 + 10.8877i 0.687054 + 1.17405i
\(87\) 0 0
\(88\) −11.7755 + 0.207255i −1.25527 + 0.0220935i
\(89\) 9.76786i 1.03539i −0.855565 0.517696i \(-0.826790\pi\)
0.855565 0.517696i \(-0.173210\pi\)
\(90\) 0 0
\(91\) 5.88788 0.617218
\(92\) −1.12294 + 9.52570i −0.117075 + 0.993123i
\(93\) 0 0
\(94\) 3.29543 1.92848i 0.339897 0.198907i
\(95\) 15.1403i 1.55337i
\(96\) 0 0
\(97\) 10.8995i 1.10668i −0.832956 0.553339i \(-0.813354\pi\)
0.832956 0.553339i \(-0.186646\pi\)
\(98\) 4.25341 + 7.26832i 0.429659 + 0.734211i
\(99\) 0 0
\(100\) 9.11032 16.2160i 0.911032 1.62160i
\(101\) 7.92158 0.788226 0.394113 0.919062i \(-0.371052\pi\)
0.394113 + 0.919062i \(0.371052\pi\)
\(102\) 0 0
\(103\) 3.57377 0.352134 0.176067 0.984378i \(-0.443663\pi\)
0.176067 + 0.984378i \(0.443663\pi\)
\(104\) 16.2871 0.286662i 1.59708 0.0281095i
\(105\) 0 0
\(106\) 0.994252 0.581835i 0.0965703 0.0565128i
\(107\) −3.49439 −0.337816 −0.168908 0.985632i \(-0.554024\pi\)
−0.168908 + 0.985632i \(0.554024\pi\)
\(108\) 0 0
\(109\) 2.15719i 0.206621i −0.994649 0.103311i \(-0.967056\pi\)
0.994649 0.103311i \(-0.0329436\pi\)
\(110\) −19.2191 + 11.2470i −1.83247 + 1.07236i
\(111\) 0 0
\(112\) −2.12720 3.49253i −0.201002 0.330013i
\(113\) 0.687167i 0.0646433i 0.999478 + 0.0323216i \(0.0102901\pi\)
−0.999478 + 0.0323216i \(0.989710\pi\)
\(114\) 0 0
\(115\) 6.97072 + 16.7424i 0.650023 + 1.56124i
\(116\) 0.334638 0.595641i 0.0310703 0.0553039i
\(117\) 0 0
\(118\) −3.25943 + 1.90742i −0.300055 + 0.175592i
\(119\) 2.86950i 0.263047i
\(120\) 0 0
\(121\) 6.33809 0.576190
\(122\) 9.48487 5.55053i 0.858719 0.502521i
\(123\) 0 0
\(124\) −9.41198 5.28776i −0.845221 0.474855i
\(125\) 16.2604i 1.45437i
\(126\) 0 0
\(127\) 4.32407i 0.383700i 0.981424 + 0.191850i \(0.0614486\pi\)
−0.981424 + 0.191850i \(0.938551\pi\)
\(128\) −6.05431 9.55747i −0.535131 0.844769i
\(129\) 0 0
\(130\) 26.5826 15.5561i 2.33145 1.36436i
\(131\) 10.2833i 0.898452i 0.893418 + 0.449226i \(0.148300\pi\)
−0.893418 + 0.449226i \(0.851700\pi\)
\(132\) 0 0
\(133\) −4.09319 −0.354925
\(134\) −10.5771 18.0743i −0.913719 1.56138i
\(135\) 0 0
\(136\) 0.139707 + 7.93763i 0.0119798 + 0.680646i
\(137\) 7.32794i 0.626068i 0.949742 + 0.313034i \(0.101345\pi\)
−0.949742 + 0.313034i \(0.898655\pi\)
\(138\) 0 0
\(139\) 0.706954i 0.0599631i 0.999550 + 0.0299815i \(0.00954485\pi\)
−0.999550 + 0.0299815i \(0.990455\pi\)
\(140\) −6.74099 3.78716i −0.569717 0.320074i
\(141\) 0 0
\(142\) −2.88885 + 1.69055i −0.242427 + 0.141868i
\(143\) −23.9809 −2.00539
\(144\) 0 0
\(145\) 1.29178i 0.107277i
\(146\) −3.70802 6.33635i −0.306878 0.524400i
\(147\) 0 0
\(148\) −18.6428 10.4737i −1.53243 0.860937i
\(149\) 0.382789i 0.0313593i 0.999877 + 0.0156797i \(0.00499120\pi\)
−0.999877 + 0.0156797i \(0.995009\pi\)
\(150\) 0 0
\(151\) 6.34904i 0.516678i −0.966054 0.258339i \(-0.916825\pi\)
0.966054 0.258339i \(-0.0831751\pi\)
\(152\) −11.3226 + 0.199284i −0.918384 + 0.0161641i
\(153\) 0 0
\(154\) 3.04062 + 5.19588i 0.245020 + 0.418696i
\(155\) −20.4120 −1.63953
\(156\) 0 0
\(157\) 14.4032i 1.14950i 0.818329 + 0.574749i \(0.194901\pi\)
−0.818329 + 0.574749i \(0.805099\pi\)
\(158\) 4.93583 + 8.43445i 0.392673 + 0.671009i
\(159\) 0 0
\(160\) −18.8313 10.1479i −1.48875 0.802260i
\(161\) 4.52631 1.88453i 0.356723 0.148522i
\(162\) 0 0
\(163\) 13.7153i 1.07426i 0.843499 + 0.537131i \(0.180492\pi\)
−0.843499 + 0.537131i \(0.819508\pi\)
\(164\) 8.15013 14.5069i 0.636419 1.13280i
\(165\) 0 0
\(166\) −0.801407 1.36946i −0.0622012 0.106291i
\(167\) 13.6811i 1.05867i −0.848412 0.529337i \(-0.822441\pi\)
0.848412 0.529337i \(-0.177559\pi\)
\(168\) 0 0
\(169\) 20.1689 1.55145
\(170\) 7.58138 + 12.9552i 0.581466 + 0.993621i
\(171\) 0 0
\(172\) 8.73827 15.5537i 0.666287 1.18596i
\(173\) 3.49528 0.265741 0.132871 0.991133i \(-0.457581\pi\)
0.132871 + 0.991133i \(0.457581\pi\)
\(174\) 0 0
\(175\) −9.50767 −0.718712
\(176\) 8.66395 + 14.2248i 0.653070 + 1.07224i
\(177\) 0 0
\(178\) −11.9224 + 6.97698i −0.893623 + 0.522947i
\(179\) 26.0258i 1.94526i 0.232363 + 0.972629i \(0.425354\pi\)
−0.232363 + 0.972629i \(0.574646\pi\)
\(180\) 0 0
\(181\) 6.69764i 0.497832i 0.968525 + 0.248916i \(0.0800743\pi\)
−0.968525 + 0.248916i \(0.919926\pi\)
\(182\) −4.20559 7.18661i −0.311739 0.532707i
\(183\) 0 0
\(184\) 12.4289 5.43337i 0.916273 0.400554i
\(185\) −40.4311 −2.97256
\(186\) 0 0
\(187\) 11.6873i 0.854659i
\(188\) −4.70771 2.64485i −0.343345 0.192895i
\(189\) 0 0
\(190\) −18.4799 + 10.8144i −1.34068 + 0.784561i
\(191\) 17.1708 1.24243 0.621217 0.783639i \(-0.286639\pi\)
0.621217 + 0.783639i \(0.286639\pi\)
\(192\) 0 0
\(193\) 8.99448 0.647437 0.323718 0.946153i \(-0.395067\pi\)
0.323718 + 0.946153i \(0.395067\pi\)
\(194\) −13.3037 + 7.78529i −0.955148 + 0.558951i
\(195\) 0 0
\(196\) 5.83341 10.3832i 0.416672 0.741659i
