Properties

Label 8208.2.a.cb.1.2
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,-3,0,-1,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.4873296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 8x^{2} + 15x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.04032\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.17927 q^{5} -4.44641 q^{7} +0.698144 q^{11} -3.60931 q^{13} +2.08064 q^{17} +1.00000 q^{19} +3.10424 q^{23} -0.250766 q^{25} -5.38249 q^{29} -7.52705 q^{31} +9.68995 q^{35} -6.52705 q^{37} -8.01541 q^{41} +0.559190 q^{43} -10.9259 q^{47} +12.7706 q^{49} -10.4867 q^{53} -1.52145 q^{55} +11.8692 q^{59} -0.762065 q^{61} +7.86568 q^{65} +1.23794 q^{67} +5.25077 q^{71} +6.69718 q^{73} -3.10424 q^{77} -15.4070 q^{79} -8.09605 q^{83} -4.53428 q^{85} -16.7466 q^{89} +16.0485 q^{91} -2.17927 q^{95} -1.24354 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{5} - q^{7} + 2 q^{11} + 3 q^{13} - 8 q^{17} + 5 q^{19} + 2 q^{23} + 4 q^{25} - 10 q^{29} + 2 q^{31} + 9 q^{35} + 7 q^{37} - 7 q^{41} + 10 q^{47} + 6 q^{49} - 22 q^{53} + 8 q^{55} + 12 q^{59}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.17927 −0.974601 −0.487300 0.873234i \(-0.662018\pi\)
−0.487300 + 0.873234i \(0.662018\pi\)
\(6\) 0 0
\(7\) −4.44641 −1.68059 −0.840293 0.542132i \(-0.817617\pi\)
−0.840293 + 0.542132i \(0.817617\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.698144 0.210498 0.105249 0.994446i \(-0.466436\pi\)
0.105249 + 0.994446i \(0.466436\pi\)
\(12\) 0 0
\(13\) −3.60931 −1.00104 −0.500522 0.865724i \(-0.666858\pi\)
−0.500522 + 0.865724i \(0.666858\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.08064 0.504629 0.252314 0.967645i \(-0.418808\pi\)
0.252314 + 0.967645i \(0.418808\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.10424 0.647279 0.323639 0.946181i \(-0.395094\pi\)
0.323639 + 0.946181i \(0.395094\pi\)
\(24\) 0 0
\(25\) −0.250766 −0.0501532
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.38249 −0.999504 −0.499752 0.866169i \(-0.666575\pi\)
−0.499752 + 0.866169i \(0.666575\pi\)
\(30\) 0 0
\(31\) −7.52705 −1.35190 −0.675949 0.736948i \(-0.736266\pi\)
−0.675949 + 0.736948i \(0.736266\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.68995 1.63790
\(36\) 0 0
\(37\) −6.52705 −1.07304 −0.536520 0.843887i \(-0.680261\pi\)
−0.536520 + 0.843887i \(0.680261\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.01541 −1.25180 −0.625898 0.779905i \(-0.715267\pi\)
−0.625898 + 0.779905i \(0.715267\pi\)
\(42\) 0 0
\(43\) 0.559190 0.0852756 0.0426378 0.999091i \(-0.486424\pi\)
0.0426378 + 0.999091i \(0.486424\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.9259 −1.59371 −0.796854 0.604171i \(-0.793504\pi\)
−0.796854 + 0.604171i \(0.793504\pi\)
\(48\) 0 0
\(49\) 12.7706 1.82437
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.4867 −1.44046 −0.720232 0.693734i \(-0.755965\pi\)
−0.720232 + 0.693734i \(0.755965\pi\)
\(54\) 0 0
\(55\) −1.52145 −0.205152
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.8692 1.54524 0.772621 0.634868i \(-0.218945\pi\)
0.772621 + 0.634868i \(0.218945\pi\)
\(60\) 0 0
\(61\) −0.762065 −0.0975724 −0.0487862 0.998809i \(-0.515535\pi\)
−0.0487862 + 0.998809i \(0.515535\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.86568 0.975618
\(66\) 0 0
\(67\) 1.23794 0.151238 0.0756189 0.997137i \(-0.475907\pi\)
0.0756189 + 0.997137i \(0.475907\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.25077 0.623151 0.311576 0.950221i \(-0.399143\pi\)
0.311576 + 0.950221i \(0.399143\pi\)
\(72\) 0 0
\(73\) 6.69718 0.783846 0.391923 0.919998i \(-0.371810\pi\)
0.391923 + 0.919998i \(0.371810\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.10424 −0.353761
\(78\) 0 0
\(79\) −15.4070 −1.73343 −0.866714 0.498805i \(-0.833772\pi\)
−0.866714 + 0.498805i \(0.833772\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.09605 −0.888656 −0.444328 0.895864i \(-0.646558\pi\)
−0.444328 + 0.895864i \(0.646558\pi\)
\(84\) 0 0
