Properties

Label 8208.2.a.cf.1.4
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,2,0,-2,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 18x^{4} + 17x^{3} + 72x^{2} + 29x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.0851277\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0851277 q^{5} -5.11790 q^{7} -4.72733 q^{11} -2.04113 q^{13} +1.60943 q^{17} -1.00000 q^{19} -7.24416 q^{23} -4.99275 q^{25} -8.68334 q^{29} -6.55708 q^{31} -0.435675 q^{35} +7.55358 q^{37} +0.564325 q^{41} -11.6715 q^{43} +2.35055 q^{47} +19.1929 q^{49} -10.1918 q^{53} -0.402427 q^{55} +6.17487 q^{59} +6.17137 q^{61} -0.173757 q^{65} +11.2453 q^{67} +7.76408 q^{71} -6.55819 q^{73} +24.1940 q^{77} -0.406402 q^{79} +2.40243 q^{83} +0.137007 q^{85} -3.16651 q^{89} +10.4463 q^{91} -0.0851277 q^{95} -11.6310 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{5} - 2 q^{7} + 3 q^{11} + q^{13} + 7 q^{17} - 6 q^{19} - 3 q^{23} + 10 q^{25} - 6 q^{29} - 5 q^{31} + 3 q^{35} + 11 q^{37} + 9 q^{41} - 7 q^{43} + 7 q^{47} + 20 q^{49} + 11 q^{53} - 22 q^{55}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.0851277 0.0380703 0.0190351 0.999819i \(-0.493941\pi\)
0.0190351 + 0.999819i \(0.493941\pi\)
\(6\) 0 0
\(7\) −5.11790 −1.93439 −0.967193 0.254045i \(-0.918239\pi\)
−0.967193 + 0.254045i \(0.918239\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.72733 −1.42534 −0.712672 0.701497i \(-0.752515\pi\)
−0.712672 + 0.701497i \(0.752515\pi\)
\(12\) 0 0
\(13\) −2.04113 −0.566108 −0.283054 0.959104i \(-0.591348\pi\)
−0.283054 + 0.959104i \(0.591348\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.60943 0.390345 0.195172 0.980769i \(-0.437473\pi\)
0.195172 + 0.980769i \(0.437473\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.24416 −1.51051 −0.755256 0.655430i \(-0.772487\pi\)
−0.755256 + 0.655430i \(0.772487\pi\)
\(24\) 0 0
\(25\) −4.99275 −0.998551
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.68334 −1.61246 −0.806228 0.591605i \(-0.798494\pi\)
−0.806228 + 0.591605i \(0.798494\pi\)
\(30\) 0 0
\(31\) −6.55708 −1.17769 −0.588843 0.808247i \(-0.700416\pi\)
−0.588843 + 0.808247i \(0.700416\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.435675 −0.0736425
\(36\) 0 0
\(37\) 7.55358 1.24180 0.620900 0.783890i \(-0.286767\pi\)
0.620900 + 0.783890i \(0.286767\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.564325 0.0881327 0.0440664 0.999029i \(-0.485969\pi\)
0.0440664 + 0.999029i \(0.485969\pi\)
\(42\) 0 0
\(43\) −11.6715 −1.77988 −0.889942 0.456074i \(-0.849255\pi\)
−0.889942 + 0.456074i \(0.849255\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.35055 0.342863 0.171431 0.985196i \(-0.445161\pi\)
0.171431 + 0.985196i \(0.445161\pi\)
\(48\) 0 0
\(49\) 19.1929 2.74185
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.1918 −1.39995 −0.699976 0.714166i \(-0.746806\pi\)
−0.699976 + 0.714166i \(0.746806\pi\)
\(54\) 0 0
\(55\) −0.402427 −0.0542632
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.17487 0.803899 0.401950 0.915662i \(-0.368333\pi\)
0.401950 + 0.915662i \(0.368333\pi\)
\(60\) 0 0
\(61\) 6.17137 0.790162 0.395081 0.918646i \(-0.370716\pi\)
0.395081 + 0.918646i \(0.370716\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.173757 −0.0215519
\(66\) 0 0
\(67\) 11.2453 1.37383 0.686914 0.726738i \(-0.258965\pi\)
0.686914 + 0.726738i \(0.258965\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.76408 0.921427 0.460714 0.887549i \(-0.347594\pi\)
0.460714 + 0.887549i \(0.347594\pi\)
\(72\) 0 0
\(73\) −6.55819 −0.767578 −0.383789 0.923421i \(-0.625381\pi\)
−0.383789 + 0.923421i \(0.625381\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 24.1940 2.75717
\(78\) 0 0
\(79\) −0.406402 −0.0457239 −0.0228619 0.999739i \(-0.507278\pi\)
−0.0228619 + 0.999739i \(0.507278\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.40243 0.263701 0.131850 0.991270i \(-0.457908\pi\)
0.131850 + 0.991270i \(0.457908\pi\)