\(197\) 15.7039 1.11886 0.559429 0.828878i \(-0.311020\pi\)
0.559429 + 0.828878i \(0.311020\pi\)
\(198\) 0 0
\(199\) −17.4402 −1.23630 −0.618152 0.786058i \(-0.712119\pi\)
−0.618152 + 0.786058i \(0.712119\pi\)
\(200\) −26.3001 + 0.462898i −1.85970 + 0.0327318i
\(201\) 0 0
\(202\) −5.65822 9.66889i −0.398111 0.680300i
\(203\) −0.349233 −0.0245113
\(204\) 0 0
\(205\) 31.4614i 2.19736i
\(206\) −2.55267 4.36205i −0.177853 0.303919i
\(207\) 0 0
\(208\) −11.9834 19.6749i −0.830901 1.36421i
\(209\) 16.6713 1.15318
\(210\) 0 0
\(211\) 2.65058i 0.182474i −0.995829 0.0912368i \(-0.970918\pi\)
0.995829 0.0912368i \(-0.0290820\pi\)
\(212\) −1.42035 0.797967i −0.0975498 0.0548046i
\(213\) 0 0
\(214\) 2.49597 + 4.26517i 0.170621 + 0.291561i
\(215\) 33.7318i 2.30049i
\(216\) 0 0
\(217\) 5.51838i 0.374612i
\(218\) −2.63301 + 1.54084i −0.178330 + 0.104359i
\(219\) 0 0
\(220\) 27.4556 + 15.4249i 1.85105 + 1.03994i
\(221\) 16.1651i 1.08738i
\(222\) 0 0
\(223\) 24.2438i 1.62349i −0.584014 0.811743i \(-0.698519\pi\)
0.584014 0.811743i \(-0.301481\pi\)
\(224\) −2.74348 + 5.09105i −0.183306 + 0.340160i
\(225\) 0 0
\(226\) 0.838740 0.490829i 0.0557921 0.0326495i
\(227\) −6.20857 −0.412078 −0.206039 0.978544i \(-0.566057\pi\)
−0.206039 + 0.978544i \(0.566057\pi\)
\(228\) 0 0
\(229\) 11.1620i 0.737604i −0.929508 0.368802i \(-0.879768\pi\)
0.929508 0.368802i \(-0.120232\pi\)
\(230\) 15.4563 20.4670i 1.01916 1.34956i
\(231\) 0 0
\(232\) −0.966049 + 0.0170030i −0.0634243 + 0.00111630i
\(233\) 23.6813 1.55141 0.775707 0.631094i \(-0.217394\pi\)
0.775707 + 0.631094i \(0.217394\pi\)
\(234\) 0 0
\(235\) −10.2097 −0.666009
\(236\) 4.65629 + 2.61596i 0.303099 + 0.170284i
\(237\) 0 0
\(238\) 3.50245 2.04963i 0.227030 0.132858i
\(239\) 5.75021i 0.371950i 0.982554 + 0.185975i \(0.0595444\pi\)
−0.982554 + 0.185975i \(0.940456\pi\)
\(240\) 0 0
\(241\) 12.3285i 0.794151i −0.917786 0.397076i \(-0.870025\pi\)
0.917786 0.397076i \(-0.129975\pi\)
\(242\) −4.52717 7.73612i −0.291017 0.497296i
\(243\) 0 0
\(244\) −13.5497 7.61237i −0.867430 0.487332i
\(245\) 22.5183i 1.43864i
\(246\) 0 0
\(247\) −23.0587 −1.46719
\(248\) 0.268672 + 15.2650i 0.0170607 + 0.969326i
\(249\) 0 0
\(250\) −19.8470 + 11.6144i −1.25523 + 0.734562i
\(251\) 21.0263 1.32717 0.663583 0.748103i \(-0.269035\pi\)
0.663583 + 0.748103i \(0.269035\pi\)
\(252\) 0 0
\(253\) −18.4353 + 7.67557i −1.15902 + 0.482559i
\(254\) 5.27786 3.08860i 0.331162 0.193796i
\(255\) 0 0
\(256\) −7.34115 + 14.2165i −0.458822 + 0.888528i
\(257\) 19.1154 1.19239 0.596193 0.802841i \(-0.296679\pi\)
0.596193 + 0.802841i \(0.296679\pi\)
\(258\) 0 0
\(259\) 10.9306i 0.679192i
\(260\) −37.9748 21.3347i −2.35510 1.32312i
\(261\) 0 0
\(262\) 12.5515 7.34512i 0.775434 0.453783i
\(263\) −4.96561 −0.306192 −0.153096 0.988211i \(-0.548924\pi\)
−0.153096 + 0.988211i \(0.548924\pi\)
\(264\) 0 0
\(265\) −3.08034 −0.189224
\(266\) 2.92368 + 4.99605i 0.179262 + 0.306328i
\(267\) 0 0
\(268\) −14.5061 + 25.8202i −0.886101 + 1.57722i
\(269\) −9.04263 −0.551339 −0.275669 0.961252i \(-0.588900\pi\)
−0.275669 + 0.961252i \(0.588900\pi\)
\(270\) 0 0
\(271\) 6.06709i 0.368550i 0.982875 + 0.184275i \(0.0589936\pi\)
−0.982875 + 0.184275i \(0.941006\pi\)
\(272\) 9.58869 5.84021i 0.581400 0.354115i
\(273\) 0 0
\(274\) 8.94431 5.23420i 0.540345 0.316209i
\(275\) 38.7241 2.33515
\(276\) 0 0
\(277\) 31.4785 1.89136 0.945681 0.325097i \(-0.105397\pi\)
0.945681 + 0.325097i \(0.105397\pi\)
\(278\) 0.862891 0.504963i 0.0517528 0.0302856i
\(279\) 0 0
\(280\) 0.192427 + 10.9330i 0.0114997 + 0.653371i
\(281\) 3.23860i 0.193199i −0.995323 0.0965993i \(-0.969203\pi\)
0.995323 0.0965993i \(-0.0307965\pi\)
\(282\) 0 0
\(283\) 23.0191 1.36834 0.684172 0.729321i \(-0.260164\pi\)
0.684172 + 0.729321i \(0.260164\pi\)
\(284\) 4.12688 + 2.31853i 0.244886 + 0.137580i
\(285\) 0 0
\(286\) 17.1291 + 29.2706i 1.01286 + 1.73080i
\(287\) −8.50560 −0.502070
\(288\) 0 0
\(289\) 9.12181 0.536577
\(290\) −1.57672 + 0.922692i −0.0925880 + 0.0541824i
\(291\) 0 0
\(292\) −5.08543 + 9.05185i −0.297602 + 0.529719i
\(293\) 30.4767i 1.78047i −0.455506 0.890233i \(-0.650542\pi\)
0.455506 0.890233i \(-0.349458\pi\)
\(294\) 0 0
\(295\) 10.0982 0.587941
\(296\) 0.532174 + 30.2361i 0.0309320 + 1.75744i
\(297\) 0 0
\(298\) 0.467224 0.273419i 0.0270655 0.0158387i
\(299\) 25.4986 10.6164i 1.47462 0.613960i
\(300\) 0 0
\(301\) −9.11938 −0.525633
\(302\) −7.74949 + 4.53499i −0.445933 + 0.260959i
\(303\) 0 0
\(304\) 8.33074 + 13.6777i 0.477801 + 0.784473i
\(305\) −29.3855 −1.68261
\(306\) 0 0
\(307\) 28.6158i 1.63319i −0.577211 0.816595i \(-0.695859\pi\)
0.577211 0.816595i \(-0.304141\pi\)
\(308\) 4.17011 7.42262i 0.237614 0.422943i
\(309\) 0 0
\(310\) 14.5799 + 24.9144i 0.828080 + 1.41504i
\(311\) 27.4154i 1.55458i 0.629141 + 0.777291i \(0.283407\pi\)