\(85\) −4.53428 −0.491812
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −16.7466 −1.77514 −0.887570 0.460672i \(-0.847608\pi\)
−0.887570 + 0.460672i \(0.847608\pi\)
\(90\) 0 0
\(91\) 16.0485 1.68234
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.17927 −0.223589
\(96\) 0 0
\(97\) −1.24354 −0.126262 −0.0631311 0.998005i \(-0.520109\pi\)
−0.0631311 + 0.998005i \(0.520109\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.98200 −0.794239 −0.397119 0.917767i \(-0.629990\pi\)
−0.397119 + 0.917767i \(0.629990\pi\)
\(102\) 0 0
\(103\) 16.7762 1.65301 0.826504 0.562931i \(-0.190326\pi\)
0.826504 + 0.562931i \(0.190326\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.71915 −0.552892 −0.276446 0.961030i \(-0.589157\pi\)
−0.276446 + 0.961030i \(0.589157\pi\)
\(108\) 0 0
\(109\) 8.16850 0.782401 0.391200 0.920306i \(-0.372060\pi\)
0.391200 + 0.920306i \(0.372060\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.552622 −0.0519863 −0.0259931 0.999662i \(-0.508275\pi\)
−0.0259931 + 0.999662i \(0.508275\pi\)
\(114\) 0 0
\(115\) −6.76499 −0.630838
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.25137 −0.848072
\(120\) 0 0
\(121\) −10.5126 −0.955690
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.4429 1.02348
\(126\) 0 0
\(127\) 15.4014 1.36666 0.683329 0.730111i \(-0.260532\pi\)
0.683329 + 0.730111i \(0.260532\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.43564 −0.562285 −0.281142 0.959666i \(-0.590713\pi\)
−0.281142 + 0.959666i \(0.590713\pi\)
\(132\) 0 0
\(133\) −4.44641 −0.385553
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.4392 −0.891880 −0.445940 0.895063i \(-0.647130\pi\)
−0.445940 + 0.895063i \(0.647130\pi\)
\(138\) 0 0
\(139\) −4.01120 −0.340226 −0.170113 0.985425i \(-0.554413\pi\)
−0.170113 + 0.985425i \(0.554413\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.51982 −0.210718
\(144\) 0 0
\(145\) 11.7299 0.974117
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.0006 1.14697 0.573487 0.819215i \(-0.305590\pi\)
0.573487 + 0.819215i \(0.305590\pi\)
\(150\) 0 0
\(151\) 3.91051 0.318233 0.159116 0.987260i \(-0.449136\pi\)
0.159116 + 0.987260i \(0.449136\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.4035 1.31756
\(156\) 0 0
\(157\) −11.6404 −0.929008 −0.464504 0.885571i \(-0.653767\pi\)
−0.464504 + 0.885571i \(0.653767\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −13.8027 −1.08781
\(162\) 0 0
\(163\) 20.5421 1.60898 0.804491 0.593964i \(-0.202438\pi\)
0.804491 + 0.593964i \(0.202438\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.67980 0.671663 0.335832 0.941922i \(-0.390983\pi\)
0.335832 + 0.941922i \(0.390983\pi\)
\(168\) 0 0
\(169\) 0.0271439 0.00208799
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.8666 1.20632 0.603159 0.797621i \(-0.293908\pi\)
0.603159 + 0.797621i \(0.293908\pi\)
\(174\) 0 0
\(175\) 1.11501 0.0842868
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.08785 −0.679258 −0.339629 0.940559i \(-0.610302\pi\)
−0.339629 + 0.940559i \(0.610302\pi\)
\(180\) 0 0
\(181\) 7.11115 0.528568 0.264284 0.964445i \(-0.414864\pi\)
0.264284 + 0.964445i \(0.414864\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 14.2242 1.04579
\(186\) 0 0
\(187\) 1.45259 0.106224
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.2527 0.958933 0.479467 0.877560i \(-0.340830\pi\)
0.479467 + 0.877560i \(0.340830\pi\)
\(192\) 0 0
\(193\) 17.6251 1.26868 0.634340 0.773054i \(-0.281272\pi\)
0.634340 + 0.773054i \(0.281272\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.31565 −0.663713 −0.331856 0.943330i \(-0.607675\pi\)
−0.331856 + 0.943330i \(0.607675\pi\)
\(198\) 0 0
\(199\) −2.20917 −0.156604 −0.0783018 0.996930i \(-0.524950\pi\)
−0.0783018 + 0.996930i \(0.524950\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 23.9328 1.67975
\(204\) 0 0
\(205\) 17.4678 1.22000
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.698144 0.0482917
\(210\) 0 0