\(84\) 0 0
\(85\) 0.137007 0.0148605
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.16651 −0.335649 −0.167825 0.985817i \(-0.553674\pi\)
−0.167825 + 0.985817i \(0.553674\pi\)
\(90\) 0 0
\(91\) 10.4463 1.09507
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.0851277 −0.00873392
\(96\) 0 0
\(97\) −11.6310 −1.18095 −0.590474 0.807057i \(-0.701059\pi\)
−0.590474 + 0.807057i \(0.701059\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −15.4839 −1.54071 −0.770355 0.637615i \(-0.779921\pi\)
−0.770355 + 0.637615i \(0.779921\pi\)
\(102\) 0 0
\(103\) −12.4731 −1.22901 −0.614504 0.788914i \(-0.710644\pi\)
−0.614504 + 0.788914i \(0.710644\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.11551 0.881230 0.440615 0.897696i \(-0.354760\pi\)
0.440615 + 0.897696i \(0.354760\pi\)
\(108\) 0 0
\(109\) −3.98528 −0.381720 −0.190860 0.981617i \(-0.561128\pi\)
−0.190860 + 0.981617i \(0.561128\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.5487 0.992340 0.496170 0.868225i \(-0.334739\pi\)
0.496170 + 0.868225i \(0.334739\pi\)
\(114\) 0 0
\(115\) −0.616679 −0.0575056
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.23691 −0.755077
\(120\) 0 0
\(121\) 11.3477 1.03161
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.850660 −0.0760853
\(126\) 0 0
\(127\) 0.848506 0.0752928 0.0376464 0.999291i \(-0.488014\pi\)
0.0376464 + 0.999291i \(0.488014\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.15815 −0.450670 −0.225335 0.974281i \(-0.572348\pi\)
−0.225335 + 0.974281i \(0.572348\pi\)
\(132\) 0 0
\(133\) 5.11790 0.443778
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.5358 0.985572 0.492786 0.870151i \(-0.335979\pi\)
0.492786 + 0.870151i \(0.335979\pi\)
\(138\) 0 0
\(139\) −0.834601 −0.0707899 −0.0353949 0.999373i \(-0.511269\pi\)
−0.0353949 + 0.999373i \(0.511269\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.64911 0.806899
\(144\) 0 0
\(145\) −0.739192 −0.0613866
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −19.3559 −1.58570 −0.792850 0.609417i \(-0.791403\pi\)
−0.792850 + 0.609417i \(0.791403\pi\)
\(150\) 0 0
\(151\) −3.52319 −0.286713 −0.143357 0.989671i \(-0.545790\pi\)
−0.143357 + 0.989671i \(0.545790\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.558189 −0.0448348
\(156\) 0 0
\(157\) 9.76297 0.779170 0.389585 0.920991i \(-0.372618\pi\)
0.389585 + 0.920991i \(0.372618\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 37.0749 2.92191
\(162\) 0 0
\(163\) −13.2809 −1.04024 −0.520121 0.854093i \(-0.674113\pi\)
−0.520121 + 0.854093i \(0.674113\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −15.0082 −1.16137 −0.580686 0.814127i \(-0.697216\pi\)
−0.580686 + 0.814127i \(0.697216\pi\)
\(168\) 0 0
\(169\) −8.83378 −0.679522
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.08832 0.462887 0.231443 0.972848i \(-0.425655\pi\)
0.231443 + 0.972848i \(0.425655\pi\)
\(174\) 0 0
\(175\) 25.5524 1.93158
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.21657 −0.165674 −0.0828370 0.996563i \(-0.526398\pi\)
−0.0828370 + 0.996563i \(0.526398\pi\)
\(180\) 0 0
\(181\) 20.6979 1.53847 0.769233 0.638968i \(-0.220638\pi\)
0.769233 + 0.638968i \(0.220638\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.643018 0.0472757
\(186\) 0 0
\(187\) −7.60832 −0.556376
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 26.8800 1.94497 0.972484 0.232969i \(-0.0748439\pi\)
0.972484 + 0.232969i \(0.0748439\pi\)
\(192\) 0 0
\(193\) −16.6548 −1.19884 −0.599421 0.800434i \(-0.704602\pi\)
−0.599421 + 0.800434i \(0.704602\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.25538 0.303183 0.151592 0.988443i \(-0.451560\pi\)
0.151592 + 0.988443i \(0.451560\pi\)
\(198\) 0 0
\(199\) 1.48428 0.105218 0.0526090 0.998615i \(-0.483246\pi\)
0.0526090 + 0.998615i \(0.483246\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 44.4405 3.11911
\(204\) 0 0
\(205\) 0.0480397 0.00335524