−0.629141 + 0.777291i \(0.716593\pi\)
\(312\) 0 0
\(313\) 9.19221i 0.519574i −0.965666 0.259787i \(-0.916348\pi\)
0.965666 0.259787i \(-0.0836524\pi\)
\(314\) 17.5802 10.2879i 0.992107 0.580579i
\(315\) 0 0
\(316\) 6.76932 12.0491i 0.380804 0.677815i
\(317\) −4.89112 −0.274713 −0.137356 0.990522i \(-0.543861\pi\)
−0.137356 + 0.990522i \(0.543861\pi\)
\(318\) 0 0
\(319\) 1.42240 0.0796392
\(320\) 1.06458 + 30.2335i 0.0595120 + 1.69010i
\(321\) 0 0
\(322\) −5.53326 4.17862i −0.308357 0.232865i
\(323\) 11.2378i 0.625289i
\(324\) 0 0
\(325\) −53.5607 −2.97101
\(326\) 16.7405 9.79653i 0.927171 0.542579i
\(327\) 0 0
\(328\) −23.5282 + 0.414111i −1.29913 + 0.0228654i
\(329\) 2.76020i 0.152175i
\(330\) 0 0
\(331\) 9.27238i 0.509656i 0.966986 + 0.254828i \(0.0820189\pi\)
−0.966986 + 0.254828i \(0.917981\pi\)
\(332\) −1.09910 + 1.95636i −0.0603211 + 0.107369i
\(333\) 0 0
\(334\) −16.6988 + 9.77211i −0.913717 + 0.534706i
\(335\) 55.9970i 3.05944i
\(336\) 0 0
\(337\) 31.9595i 1.74095i −0.492216 0.870473i \(-0.663813\pi\)
0.492216 0.870473i \(-0.336187\pi\)
\(338\) −14.4062 24.6177i −0.783596 1.33903i
\(339\) 0 0
\(340\) 10.3976 18.5073i 0.563890 1.00370i
\(341\) 22.4760i 1.21714i
\(342\) 0 0
\(343\) −13.2442 −0.715119
\(344\) −25.2261 + 0.443994i −1.36010 + 0.0239385i
\(345\) 0 0
\(346\) −2.49661 4.26625i −0.134218 0.229355i
\(347\) 17.4157i 0.934922i 0.884014 + 0.467461i \(0.154831\pi\)
−0.884014 + 0.467461i \(0.845169\pi\)
\(348\) 0 0
\(349\) 14.0294 0.750976 0.375488 0.926827i \(-0.377475\pi\)
0.375488 + 0.926827i \(0.377475\pi\)
\(350\) 6.79113 + 11.6048i 0.363001 + 0.620304i
\(351\) 0 0
\(352\) 11.1740 20.7355i 0.595576 1.10521i
\(353\) −10.5138 −0.559594 −0.279797 0.960059i \(-0.590267\pi\)
−0.279797 + 0.960059i \(0.590267\pi\)
\(354\) 0 0
\(355\) 8.95008 0.475021
\(356\) 17.0319 + 9.56870i 0.902687 + 0.507140i
\(357\) 0 0
\(358\) 31.7664 18.5897i 1.67891 0.982495i
\(359\) 26.7026 1.40931 0.704654 0.709551i \(-0.251102\pi\)
0.704654 + 0.709551i \(0.251102\pi\)
\(360\) 0 0
\(361\) −2.96987 −0.156309
\(362\) 8.17498 4.78399i 0.429668 0.251441i
\(363\) 0 0
\(364\) −5.76783 + 10.2665i −0.302317 + 0.538110i
\(365\) 19.6310i 1.02753i
\(366\) 0 0
\(367\) 22.7892 1.18959 0.594794 0.803878i \(-0.297234\pi\)
0.594794 + 0.803878i \(0.297234\pi\)
\(368\) −15.5096 11.2895i −0.808492 0.588507i
\(369\) 0 0
\(370\) 28.8791 + 49.3493i 1.50135 + 2.56555i
\(371\) 0.832771i 0.0432353i
\(372\) 0 0
\(373\) 29.4873i 1.52679i 0.645930 + 0.763397i \(0.276470\pi\)
−0.645930 + 0.763397i \(0.723530\pi\)
\(374\) −14.2652 + 8.34799i −0.737637 + 0.431664i
\(375\) 0 0
\(376\) 0.134385 + 7.63527i 0.00693039 + 0.393759i
\(377\) −1.96738 −0.101325
\(378\) 0 0
\(379\) −2.86951 −0.147397 −0.0736984 0.997281i \(-0.523480\pi\)
−0.0736984 + 0.997281i \(0.523480\pi\)
\(380\) 26.3997 + 14.8316i 1.35427 + 0.760847i
\(381\) 0 0
\(382\) −12.2647 20.9582i −0.627518 1.07232i
\(383\) −27.8917 −1.42520 −0.712599 0.701572i \(-0.752482\pi\)
−0.712599 + 0.701572i \(0.752482\pi\)
\(384\) 0 0
\(385\) 16.0976i 0.820410i
\(386\) −6.42457 10.9784i −0.327002 0.558788i
\(387\) 0 0
\(388\) 19.0051 + 10.6773i 0.964837 + 0.542056i
\(389\) 2.26388i 0.114783i −0.998352 0.0573917i \(-0.981722\pi\)
0.998352 0.0573917i \(-0.0182784\pi\)
\(390\) 0 0
\(391\) 5.17396 + 12.4269i 0.261659 + 0.628457i
\(392\) −16.8402 + 0.296397i −0.850558 + 0.0149703i
\(393\) 0 0
\(394\) −11.2170 19.1678i −0.565104 0.965662i
\(395\) 26.1312i 1.31480i
\(396\) 0 0
\(397\) 14.1054 0.707930 0.353965 0.935259i \(-0.384833\pi\)
0.353965 + 0.935259i \(0.384833\pi\)
\(398\) 12.4572 + 21.2871i 0.624423 + 1.06703i
\(399\) 0 0
\(400\) 19.3507 + 31.7707i 0.967533 + 1.58853i
\(401\) 27.7645i 1.38649i 0.720701 + 0.693246i \(0.243820\pi\)
−0.720701 + 0.693246i \(0.756180\pi\)
\(402\) 0 0
\(403\) 31.0874i 1.54857i
\(404\) −7.76006 + 13.8126i −0.386077 + 0.687201i
\(405\) 0 0
\(406\) 0.249450 + 0.426265i 0.0123800 + 0.0211552i
\(407\) 44.5194i 2.20674i
\(408\) 0 0
\(409\) −30.1790 −1.49225 −0.746127 0.665804i \(-0.768089\pi\)
−0.746127 + 0.665804i \(0.768089\pi\)
\(410\) −38.4011 + 22.4723i −1.89649 + 1.10983i
\(411\) 0 0
\(412\) −3.50090 + 6.23145i −0.172477 + 0.307001i
\(413\) 2.73005i 0.134337i
\(414\) 0 0
\(415\) 4.24280i 0.208271i
\(416\) −15.4552 + 28.6800i −0.757751 + 1.40615i
\(417\) 0 0
\(418\) −11.9080 20.3486i −0.582437 0.995281i
\(419\) 24.3639 1.19026 0.595128 0.803631i \(-0.297101\pi\)
0.595128 + 0.803631i \(0.297101\pi\)
\(420\) 0 0
\(421\) 20.0093i 0.975196i 0.873068 + 0.487598i \(0.162127\pi\)
−0.873068 + 0.487598i \(0.837873\pi\)
\(422\) −3.23524 + 1.89326i −0.157489 + 0.0921622i
\(423\) 0 0
\(424\) 0.0405449 + 2.30361i 0.00196904 + 0.111873i
\(425\) 26.1032i 1.26619i
\(426\) 0 0
\(427\) 7.94438i 0.384456i
\(428\) 3.42314 6.09305i 0.165464 0.294518i
\(429\) 0 0
\(430\) −41.1722 + 24.0939i −1.98550 + 1.16191i
\(431\) −11.9663 −0.576394 −0.288197 0.957571i \(-0.593056\pi\)
−0.288197 + 0.957571i \(0.593056\pi\)
\(432\) 0 0
\(433\) 8.07822i 0.388215i 0.980980 + 0.194107i \(0.0621810\pi\)
−0.980980 + 0.194107i \(0.937819\pi\)
\(434\) 6.73560 3.94167i 0.323319 0.189206i
\(435\) 0 0
\(436\) 3.76141 + 2.11321i 0.180139 + 0.101204i
\(437\) −17.7263 + 7.38038i −0.847966 + 0.353051i
\(438\) 0 0
\(439\) 21.9504i 1.04764i −0.851830 0.523818i \(-0.824507\pi\)
0.851830 0.523818i \(-0.175493\pi\)
\(440\) −0.783741 44.5293i −0.0373634 2.12285i
\(441\) 0 0
\(442\) 19.7308 11.5464i 0.938496 0.549207i
\(443\) 2.92531i 0.138986i 0.997582 + 0.0694928i \(0.0221381\pi\)
−0.997582 + 0.0694928i \(0.977862\pi\)
\(444\) 0 0
\(445\) 36.9374 1.75100
\(446\) −29.5914 + 17.3169i −1.40119 + 0.819977i
\(447\) 0 0
\(448\) 8.17362 0.287810i 0.386167 0.0135978i
\(449\) 31.0423 1.46498 0.732489 0.680779i \(-0.238359\pi\)
0.732489 + 0.680779i \(0.238359\pi\)
\(450\) 0 0
\(451\) 34.6427 1.63126
\(452\) −1.19819 0.673156i −0.0563581 0.0316626i
\(453\) 0 0
\(454\) 4.43466 + 7.57804i 0.208129 + 0.355655i
\(455\) 22.2652i 1.04381i
\(456\) 0 0
\(457\) 7.04266i 0.329442i −0.986340 0.164721i \(-0.947328\pi\)
0.986340 0.164721i \(-0.0526723\pi\)
\(458\) −13.6240 + 7.97276i −0.636609 + 0.372543i
\(459\) 0 0
\(460\) −36.0217 4.24644i −1.67952 0.197991i
\(461\) 4.88736 0.227627 0.113813 0.993502i \(-0.463693\pi\)
0.113813 + 0.993502i \(0.463693\pi\)
\(462\) 0 0
\(463\) 17.4728i 0.812032i 0.913866 + 0.406016i \(0.133082\pi\)
−0.913866 + 0.406016i \(0.866918\pi\)
\(464\) 0.710783 + 1.16699i 0.0329973 + 0.0541762i
\(465\) 0 0
\(466\) −16.9151 28.9048i −0.783575 1.33899i
\(467\) −21.6721 −1.00286 −0.501432 0.865197i \(-0.667193\pi\)
−0.501432 + 0.865197i \(0.667193\pi\)
\(468\) 0 0
\(469\) 15.1388 0.699044
\(470\) 7.29260 + 12.4617i 0.336382 + 0.574817i
\(471\) 0 0
\(472\) −0.132918 7.55188i −0.00611803 0.347604i
\(473\) 37.1426 1.70782
\(474\) 0 0
\(475\) 37.2348 1.70845
\(476\) −5.00345 2.81100i −0.229333 0.128842i
\(477\) 0 0
\(478\) 7.01857 4.10726i 0.321022 0.187862i
\(479\) 38.7920 1.77245 0.886226 0.463254i \(-0.153318\pi\)
0.886226 + 0.463254i \(0.153318\pi\)
\(480\) 0 0
\(481\) 61.5764i 2.80764i
\(482\) −15.0479 + 8.80602i −0.685414 + 0.401103i
\(483\) 0 0
\(484\) −6.20886 + 11.0515i −0.282221 + 0.502341i
\(485\) 41.2168 1.87156
\(486\) 0 0
\(487\) 29.5419i 1.33867i 0.742960 + 0.669336i \(0.233421\pi\)
−0.742960 + 0.669336i \(0.766579\pi\)
\(488\) 0.386787 + 21.9758i 0.0175090 + 0.994797i
\(489\) 0 0
\(490\) −27.4853 + 16.0844i −1.24166 + 0.726619i
\(491\) 15.6437i 0.705991i −0.935625 0.352996i \(-0.885163\pi\)
0.935625 0.352996i \(-0.114837\pi\)
\(492\) 0 0
\(493\) 0.958815i 0.0431829i
\(494\) 16.4703 + 28.1448i 0.741035 + 1.26630i
\(495\) 0 0
\(496\) 18.4401 11.2314i 0.827987 0.504304i
\(497\) 2.41965i 0.108536i
\(498\) 0 0
\(499\) 35.1984i 1.57570i −0.615868 0.787849i \(-0.711195\pi\)
0.615868 0.787849i \(-0.288805\pi\)
\(500\) 28.3526 + 15.9288i 1.26797 + 0.712358i
\(501\) 0 0
\(502\) −15.0186 25.6642i −0.670314 1.14545i
\(503\) −26.6899 −1.19004 −0.595022 0.803709i \(-0.702857\pi\)
−0.595022 + 0.803709i \(0.702857\pi\)
\(504\) 0 0
\(505\) 29.9557i 1.33301i
\(506\) 22.5366 + 17.0192i 1.00187 + 0.756597i
\(507\) 0 0
\(508\) −7.53973 4.23591i −0.334521 0.187938i
\(509\) 4.70015 0.208330 0.104165 0.994560i \(-0.466783\pi\)
0.104165 + 0.994560i \(0.466783\pi\)
\(510\) 0 0
\(511\) 5.30723 0.234778
\(512\) 22.5959 1.19409i 0.998607 0.0527718i
\(513\) 0 0
\(514\) −13.6537 23.3318i −0.602241 1.02912i
\(515\) 13.5143i 0.595511i
\(516\) 0 0
\(517\) 11.2421i 0.494427i
\(518\) 13.3416 7.80747i 0.586195 0.343041i
\(519\) 0 0
\(520\) 1.08402 + 61.5901i 0.0475375 + 2.70090i
\(521\) 1.58918i 0.0696231i −0.999394 0.0348116i \(-0.988917\pi\)
0.999394 0.0348116i \(-0.0110831\pi\)
\(522\) 0 0
\(523\) 2.47426 0.108192 0.0540959 0.998536i \(-0.482772\pi\)
0.0540959 + 0.998536i \(0.482772\pi\)
\(524\) −17.9305 10.0736i −0.783299 0.440067i
\(525\) 0 0
\(526\) 3.54683 + 6.06090i 0.154649 + 0.264268i
\(527\) −15.1507 −0.659973
\(528\) 0 0
\(529\) 16.2040 16.3226i 0.704524 0.709680i
\(530\) 2.20022 + 3.75979i 0.0955716 + 0.163315i
\(531\) 0 0
\(532\) 4.00973 7.13715i 0.173844 0.309435i
\(533\) −47.9156 −2.07546
\(534\) 0 0
\(535\) 13.2141i 0.571297i
\(536\) 41.8769 0.737059i 1.80881 0.0318361i
\(537\) 0 0
\(538\) 6.45896 + 11.0372i 0.278466 + 0.475848i
\(539\) 24.7953 1.06801
\(540\) 0 0
\(541\) 9.66457 0.415512 0.207756 0.978181i \(-0.433384\pi\)
0.207756 + 0.978181i \(0.433384\pi\)
\(542\) 7.40535 4.33360i 0.318087 0.186144i
\(543\) 0 0
\(544\) −13.9774 7.53219i −0.599277 0.322940i
\(545\) 8.15747 0.349428
\(546\) 0 0
\(547\) 10.7576i 0.459962i 0.973195 + 0.229981i \(0.0738664\pi\)