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.72733 0.326996
\(210\) 0 0
\(211\) −18.4395 −1.26943 −0.634713 0.772748i \(-0.718882\pi\)
−0.634713 + 0.772748i \(0.718882\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.993566 −0.0677606
\(216\) 0 0
\(217\) 33.5585 2.27810
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.28506 −0.220977
\(222\) 0 0
\(223\) −2.43147 −0.162823 −0.0814116 0.996681i \(-0.525943\pi\)
−0.0814116 + 0.996681i \(0.525943\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 23.4201 1.55444 0.777222 0.629226i \(-0.216628\pi\)
0.777222 + 0.629226i \(0.216628\pi\)
\(228\) 0 0
\(229\) −26.2358 −1.73371 −0.866854 0.498562i \(-0.833861\pi\)
−0.866854 + 0.498562i \(0.833861\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.0480 1.11685 0.558427 0.829554i \(-0.311405\pi\)
0.558427 + 0.829554i \(0.311405\pi\)
\(234\) 0 0
\(235\) 0.200097 0.0130529
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −25.2128 −1.63088 −0.815440 0.578842i \(-0.803505\pi\)
−0.815440 + 0.578842i \(0.803505\pi\)
\(240\) 0 0
\(241\) 4.10702 0.264557 0.132278 0.991213i \(-0.457771\pi\)
0.132278 + 0.991213i \(0.457771\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.63385 0.104383
\(246\) 0 0
\(247\) 2.04113 0.129874
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −19.8618 −1.25367 −0.626834 0.779153i \(-0.715650\pi\)
−0.626834 + 0.779153i \(0.715650\pi\)
\(252\) 0 0
\(253\) 34.2456 2.15300
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.1038 1.69069 0.845345 0.534221i \(-0.179395\pi\)
0.845345 + 0.534221i \(0.179395\pi\)
\(258\) 0 0
\(259\) −38.6585 −2.40212
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.3577 1.07032 0.535160 0.844751i \(-0.320251\pi\)
0.535160 + 0.844751i \(0.320251\pi\)
\(264\) 0 0
\(265\) −0.867605 −0.0532965
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 31.6594 1.93031 0.965153 0.261686i \(-0.0842784\pi\)
0.965153 + 0.261686i \(0.0842784\pi\)
\(270\) 0 0
\(271\) −13.1823 −0.800770 −0.400385 0.916347i \(-0.631124\pi\)
−0.400385 + 0.916347i \(0.631124\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 23.6024 1.42328
\(276\) 0 0
\(277\) 7.52891 0.452368 0.226184 0.974085i \(-0.427375\pi\)
0.226184 + 0.974085i \(0.427375\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.06410 0.540719 0.270359 0.962759i \(-0.412857\pi\)
0.270359 + 0.962759i \(0.412857\pi\)
\(282\) 0 0
\(283\) −7.80148 −0.463750 −0.231875 0.972746i \(-0.574486\pi\)
−0.231875 + 0.972746i \(0.574486\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.88816 −0.170483
\(288\) 0 0
\(289\) −14.4097 −0.847631
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.7093 −0.800908 −0.400454 0.916317i \(-0.631148\pi\)
−0.400454 + 0.916317i \(0.631148\pi\)
\(294\) 0 0
\(295\) 0.525652 0.0306046
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 14.7863 0.855113
\(300\) 0 0
\(301\) 59.7335 3.44298
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.525354 0.0300817
\(306\) 0 0
\(307\) 28.6862 1.63721 0.818604 0.574359i \(-0.194749\pi\)
0.818604 + 0.574359i \(0.194749\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.1176 0.573716 0.286858 0.957973i \(-0.407389\pi\)
0.286858 + 0.957973i \(0.407389\pi\)
\(312\) 0 0
\(313\) 4.88829 0.276302 0.138151 0.990411i \(-0.455884\pi\)
0.138151 + 0.990411i \(0.455884\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.33232 0.299493 0.149747 0.988724i \(-0.452154\pi\)
0.149747 + 0.988724i \(0.452154\pi\)
\(318\) 0 0
\(319\) 41.0490 2.29830
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.60943 −0.0895512
\(324\) 0 0
\(325\) 10.1909 0.565288
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.0299 −0.663228
\(330\) 0 0
\(331\) −14.5861 −0.801726 −0.400863 0.916138i \(-0.631290\pi\)
−0.400863 + 0.916138i \(0.631290\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.957284 0.0523020
\(336\) 0 0
\(337\) 16.2295 0.884079 0.442040 0.896996i \(-0.354255\pi\)
0.442040 + 0.896996i \(0.354255\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 30.9975 1.67861
\(342\) 0 0
\(343\) −62.4022 −3.36940
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.80135 0.0967017 0.0483508 0.998830i \(-0.484603\pi\)
0.0483508 + 0.998830i \(0.484603\pi\)
\(348\) 0 0
\(349\) −26.7712 −1.43303 −0.716515 0.697572i \(-0.754264\pi\)
−0.716515 + 0.697572i \(0.754264\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.1968 −0.755621 −0.377810 0.925883i \(-0.623323\pi\)
−0.377810 + 0.925883i \(0.623323\pi\)
\(354\) 0 0
\(355\) 0.660938 0.0350790
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.48755 −0.131288 −0.0656441 0.997843i \(-0.520910\pi\)
−0.0656441 + 0.997843i \(0.520910\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.558283 −0.0292219
\(366\) 0 0
\(367\) −35.8358 −1.87061 −0.935306 0.353841i \(-0.884876\pi\)
−0.935306 + 0.353841i \(0.884876\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 52.1607 2.70805
\(372\) 0 0
\(373\) 7.82886 0.405363 0.202682 0.979245i \(-0.435034\pi\)
0.202682 + 0.979245i \(0.435034\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.7238 0.912824
\(378\) 0 0
\(379\) 17.9528 0.922173 0.461087 0.887355i \(-0.347460\pi\)
0.461087 + 0.887355i \(0.347460\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.7299 0.752660 0.376330 0.926486i \(-0.377186\pi\)
0.376330 + 0.926486i \(0.377186\pi\)
\(384\) 0 0
\(385\) 2.05958 0.104966
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −19.7863 −1.00320 −0.501602 0.865098i \(-0.667256\pi\)
−0.501602 + 0.865098i \(0.667256\pi\)
\(390\) 0 0
\(391\) −11.6590 −0.589620
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.0345961 −0.00174072
\(396\) 0 0
\(397\) −8.31807 −0.417472 −0.208736 0.977972i \(-0.566935\pi\)
−0.208736 + 0.977972i \(0.566935\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −23.9073 −1.19388 −0.596938 0.802287i \(-0.703616\pi\)
−0.596938 + 0.802287i \(0.703616\pi\)
\(402\) 0 0
\(403\) 13.3839 0.666697
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −35.7083 −1.76999
\(408\) 0 0
\(409\) 8.67148 0.428777 0.214389 0.976748i \(-0.431224\pi\)
0.214389 + 0.976748i \(0.431224\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −31.6024 −1.55505
\(414\) 0 0
\(415\) 0.204513 0.0100391
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.2585 1.03855 0.519274 0.854608i \(-0.326202\pi\)
0.519274 + 0.854608i \(0.326202\pi\)
\(420\) 0 0
\(421\) −37.8218 −1.84332 −0.921661 0.387996i \(-0.873168\pi\)
−0.921661 + 0.387996i \(0.873168\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −8.03550 −0.389779
\(426\) 0 0
\(427\) −31.5844 −1.52848
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −28.0966 −1.35337 −0.676684 0.736274i \(-0.736584\pi\)
−0.676684 + 0.736274i \(0.736584\pi\)
\(432\) 0 0
\(433\) −37.2548 −1.79035 −0.895176 0.445714i \(-0.852950\pi\)
−0.895176 + 0.445714i \(0.852950\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.24416 0.346535
\(438\) 0 0
\(439\) −12.2381 −0.584092 −0.292046 0.956404i \(-0.594336\pi\)
−0.292046 + 0.956404i \(0.594336\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.2116 0.770237 0.385119 0.922867i \(-0.374161\pi\)
0.385119 + 0.922867i \(0.374161\pi\)
\(444\) 0 0
\(445\) −0.269558 −0.0127783
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.6456 1.02152 0.510760 0.859724i \(-0.329364\pi\)
0.510760 + 0.859724i \(0.329364\pi\)
\(450\) 0 0
\(451\) −2.66775 −0.125620
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.889270 0.0416896
\(456\) 0 0
\(457\) −8.59278 −0.401954 −0.200977 0.979596i \(-0.564412\pi\)
−0.200977 + 0.979596i \(0.564412\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.34430 0.388633 0.194317 0.980939i \(-0.437751\pi\)
0.194317 + 0.980939i \(0.437751\pi\)
\(462\) 0 0
\(463\) 33.1955 1.54272 0.771362 0.636396i \(-0.219576\pi\)
0.771362 + 0.636396i \(0.219576\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.3072 0.985979 0.492990 0.870035i \(-0.335904\pi\)