−0.973195 + 0.229981i \(0.926134\pi\)
\(548\) −12.7775 7.17853i −0.545826 0.306652i
\(549\) 0 0
\(550\) −27.6598 47.2657i −1.17942 2.01541i
\(551\) 1.36770 0.0582659
\(552\) 0 0
\(553\) −7.06457 −0.300416
\(554\) −22.4845 38.4219i −0.955273 1.63239i
\(555\) 0 0
\(556\) −1.23269 0.692539i −0.0522777 0.0293702i
\(557\) 19.7483i 0.836762i −0.908272 0.418381i \(-0.862598\pi\)
0.908272 0.418381i \(-0.137402\pi\)
\(558\) 0 0
\(559\) −51.3733 −2.17286
\(560\) 13.2071 8.04407i 0.558101 0.339924i
\(561\) 0 0
\(562\) −3.95296 + 2.31326i −0.166745 + 0.0975791i
\(563\) −13.5629 −0.571606 −0.285803 0.958288i \(-0.592260\pi\)
−0.285803 + 0.958288i \(0.592260\pi\)
\(564\) 0 0
\(565\) −2.59854 −0.109321
\(566\) −16.4421 28.0966i −0.691112 1.18099i
\(567\) 0 0
\(568\) −0.117805 6.69325i −0.00494300 0.280843i
\(569\) 22.1659i 0.929243i −0.885509 0.464621i \(-0.846190\pi\)
0.885509 0.464621i \(-0.153810\pi\)
\(570\) 0 0
\(571\) −0.830063 −0.0347370 −0.0173685 0.999849i \(-0.505529\pi\)
−0.0173685 + 0.999849i \(0.505529\pi\)
\(572\) 23.4920 41.8147i 0.982249 1.74836i
\(573\) 0 0
\(574\) 6.07537 + 10.3817i 0.253581 + 0.433325i
\(575\) −41.1747 + 17.1431i −1.71711 + 0.714919i
\(576\) 0 0
\(577\) −3.58731 −0.149342 −0.0746708 0.997208i \(-0.523791\pi\)
−0.0746708 + 0.997208i \(0.523791\pi\)
\(578\) −6.51552 11.1339i −0.271010 0.463107i
\(579\) 0 0
\(580\) 2.25243 + 1.26544i 0.0935271 + 0.0525446i
\(581\) 1.14704 0.0475872
\(582\) 0 0
\(583\) 3.39182i 0.140475i
\(584\) 14.6809 0.258392i 0.607499 0.0106923i
\(585\) 0 0
\(586\) −37.1991 + 21.7688i −1.53668 + 0.899262i
\(587\) 27.3709i 1.12972i −0.825187 0.564860i \(-0.808930\pi\)
0.825187 0.564860i \(-0.191070\pi\)
\(588\) 0 0
\(589\) 21.6116i 0.890490i
\(590\) −7.21295 12.3256i −0.296952 0.507439i
\(591\) 0 0
\(592\) 36.5254 22.2466i 1.50118 0.914330i
\(593\) −29.7156 −1.22027 −0.610137 0.792296i \(-0.708886\pi\)
−0.610137 + 0.792296i \(0.708886\pi\)
\(594\) 0 0
\(595\) −10.8511 −0.444852
\(596\) −0.667456 0.374984i −0.0273401 0.0153600i
\(597\) 0 0
\(598\) −31.1712 23.5399i −1.27468 0.962618i
\(599\) 2.73087i 0.111580i −0.998443 0.0557902i \(-0.982232\pi\)
0.998443 0.0557902i \(-0.0177678\pi\)
\(600\) 0 0
\(601\) −33.8681 −1.38151 −0.690753 0.723090i \(-0.742721\pi\)
−0.690753 + 0.723090i \(0.742721\pi\)
\(602\) 6.51379 + 11.1309i 0.265482 + 0.453662i
\(603\) 0 0
\(604\) 11.0706 + 6.21959i 0.450456 + 0.253071i
\(605\) 23.9677i 0.974424i
\(606\) 0 0
\(607\) 28.8726i 1.17190i 0.810346 + 0.585952i \(0.199279\pi\)
−0.810346 + 0.585952i \(0.800721\pi\)
\(608\) 10.7443 19.9380i 0.435737 0.808594i
\(609\) 0 0
\(610\) 20.9895 + 35.8673i 0.849839 + 1.45222i
\(611\) 15.5494i 0.629060i
\(612\) 0 0
\(613\) 1.07656i 0.0434818i −0.999764 0.0217409i \(-0.993079\pi\)
0.999764 0.0217409i \(-0.00692088\pi\)
\(614\) −34.9277 + 20.4397i −1.40957 + 0.824878i
\(615\) 0 0
\(616\) −12.0385 + 0.211884i −0.485045 + 0.00853707i
\(617\) 8.83195i 0.355561i 0.984070 + 0.177781i \(0.0568917\pi\)
−0.984070 + 0.177781i \(0.943108\pi\)
\(618\) 0 0
\(619\) 20.3851 0.819347 0.409674 0.912232i \(-0.365643\pi\)
0.409674 + 0.912232i \(0.365643\pi\)
\(620\) 19.9958 35.5916i 0.803051 1.42940i
\(621\) 0 0
\(622\) 33.4625 19.5822i 1.34172 0.785175i
\(623\) 9.98604i 0.400082i
\(624\) 0 0
\(625\) 14.9893 0.599571
\(626\) −11.2198 + 6.56580i −0.448433 + 0.262422i
\(627\) 0 0
\(628\) −25.1143 14.1095i −1.00217 0.563031i
\(629\) −30.0097 −1.19657
\(630\) 0 0
\(631\) 6.21298 0.247335 0.123667 0.992324i \(-0.460534\pi\)
0.123667 + 0.992324i \(0.460534\pi\)
\(632\) −19.5420 + 0.343951i −0.777340 + 0.0136816i
\(633\) 0 0
\(634\) 3.49363 + 5.96999i 0.138750 + 0.237098i
\(635\) −16.3516 −0.648894
\(636\) 0 0
\(637\) −34.2953 −1.35883
\(638\) −1.01599 1.73615i −0.0402235 0.0687348i
\(639\) 0 0
\(640\) 36.1418 22.8946i 1.42863 0.904987i
\(641\) 16.1002i 0.635921i −0.948104 0.317960i \(-0.897002\pi\)
0.948104 0.317960i \(-0.102998\pi\)
\(642\) 0 0
\(643\) −8.14353 −0.321150 −0.160575 0.987024i \(-0.551335\pi\)
−0.160575 + 0.987024i \(0.551335\pi\)
\(644\) −1.14803 + 9.73847i −0.0452386 + 0.383749i
\(645\) 0 0
\(646\) −13.7166 + 8.02694i −0.539673 + 0.315816i
\(647\) 25.7912i 1.01396i 0.861959 + 0.506978i \(0.169238\pi\)
−0.861959 + 0.506978i \(0.830762\pi\)
\(648\) 0 0
\(649\) 11.1193i 0.436471i
\(650\) 38.2573 + 65.3749i 1.50057 + 2.56421i
\(651\) 0 0
\(652\) −23.9148 13.4356i −0.936576 0.526179i
\(653\) 36.8619 1.44252 0.721260 0.692665i \(-0.243563\pi\)
0.721260 + 0.692665i \(0.243563\pi\)
\(654\) 0 0
\(655\) −38.8864 −1.51942
\(656\) 17.3112 + 28.4222i 0.675888 + 1.10970i
\(657\) 0 0
\(658\) 3.36903 1.97155i 0.131339 0.0768592i
\(659\) −23.0516 −0.897963 −0.448982 0.893541i \(-0.648213\pi\)
−0.448982 + 0.893541i \(0.648213\pi\)
\(660\) 0 0