0.492990 + 0.870035i \(0.335904\pi\)
\(468\) 0 0
\(469\) −57.5522 −2.65751
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 55.1750 2.53695
\(474\) 0 0
\(475\) 4.99275 0.229083
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 35.4722 1.62077 0.810384 0.585899i \(-0.199258\pi\)
0.810384 + 0.585899i \(0.199258\pi\)
\(480\) 0 0
\(481\) −15.4178 −0.702993
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.990119 −0.0449590
\(486\) 0 0
\(487\) −4.10446 −0.185991 −0.0929954 0.995667i \(-0.529644\pi\)
−0.0929954 + 0.995667i \(0.529644\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −26.5609 −1.19868 −0.599339 0.800495i \(-0.704570\pi\)
−0.599339 + 0.800495i \(0.704570\pi\)
\(492\) 0 0
\(493\) −13.9752 −0.629413
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −39.7358 −1.78239
\(498\) 0 0
\(499\) 11.9735 0.536008 0.268004 0.963418i \(-0.413636\pi\)
0.268004 + 0.963418i \(0.413636\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −29.0890 −1.29701 −0.648507 0.761209i \(-0.724606\pi\)
−0.648507 + 0.761209i \(0.724606\pi\)
\(504\) 0 0
\(505\) −1.31811 −0.0586552
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 27.3780 1.21351 0.606753 0.794890i \(-0.292472\pi\)
0.606753 + 0.794890i \(0.292472\pi\)
\(510\) 0 0
\(511\) 33.5642 1.48479
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.06180 −0.0467886
\(516\) 0 0
\(517\) −11.1118 −0.488697
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.69574 −0.0742917 −0.0371459 0.999310i \(-0.511827\pi\)
−0.0371459 + 0.999310i \(0.511827\pi\)
\(522\) 0 0
\(523\) 12.4497 0.544387 0.272193 0.962243i \(-0.412251\pi\)
0.272193 + 0.962243i \(0.412251\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.5532 −0.459703
\(528\) 0 0
\(529\) 29.4779 1.28165
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.15186 −0.0498927
\(534\) 0 0
\(535\) 0.775982 0.0335486
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −90.7313 −3.90807
\(540\) 0 0
\(541\) −7.66471 −0.329532 −0.164766 0.986333i \(-0.552687\pi\)
−0.164766 + 0.986333i \(0.552687\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.339257 −0.0145322
\(546\) 0 0
\(547\) 23.8026 1.01773 0.508864 0.860847i \(-0.330066\pi\)
0.508864 + 0.860847i \(0.330066\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.68334 0.369923
\(552\) 0 0
\(553\) 2.07993 0.0884475
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.06246 0.383989 0.191994 0.981396i \(-0.438504\pi\)
0.191994 + 0.981396i \(0.438504\pi\)
\(558\) 0 0
\(559\) 23.8230 1.00761
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −27.8789 −1.17495 −0.587477 0.809241i \(-0.699879\pi\)
−0.587477 + 0.809241i \(0.699879\pi\)
\(564\) 0 0
\(565\) 0.897988 0.0377786
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 11.2573 0.471929 0.235964 0.971762i \(-0.424175\pi\)
0.235964 + 0.971762i \(0.424175\pi\)
\(570\) 0 0
\(571\) 14.4809 0.606007 0.303004 0.952989i \(-0.402011\pi\)
0.303004 + 0.952989i \(0.402011\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 36.1683 1.50832
\(576\) 0 0
\(577\) −25.0761 −1.04393 −0.521966 0.852967i \(-0.674801\pi\)
−0.521966 + 0.852967i \(0.674801\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.2954 −0.510099
\(582\) 0 0
\(583\) 48.1801 1.99541
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.2078 −0.751515 −0.375757 0.926718i \(-0.622617\pi\)
−0.375757 + 0.926718i \(0.622617\pi\)
\(588\) 0 0
\(589\) 6.55708 0.270180
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.88553 0.405950 0.202975 0.979184i \(-0.434939\pi\)
0.202975 + 0.979184i \(0.434939\pi\)
\(594\) 0 0
\(595\) −0.701189 −0.0287460
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 19.6772 0.803989 0.401994 0.915642i \(-0.368317\pi\)
0.401994 + 0.915642i \(0.368317\pi\)
\(600\) 0 0
\(601\) 5.62072 0.229274 0.114637 0.993407i \(-0.463430\pi\)