\(661\) 15.4291i 0.600123i 0.953920 + 0.300061i \(0.0970072\pi\)
−0.953920 + 0.300061i \(0.902993\pi\)
\(662\) 11.3176 6.62307i 0.439873 0.257413i
\(663\) 0 0
\(664\) 3.17295 0.0558457i 0.123134 0.00216723i
\(665\) 15.4785i 0.600231i
\(666\) 0 0
\(667\) −1.51242 + 0.629697i −0.0585611 + 0.0243820i
\(668\) 23.8552 + 13.4021i 0.922985 + 0.518544i
\(669\) 0 0
\(670\) 68.3485 39.9975i 2.64053 1.54524i
\(671\) 32.3569i 1.24912i
\(672\) 0 0
\(673\) 11.2843 0.434978 0.217489 0.976063i \(-0.430213\pi\)
0.217489 + 0.976063i \(0.430213\pi\)
\(674\) −39.0090 + 22.8280i −1.50257 + 0.879302i
\(675\) 0 0
\(676\) −19.7577 + 35.1678i −0.759911 + 1.35261i
\(677\) 28.5070i 1.09561i 0.836606 + 0.547806i \(0.184537\pi\)
−0.836606 + 0.547806i \(0.815463\pi\)
\(678\) 0 0
\(679\) 11.1430i 0.427627i
\(680\) −30.0164 + 0.528306i −1.15108 + 0.0202596i
\(681\) 0 0
\(682\) −27.4336 + 16.0541i −1.05049 + 0.614744i
\(683\) 26.1642i 1.00115i −0.865694 0.500573i \(-0.833123\pi\)
0.865694 0.500573i \(-0.166877\pi\)
\(684\) 0 0
\(685\) −27.7108 −1.05878
\(686\) 9.46005 + 16.1655i 0.361186 + 0.617203i
\(687\) 0 0
\(688\) 18.5604 + 30.4732i 0.707608 + 1.16178i
\(689\) 4.69134i 0.178726i
\(690\) 0 0
\(691\) 42.6495i 1.62246i 0.584725 + 0.811232i \(0.301203\pi\)
−0.584725 + 0.811232i \(0.698797\pi\)
\(692\) −3.42401 + 6.09459i −0.130161 + 0.231682i
\(693\) 0 0
\(694\) 21.2571 12.4397i 0.806910 0.472203i
\(695\) −2.67337 −0.101407
\(696\) 0 0
\(697\) 23.3520i 0.884521i
\(698\) −10.0209 17.1239i −0.379296 0.648150i
\(699\) 0 0
\(700\) 9.31381 16.5782i 0.352029 0.626596i
\(701\) 8.56934i 0.323659i −0.986819 0.161830i \(-0.948260\pi\)
0.986819 0.161830i \(-0.0517395\pi\)
\(702\) 0 0
\(703\) 42.8072i 1.61451i
\(704\) −33.2906 + 1.17223i −1.25469 + 0.0441801i
\(705\) 0 0
\(706\) 7.50980 + 12.8329i 0.282635 + 0.482973i
\(707\) 8.09851 0.304576
\(708\) 0 0
\(709\) 50.0440i 1.87944i −0.341943 0.939721i \(-0.611085\pi\)
0.341943 0.939721i \(-0.388915\pi\)
\(710\) −6.39285 10.9242i −0.239920 0.409980i
\(711\) 0 0
\(712\) −0.486188 27.6234i −0.0182207 1.03523i
\(713\) 9.95012 + 23.8984i 0.372635 + 0.895002i
\(714\) 0 0
\(715\) 90.6846i 3.39141i
\(716\) −45.3802 25.4951i −1.69594 0.952798i
\(717\) 0 0
\(718\) −19.0731 32.5925i −0.711802 1.21634i
\(719\) 32.9114i 1.22739i 0.789543 + 0.613695i \(0.210317\pi\)
−0.789543 + 0.613695i \(0.789683\pi\)
\(720\) 0 0
\(721\) 3.65359 0.136067
\(722\) 2.12132 + 3.62495i 0.0789473 + 0.134907i
\(723\) 0 0
\(724\) −11.6784 6.56108i −0.434026 0.243841i
\(725\) 3.17689 0.117987
\(726\) 0 0
\(727\) −0.793020 −0.0294115 −0.0147057 0.999892i \(-0.504681\pi\)
−0.0147057 + 0.999892i \(0.504681\pi\)
\(728\) 16.6509 0.293065i 0.617122 0.0108617i
\(729\) 0 0
\(730\) 23.9611 14.0220i 0.886840 0.518977i
\(731\) 25.0372i 0.926033i
\(732\) 0 0
\(733\) 28.1816i 1.04091i −0.853889 0.520456i \(-0.825762\pi\)
0.853889 0.520456i \(-0.174238\pi\)
\(734\) −16.2779 27.8160i −0.600827 1.02671i
\(735\) 0 0
\(736\) −2.70154 + 26.9945i −0.0995800 + 0.995030i
\(737\) −61.6592 −2.27125
\(738\) 0 0
\(739\) 28.9097i 1.06346i 0.846914 + 0.531730i \(0.178458\pi\)
−0.846914 + 0.531730i \(0.821542\pi\)
\(740\) 39.6068 70.4983i 1.45597 2.59157i
\(741\) 0 0
\(742\) 1.01646 0.594831i 0.0373154 0.0218369i
\(743\) 34.6908 1.27268 0.636341 0.771408i \(-0.280447\pi\)
0.636341 + 0.771408i \(0.280447\pi\)
\(744\) 0 0
\(745\) −1.44753 −0.0530333
\(746\) 35.9915 21.0621i 1.31774 0.771140i
\(747\) 0 0
\(748\) 20.3787 + 11.4490i 0.745119 + 0.418617i
\(749\) −3.57244 −0.130534
\(750\) 0 0
\(751\) −41.9033 −1.52907 −0.764536 0.644581i \(-0.777032\pi\)
−0.764536 + 0.644581i \(0.777032\pi\)
\(752\) 9.22344 5.61775i 0.336344 0.204858i
\(753\) 0 0
\(754\) 1.40526 + 2.40133i 0.0511764 + 0.0874513i
\(755\) 24.0091 0.873780
\(756\) 0 0
\(757\) 5.44668i 0.197963i 0.995089 + 0.0989815i \(0.0315585\pi\)
−0.995089 + 0.0989815i \(0.968442\pi\)
\(758\) 2.04963 + 3.50245i 0.0744460 + 0.127215i
\(759\) 0 0
\(760\) −0.753600 42.8167i −0.0273359 1.55313i
\(761\) 2.39310 0.0867498 0.0433749 0.999059i \(-0.486189\pi\)
0.0433749 + 0.999059i \(0.486189\pi\)
\(762\) 0 0
\(763\) 2.20537i 0.0798398i
\(764\) −16.8207 + 29.9401i −0.608551 + 1.08319i
\(765\) 0 0
\(766\) 19.9224 + 34.0439i 0.719827 + 1.23006i
\(767\) 15.3795i 0.555323i
\(768\) 0 0
\(769\) 40.1929i 1.44939i −0.689068 0.724697i \(-0.741980\pi\)
0.689068 0.724697i \(-0.258020\pi\)
\(770\) −19.6484 + 11.4982i −0.708078 + 0.414366i
\(771\) 0 0
\(772\) −8.81109 + 15.6834i −0.317118 + 0.564456i
\(773\) 1.02655i 0.0369225i −0.999830 0.0184612i \(-0.994123\pi\)
0.999830 0.0184612i \(-0.00587673\pi\)
\(774\) 0 0
\(775\) 50.1994i 1.80322i
\(776\) −0.542515 30.8237i −0.0194752 1.10651i
\(777\) 0 0
\(778\) −2.76324 + 1.61705i −0.0990670 + 0.0579739i
\(779\) 33.3104 1.19347
\(780\) 0 0
\(781\) 9.85508i 0.352642i