0.114637 + 0.993407i \(0.463430\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.966002 0.0392736
\(606\) 0 0
\(607\) −12.8989 −0.523549 −0.261774 0.965129i \(-0.584308\pi\)
−0.261774 + 0.965129i \(0.584308\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.79778 −0.194097
\(612\) 0 0
\(613\) 15.9193 0.642973 0.321487 0.946914i \(-0.395817\pi\)
0.321487 + 0.946914i \(0.395817\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −35.3987 −1.42510 −0.712549 0.701622i \(-0.752459\pi\)
−0.712549 + 0.701622i \(0.752459\pi\)
\(618\) 0 0
\(619\) 21.3608 0.858565 0.429282 0.903170i \(-0.358767\pi\)
0.429282 + 0.903170i \(0.358767\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.2059 0.649275
\(624\) 0 0
\(625\) 24.8914 0.995654
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.1570 0.484730
\(630\) 0 0
\(631\) −34.2860 −1.36490 −0.682452 0.730931i \(-0.739086\pi\)
−0.682452 + 0.730931i \(0.739086\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.0722314 0.00286641
\(636\) 0 0
\(637\) −39.1753 −1.55218
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.10668 0.280697 0.140349 0.990102i \(-0.455178\pi\)
0.140349 + 0.990102i \(0.455178\pi\)
\(642\) 0 0
\(643\) −45.8917 −1.80979 −0.904897 0.425632i \(-0.860052\pi\)
−0.904897 + 0.425632i \(0.860052\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.8067 −0.739366 −0.369683 0.929158i \(-0.620534\pi\)
−0.369683 + 0.929158i \(0.620534\pi\)
\(648\) 0 0
\(649\) −29.1907 −1.14583
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.1271 −0.865901 −0.432951 0.901418i \(-0.642528\pi\)
−0.432951 + 0.901418i \(0.642528\pi\)
\(654\) 0 0
\(655\) −0.439102 −0.0171571
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 35.8466 1.39638 0.698192 0.715910i \(-0.253988\pi\)
0.698192 + 0.715910i \(0.253988\pi\)
\(660\) 0 0
\(661\) −7.50730 −0.292000 −0.146000 0.989285i \(-0.546640\pi\)
−0.146000 + 0.989285i \(0.546640\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.435675 0.0168948
\(666\) 0 0
\(667\) 62.9035 2.43563
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −29.1741 −1.12625
\(672\) 0 0
\(673\) 39.9266 1.53906 0.769529 0.638612i \(-0.220491\pi\)
0.769529 + 0.638612i \(0.220491\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.7975 −0.607148 −0.303574 0.952808i \(-0.598180\pi\)
−0.303574 + 0.952808i \(0.598180\pi\)
\(678\) 0 0
\(679\) 59.5262 2.28441
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 16.9134 0.647174 0.323587 0.946198i \(-0.395111\pi\)
0.323587 + 0.946198i \(0.395111\pi\)
\(684\) 0 0
\(685\) 0.982017 0.0375210
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20.8028 0.792524
\(690\) 0 0
\(691\) −30.4001 −1.15647 −0.578236 0.815869i \(-0.696259\pi\)
−0.578236 + 0.815869i \(0.696259\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.0710476 −0.00269499
\(696\) 0 0
\(697\) 0.908242 0.0344021
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −19.1930 −0.724911 −0.362456 0.932001i \(-0.618062\pi\)
−0.362456 + 0.932001i \(0.618062\pi\)
\(702\) 0 0
\(703\) −7.55358 −0.284889
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 79.2453 2.98033
\(708\) 0 0
\(709\) 39.7184 1.49166 0.745829 0.666138i \(-0.232054\pi\)
0.745829 + 0.666138i \(0.232054\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 47.5005 1.77891
\(714\) 0 0
\(715\) 0.821406 0.0307189
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11.3182 0.422098 0.211049 0.977476i \(-0.432312\pi\)
0.211049 + 0.977476i \(0.432312\pi\)
\(720\) 0 0
\(721\) 63.8359 2.37737
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 43.3538 1.61012
\(726\) 0 0
\(727\) −27.8190 −1.03175 −0.515876 0.856663i \(-0.672533\pi\)
−0.515876 + 0.856663i \(0.672533\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −18.7844 −0.694768
\(732\) 0 0
\(733\) −24.5066 −0.905172 −0.452586 0.891721i \(-0.649498\pi\)
−0.452586 + 0.891721i \(0.649498\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −53.1601 −1.95818
\(738\) 0 0
\(739\) 0.634560 0.0233427 0.0116713 0.999932i \(-0.496285\pi\)
0.0116713 + 0.999932i \(0.496285\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.22678 0.118379 0.0591895 0.998247i \(-0.481148\pi\)
0.0591895 + 0.998247i \(0.481148\pi\)
\(744\) 0 0
\(745\) −1.64773 −0.0603680
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −46.6523 −1.70464
\(750\) 0 0
\(751\) 38.5227 1.40571 0.702857 0.711331i \(-0.251907\pi\)
0.702857 + 0.711331i \(0.251907\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.299921 −0.0109153
\(756\) 0 0
\(757\) −21.5627 −0.783709 −0.391855 0.920027i \(-0.628166\pi\)
−0.391855 + 0.920027i \(0.628166\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −50.8712 −1.84408 −0.922040 0.387096i \(-0.873478\pi\)
−0.922040 + 0.387096i \(0.873478\pi\)
\(762\) 0 0
\(763\) 20.3963 0.738394
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.6037 −0.455094
\(768\) 0 0
\(769\) −22.2344 −0.801795 −0.400897 0.916123i \(-0.631302\pi\)
−0.400897 + 0.916123i \(0.631302\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 32.5774 1.17173 0.585864 0.810409i \(-0.300755\pi\)
0.585864 + 0.810409i \(0.300755\pi\)
\(774\) 0 0
\(775\) 32.7379 1.17598
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.564325 −0.0202190
\(780\) 0 0
\(781\) −36.7034 −1.31335
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.831099 0.0296632
\(786\) 0 0
\(787\) 23.1605 0.825584 0.412792 0.910825i \(-0.364554\pi\)
0.412792 + 0.910825i \(0.364554\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −53.9873 −1.91957
\(792\) 0 0
\(793\) −12.5966 −0.447317
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.42143 0.227459 0.113729 0.993512i \(-0.463720\pi\)
0.113729 + 0.993512i \(0.463720\pi\)
\(798\) 0 0
\(799\) 3.78305 0.133835
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 31.0027 1.09406
\(804\) 0 0
\(805\) 3.15610 0.111238
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −47.6346 −1.67474 −0.837371 0.546635i \(-0.815909\pi\)
−0.837371 + 0.546635i \(0.815909\pi\)
\(810\) 0 0
\(811\) 15.0006 0.526742 0.263371 0.964695i \(-0.415166\pi\)
0.263371 + 0.964695i \(0.415166\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.13057 −0.0396022
\(816\) 0 0
\(817\) 11.6715 0.408333
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 26.4482 0.923048 0.461524 0.887128i \(-0.347303\pi\)
0.461524 + 0.887128i \(0.347303\pi\)
\(822\) 0 0
\(823\) 24.4311 0.851613 0.425807 0.904814i \(-0.359990\pi\)
0.425807 + 0.904814i \(0.359990\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21.8517 0.759857 0.379928 0.925016i \(-0.375949\pi\)
0.379928 + 0.925016i \(0.375949\pi\)
\(828\) 0 0
\(829\) −26.6102 −0.924210 −0.462105 0.886825i \(-0.652906\pi\)
−0.462105 + 0.886825i \(0.652906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 30.8897 1.07026
\(834\) 0 0
\(835\) −1.27762 −0.0442138
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.1380 0.350001 0.175001 0.984568i \(-0.444007\pi\)
0.175001 + 0.984568i \(0.444007\pi\)
\(840\) 0 0
\(841\) 46.4003 1.60001
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.751999 −0.0258696
\(846\) 0 0
\(847\) −58.0763 −1.99553
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −54.7193 −1.87575
\(852\) 0 0
\(853\) 13.5634 0.464403 0.232202 0.972668i \(-0.425407\pi\)
0.232202 + 0.972668i \(0.425407\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.0025 −0.375839 −0.187919 0.982184i \(-0.560174\pi\)
−0.187919 + 0.982184i \(0.560174\pi\)
\(858\) 0 0
\(859\) 27.7278 0.946059 0.473030 0.881046i \(-0.343160\pi\)
0.473030 + 0.881046i \(0.343160\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 29.8775 1.01704 0.508521 0.861050i \(-0.330192\pi\)
0.508521 + 0.861050i \(0.330192\pi\)
\(864\) 0 0
\(865\) 0.518285 0.0176222
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.92120 0.0651723
\(870\) 0 0
\(871\) −22.9531 −0.777735
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.35359 0.147178