\(782\) 11.4724 15.1915i 0.410250 0.543247i
\(783\) 0 0
\(784\) 12.3904 + 20.3430i 0.442513 + 0.726536i
\(785\) −54.4660 −1.94398
\(786\) 0 0
\(787\) −29.7905 −1.06192 −0.530958 0.847398i \(-0.678168\pi\)
−0.530958 + 0.847398i \(0.678168\pi\)
\(788\) −15.3837 + 27.3824i −0.548023 + 0.975457i
\(789\) 0 0
\(790\) −31.8951 + 18.6650i −1.13478 + 0.664070i
\(791\) 0.702516i 0.0249786i
\(792\) 0 0
\(793\) 44.7540i 1.58926i
\(794\) −10.0752 17.2167i −0.357555 0.610998i
\(795\) 0 0
\(796\) 17.0846 30.4099i 0.605548 1.07785i
\(797\) 42.4174i 1.50250i 0.660017 + 0.751251i \(0.270549\pi\)
−0.660017 + 0.751251i \(0.729451\pi\)
\(798\) 0 0
\(799\) −7.57810 −0.268094
\(800\) 24.9568 46.3121i 0.882355 1.63738i
\(801\) 0 0
\(802\) 33.8887 19.8316i 1.19665 0.700278i
\(803\) −21.6160 −0.762812
\(804\) 0 0
\(805\) 7.12641 + 17.1164i 0.251173 + 0.603272i
\(806\) 37.9445 22.2051i 1.33654 0.782140i
\(807\) 0 0
\(808\) 22.4021 0.394291i 0.788104 0.0138711i
\(809\) 29.6442 1.04224 0.521118 0.853485i \(-0.325515\pi\)
0.521118 + 0.853485i \(0.325515\pi\)
\(810\) 0 0
\(811\) 2.07439i 0.0728418i −0.999337 0.0364209i \(-0.988404\pi\)
0.999337 0.0364209i \(-0.0115957\pi\)
\(812\) 0.342112 0.608945i 0.0120058 0.0213698i
\(813\) 0 0
\(814\) −54.3393 + 31.7993i −1.90459 + 1.11456i
\(815\) −51.8646 −1.81674
\(816\) 0 0
\(817\) 35.7142 1.24948
\(818\) 21.5562 + 36.8357i 0.753695 + 1.28793i
\(819\) 0 0
\(820\) 54.8582 + 30.8200i 1.91573 + 1.07628i
\(821\) 14.6390 0.510904 0.255452 0.966822i \(-0.417776\pi\)
0.255452 + 0.966822i \(0.417776\pi\)
\(822\) 0 0
\(823\) 36.8036i 1.28289i 0.767168 + 0.641446i \(0.221665\pi\)
−0.767168 + 0.641446i \(0.778335\pi\)
\(824\) 10.1066 0.177882i 0.352079 0.00619680i
\(825\) 0 0
\(826\) −3.33224 + 1.95002i −0.115943 + 0.0678499i
\(827\) −20.8771 −0.725970 −0.362985 0.931795i \(-0.618242\pi\)
−0.362985 + 0.931795i \(0.618242\pi\)
\(828\) 0 0
\(829\) 17.8407 0.619632 0.309816 0.950797i \(-0.399733\pi\)
0.309816 + 0.950797i \(0.399733\pi\)
\(830\) 5.17865 3.03054i 0.179754 0.105192i
\(831\) 0 0
\(832\) 46.0454 1.62136i 1.59634 0.0562104i
\(833\) 16.7141i 0.579109i
\(834\) 0 0
\(835\) 51.7353 1.79038
\(836\) −16.3314 + 29.0691i −0.564832 + 1.00538i
\(837\) 0 0
\(838\) −17.4026 29.7380i −0.601164 1.02728i
\(839\) −30.5659 −1.05525 −0.527625 0.849477i \(-0.676917\pi\)
−0.527625 + 0.849477i \(0.676917\pi\)
\(840\) 0 0
\(841\) −28.8833 −0.995976
\(842\) 24.4229 14.2923i 0.841669 0.492544i
\(843\) 0 0
\(844\) 4.62172 + 2.59654i 0.159086 + 0.0893765i
\(845\) 76.2693i 2.62374i
\(846\) 0 0
\(847\) 6.47966 0.222644
\(848\) 2.78277 1.69491i 0.0955608 0.0582035i
\(849\) 0 0
\(850\) −31.8609 + 18.6450i −1.09282 + 0.639517i
\(851\) 19.7087 + 47.3368i 0.675607 + 1.62269i
\(852\) 0 0
\(853\) 24.6193 0.842948 0.421474 0.906840i \(-0.361513\pi\)
0.421474 + 0.906840i \(0.361513\pi\)
\(854\) 9.69672 5.67451i 0.331815 0.194178i
\(855\) 0 0
\(856\) −9.88210 + 0.173931i −0.337763 + 0.00594483i
\(857\) 29.1797 0.996760 0.498380 0.866959i \(-0.333928\pi\)
0.498380 + 0.866959i \(0.333928\pi\)
\(858\) 0 0
\(859\) 4.44412i 0.151631i 0.997122 + 0.0758157i \(0.0241561\pi\)
−0.997122 + 0.0758157i \(0.975844\pi\)
\(860\) 58.8169 + 33.0440i 2.00564 + 1.12679i
\(861\) 0 0
\(862\) 8.54724 + 14.6057i 0.291120 + 0.497473i
\(863\) 11.8945i 0.404895i −0.979293 0.202447i \(-0.935111\pi\)
0.979293 0.202447i \(-0.0648895\pi\)
\(864\) 0 0
\(865\) 13.2175i 0.449408i
\(866\) 9.86008 5.77011i 0.335059 0.196076i
\(867\) 0 0
\(868\) −9.62220 5.40586i −0.326599 0.183487i
\(869\) 28.7735 0.976074
\(870\) 0 0
\(871\) 85.2831 2.88971
\(872\) −0.107373 6.10051i −0.00363609 0.206589i
\(873\) 0 0
\(874\) 21.6699 + 16.3647i 0.732994 + 0.553544i
\(875\) 16.6236i 0.561979i
\(876\) 0 0
\(877\) −18.3997 −0.621314 −0.310657 0.950522i \(-0.600549\pi\)
−0.310657 + 0.950522i \(0.600549\pi\)
\(878\) −26.7921 + 15.6787i −0.904190 + 0.529131i
\(879\) 0 0
\(880\) −53.7915 + 32.7629i −1.81331 + 1.10444i
\(881\) 2.28963i 0.0771395i 0.999256 + 0.0385697i \(0.0122802\pi\)
−0.999256 + 0.0385697i \(0.987720\pi\)
\(882\) 0 0
\(883\) 33.2434i 1.11873i −0.828921 0.559366i \(-0.811045\pi\)
0.828921 0.559366i \(-0.188955\pi\)
\(884\) −28.1865 15.8355i −0.948016 0.532606i
\(885\) 0 0
\(886\) 3.57056 2.08949i 0.119955 0.0701977i
\(887\) 7.21083i 0.242116i 0.992645 + 0.121058i \(0.0386287\pi\)
−0.992645 + 0.121058i \(0.961371\pi\)
\(888\) 0 0
\(889\) 4.42066i 0.148264i
\(890\) −26.3836 45.0849i −0.884382 1.51125i
\(891\) 0 0
\(892\) 42.2731 + 23.7495i 1.41541 + 0.795192i
\(893\) 10.8097i 0.361734i
\(894\) 0 0
\(895\) −98.4172 −3.28972
\(896\) −6.18954 9.77095i −0.206778 0.326424i
\(897\) 0 0
\(898\) −22.1729 37.8895i −0.739919 1.26439i
\(899\) 1.84391i 0.0614979i
\(900\) 0 0
\(901\) −2.28636 −0.0761698
\(902\) −24.7446 42.2841i −0.823904 1.40791i