\(876\) 0 0
\(877\) −0.325882 −0.0110042 −0.00550212 0.999985i \(-0.501751\pi\)
−0.00550212 + 0.999985i \(0.501751\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −15.5697 −0.524558 −0.262279 0.964992i \(-0.584474\pi\)
−0.262279 + 0.964992i \(0.584474\pi\)
\(882\) 0 0
\(883\) −23.6825 −0.796979 −0.398489 0.917173i \(-0.630465\pi\)
−0.398489 + 0.917173i \(0.630465\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −46.8677 −1.57366 −0.786831 0.617169i \(-0.788280\pi\)
−0.786831 + 0.617169i \(0.788280\pi\)
\(888\) 0 0
\(889\) −4.34257 −0.145645
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.35055 −0.0786581
\(894\) 0 0
\(895\) −0.188691 −0.00630725
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 56.9373 1.89897
\(900\) 0 0
\(901\) −16.4030 −0.546464
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.76197 0.0585698
\(906\) 0 0
\(907\) −4.30477 −0.142937 −0.0714687 0.997443i \(-0.522769\pi\)
−0.0714687 + 0.997443i \(0.522769\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.0623 −0.830350 −0.415175 0.909741i \(-0.636280\pi\)
−0.415175 + 0.909741i \(0.636280\pi\)
\(912\) 0 0
\(913\) −11.3571 −0.375864
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 26.3989 0.871769
\(918\) 0 0
\(919\) −35.1544 −1.15964 −0.579818 0.814746i \(-0.696876\pi\)
−0.579818 + 0.814746i \(0.696876\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −15.8475 −0.521627
\(924\) 0 0
\(925\) −37.7131 −1.24000
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.8505 −0.946555 −0.473277 0.880913i \(-0.656929\pi\)
−0.473277 + 0.880913i \(0.656929\pi\)
\(930\) 0 0
\(931\) −19.1929 −0.629022
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.647679 −0.0211814
\(936\) 0 0
\(937\) −14.0488 −0.458953 −0.229477 0.973314i \(-0.573701\pi\)
−0.229477 + 0.973314i \(0.573701\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 35.6039 1.16065 0.580327 0.814384i \(-0.302925\pi\)
0.580327 + 0.814384i \(0.302925\pi\)
\(942\) 0 0
\(943\) −4.08806 −0.133126
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.7225 1.35580 0.677899 0.735155i \(-0.262891\pi\)
0.677899 + 0.735155i \(0.262891\pi\)
\(948\) 0 0
\(949\) 13.3861 0.434532
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −14.9744 −0.485067 −0.242534 0.970143i \(-0.577978\pi\)
−0.242534 + 0.970143i \(0.577978\pi\)
\(954\) 0 0
\(955\) 2.28823 0.0740454
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −59.0392 −1.90647
\(960\) 0 0
\(961\) 11.9953 0.386944
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.41779 −0.0456402
\(966\) 0 0
\(967\) 11.3537 0.365111 0.182555 0.983196i \(-0.441563\pi\)
0.182555 + 0.983196i \(0.441563\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −26.1383 −0.838819 −0.419410 0.907797i \(-0.637763\pi\)
−0.419410 + 0.907797i \(0.637763\pi\)
\(972\) 0 0
\(973\) 4.27140 0.136935
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 15.8859 0.508236 0.254118 0.967173i \(-0.418215\pi\)
0.254118 + 0.967173i \(0.418215\pi\)
\(978\) 0 0
\(979\) 14.9691 0.478416
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −21.9904 −0.701383 −0.350692 0.936491i \(-0.614053\pi\)
−0.350692 + 0.936491i \(0.614053\pi\)
\(984\) 0 0
\(985\) 0.362251 0.0115423
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 84.5501 2.68854
\(990\) 0 0
\(991\) −0.568262 −0.0180514 −0.00902572 0.999959i \(-0.502873\pi\)
−0.00902572 + 0.999959i \(0.502873\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.126354 0.00400568
\(996\) 0 0
\(997\) −10.3329 −0.327245 −0.163623 0.986523i \(-0.552318\pi\)
−0.163623 + 0.986523i \(0.552318\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.cf.1.4 6
3.2 odd 2 8208.2.a.ce.1.3 6
4.3 odd 2 4104.2.a.t.1.4 yes 6
12.11 even 2 4104.2.a.s.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.s.1.3 6 12.11 even 2
4104.2.a.t.1.4 yes 6 4.3 odd 2
8208.2.a.ce.1.3 6 3.2 odd 2
8208.2.a.cf.1.4 6 1.1 even 1 trivial