\(903\) 0 0
\(904\) 0.0342033 + 1.94330i 0.00113758 + 0.0646333i
\(905\) −25.3273 −0.841909
\(906\) 0 0
\(907\) −19.2080 −0.637792 −0.318896 0.947790i \(-0.603312\pi\)
−0.318896 + 0.947790i \(0.603312\pi\)
\(908\) 6.08198 10.8257i 0.201838 0.359262i
\(909\) 0 0
\(910\) 27.1764 15.9036i 0.900887 0.527198i
\(911\) 24.6794 0.817665 0.408833 0.912609i \(-0.365936\pi\)
0.408833 + 0.912609i \(0.365936\pi\)
\(912\) 0 0
\(913\) −4.67181 −0.154614
\(914\) −8.59610 + 5.03043i −0.284334 + 0.166392i
\(915\) 0 0
\(916\) 19.4627 + 10.9344i 0.643066 + 0.361282i
\(917\) 10.5129i 0.347168i
\(918\) 0 0
\(919\) −36.1695 −1.19312 −0.596560 0.802568i \(-0.703466\pi\)
−0.596560 + 0.802568i \(0.703466\pi\)
\(920\) 20.5464 + 47.0004i 0.677396 + 1.54956i
\(921\) 0 0
\(922\) −3.49094 5.96539i −0.114968 0.196460i
\(923\) 13.6309i 0.448667i
\(924\) 0 0
\(925\) 99.4327i 3.26933i
\(926\) 21.3269 12.4805i 0.700846 0.410134i
\(927\) 0 0
\(928\) 0.916704 1.70112i 0.0300923 0.0558421i
\(929\) −19.8450 −0.651095 −0.325547 0.945526i \(-0.605549\pi\)
−0.325547 + 0.945526i \(0.605549\pi\)
\(930\) 0 0
\(931\) 23.8417 0.781381
\(932\) −23.1984 + 41.2922i −0.759890 + 1.35257i
\(933\) 0 0
\(934\) 15.4799 + 26.4524i 0.506518 + 0.865548i
\(935\) 44.1958 1.44536
\(936\) 0 0
\(937\) 33.2780i 1.08715i 0.839362 + 0.543573i \(0.182929\pi\)
−0.839362 + 0.543573i \(0.817071\pi\)
\(938\) −10.8133 18.4780i −0.353067 0.603329i
\(939\) 0 0
\(940\) 10.0016 17.8023i 0.326215 0.580648i
\(941\) 17.6138i 0.574194i 0.957901 + 0.287097i \(0.0926903\pi\)
−0.957901 + 0.287097i \(0.907310\pi\)
\(942\) 0 0
\(943\) −36.8351 + 15.3363i −1.19952 + 0.499420i
\(944\) −9.12271 + 5.55639i −0.296919 + 0.180845i
\(945\) 0 0
\(946\) −26.5302 45.3354i −0.862571 1.47398i
\(947\) 45.0168i 1.46285i 0.681921 + 0.731425i \(0.261145\pi\)
−0.681921 + 0.731425i \(0.738855\pi\)
\(948\) 0 0
\(949\) 29.8979 0.970526
\(950\) −26.5960 45.4479i −0.862889 1.47452i
\(951\) 0 0
\(952\) 0.142827 + 8.11493i 0.00462907 + 0.263006i
\(953\) 39.4151i 1.27678i −0.769713 0.638390i \(-0.779601\pi\)
0.769713 0.638390i \(-0.220399\pi\)
\(954\) 0 0
\(955\) 64.9318i 2.10114i
\(956\) −10.0264 5.63297i −0.324278 0.182183i
\(957\) 0 0
\(958\) −27.7083 47.3486i −0.895215 1.52976i
\(959\) 7.49162i 0.241917i
\(960\) 0 0
\(961\) 1.86357 0.0601152
\(962\) 75.1587 43.9827i 2.42321 1.41806i
\(963\) 0 0
\(964\) 21.4968 + 12.0772i 0.692367 + 0.388979i
\(965\) 34.0129i 1.09491i
\(966\) 0 0
\(967\) 24.3005i 0.781450i 0.920507 + 0.390725i \(0.127776\pi\)
−0.920507 + 0.390725i \(0.872224\pi\)
\(968\) 17.9240 0.315474i 0.576101 0.0101397i
\(969\) 0 0
\(970\) −29.4403 50.3082i −0.945271 1.61530i
\(971\) −15.5499 −0.499020 −0.249510 0.968372i \(-0.580270\pi\)
−0.249510 + 0.968372i \(0.580270\pi\)
\(972\) 0 0
\(973\) 0.722745i 0.0231701i
\(974\) 36.0582 21.1012i 1.15538 0.676125i
\(975\) 0 0
\(976\) 26.5468 16.1689i 0.849743 0.517555i
\(977\) 37.7336i 1.20720i 0.797286 + 0.603602i \(0.206268\pi\)
−0.797286 + 0.603602i \(0.793732\pi\)
\(978\) 0 0
\(979\) 40.6724i 1.29990i
\(980\) 39.2644 + 22.0592i 1.25426 + 0.704655i
\(981\) 0 0
\(982\) −19.0943 + 11.1740i −0.609325 + 0.356576i
\(983\) 19.1931 0.612166 0.306083 0.952005i \(-0.400982\pi\)
0.306083 + 0.952005i \(0.400982\pi\)
\(984\) 0 0
\(985\) 59.3848i 1.89216i
\(986\) −1.17031 + 0.684862i −0.0372702 + 0.0218104i
\(987\) 0 0
\(988\) 22.5885 40.2066i 0.718636 1.27914i
\(989\) −39.4932 + 16.4430i −1.25581 + 0.522858i
\(990\) 0 0
\(991\) 24.2887i 0.771555i −0.922592 0.385778i \(-0.873933\pi\)
0.922592 0.385778i \(-0.126067\pi\)
\(992\) −26.8802 14.4852i −0.853446 0.459907i
\(993\) 0 0
\(994\) −2.95337 + 1.72831i −0.0936752 + 0.0548186i
\(995\) 65.9507i 2.09078i
\(996\) 0 0
\(997\) 4.39684 0.139249 0.0696247 0.997573i \(-0.477820\pi\)
0.0696247 + 0.997573i \(0.477820\pi\)
\(998\) −42.9624 + 25.1415i −1.35995 + 0.795841i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 828.2.e.f.91.10 24
3.2 odd 2 276.2.e.a.91.15 yes 24
4.3 odd 2 inner 828.2.e.f.91.12 24
12.11 even 2 276.2.e.a.91.13 24
23.22 odd 2 inner 828.2.e.f.91.9 24
24.5 odd 2 4416.2.i.d.1471.23 24
24.11 even 2 4416.2.i.d.1471.22 24
69.68 even 2 276.2.e.a.91.16 yes 24
92.91 even 2 inner 828.2.e.f.91.11 24
276.275 odd 2 276.2.e.a.91.14 yes 24
552.275 odd 2 4416.2.i.d.1471.21 24
552.413 even 2 4416.2.i.d.1471.24 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
276.2.e.a.91.13 24 12.11 even 2
276.2.e.a.91.14 yes 24 276.275 odd 2
276.2.e.a.91.15 yes 24 3.2 odd 2
276.2.e.a.91.16 yes 24 69.68 even 2
828.2.e.f.91.9 24 23.22 odd 2 inner
828.2.e.f.91.10 24 1.1 even 1 trivial
828.2.e.f.91.11 24 92.91 even 2 inner
828.2.e.f.91.12 24 4.3 odd 2 inner
4416.2.i.d.1471.21 24 552.275 odd 2
4416.2.i.d.1471.22 24 24.11 even 2
4416.2.i.d.1471.23 24 24.5 odd 2
4416.2.i.d.1471.24 24 552.413 even 2