\(211\) 7.73492 0.532494 0.266247 0.963905i \(-0.414216\pi\)
0.266247 + 0.963905i \(0.414216\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.21863 −0.0831097
\(216\) 0 0
\(217\) 33.4684 2.27198
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.50967 −0.505155
\(222\) 0 0
\(223\) 24.7063 1.65446 0.827228 0.561866i \(-0.189916\pi\)
0.827228 + 0.561866i \(0.189916\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 22.8089 1.51388 0.756941 0.653483i \(-0.226693\pi\)
0.756941 + 0.653483i \(0.226693\pi\)
\(228\) 0 0
\(229\) −8.07310 −0.533486 −0.266743 0.963768i \(-0.585947\pi\)
−0.266743 + 0.963768i \(0.585947\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.8365 −0.906458 −0.453229 0.891394i \(-0.649728\pi\)
−0.453229 + 0.891394i \(0.649728\pi\)
\(234\) 0 0
\(235\) 23.8106 1.55323
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −20.6126 −1.33332 −0.666660 0.745362i \(-0.732277\pi\)
−0.666660 + 0.745362i \(0.732277\pi\)
\(240\) 0 0
\(241\) 5.35177 0.344738 0.172369 0.985032i \(-0.444858\pi\)
0.172369 + 0.985032i \(0.444858\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −27.8306 −1.77803
\(246\) 0 0
\(247\) −3.60931 −0.229655
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 30.9272 1.95211 0.976053 0.217532i \(-0.0698005\pi\)
0.976053 + 0.217532i \(0.0698005\pi\)
\(252\) 0 0
\(253\) 2.16721 0.136251
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.83088 −0.301342 −0.150671 0.988584i \(-0.548143\pi\)
−0.150671 + 0.988584i \(0.548143\pi\)
\(258\) 0 0
\(259\) 29.0220 1.80334
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.10458 −0.561413 −0.280706 0.959794i \(-0.590569\pi\)
−0.280706 + 0.959794i \(0.590569\pi\)
\(264\) 0 0
\(265\) 22.8535 1.40388
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −20.6008 −1.25605 −0.628026 0.778193i \(-0.716137\pi\)
−0.628026 + 0.778193i \(0.716137\pi\)
\(270\) 0 0
\(271\) 15.3569 0.932867 0.466433 0.884556i \(-0.345539\pi\)
0.466433 + 0.884556i \(0.345539\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.175071 −0.0105572
\(276\) 0 0
\(277\) 2.45924 0.147762 0.0738808 0.997267i \(-0.476462\pi\)
0.0738808 + 0.997267i \(0.476462\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −31.5566 −1.88251 −0.941253 0.337702i \(-0.890350\pi\)
−0.941253 + 0.337702i \(0.890350\pi\)
\(282\) 0 0
\(283\) 5.98039 0.355497 0.177749 0.984076i \(-0.443119\pi\)
0.177749 + 0.984076i \(0.443119\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 35.6398 2.10375
\(288\) 0 0
\(289\) −12.6709 −0.745350
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 20.4726 1.19602 0.598011 0.801488i \(-0.295958\pi\)
0.598011 + 0.801488i \(0.295958\pi\)
\(294\) 0 0
\(295\) −25.8663 −1.50599
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −11.2042 −0.647954
\(300\) 0 0
\(301\) −2.48639 −0.143313
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.66075 0.0950941
\(306\) 0 0
\(307\) 12.1859 0.695485 0.347742 0.937590i \(-0.386948\pi\)
0.347742 + 0.937590i \(0.386948\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.04461 0.342758 0.171379 0.985205i \(-0.445178\pi\)
0.171379 + 0.985205i \(0.445178\pi\)
\(312\) 0 0
\(313\) 10.9429 0.618532 0.309266 0.950976i \(-0.399917\pi\)
0.309266 + 0.950976i \(0.399917\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.244848 0.0137520 0.00687601 0.999976i \(-0.497811\pi\)
0.00687601 + 0.999976i \(0.497811\pi\)
\(318\) 0 0
\(319\) −3.75776 −0.210394
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.08064 0.115770
\(324\) 0 0
\(325\) 0.905093 0.0502055
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 48.5811 2.67836
\(330\) 0 0
\(331\) −7.41913 −0.407792 −0.203896 0.978993i \(-0.565360\pi\)
−0.203896 + 0.978993i \(0.565360\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.69780 −0.147397
\(336\) 0 0
\(337\) −4.08916 −0.222751 −0.111375 0.993778i \(-0.535526\pi\)
−0.111375 + 0.993778i \(0.535526\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5.25497 −0.284573
\(342\) 0 0
\(343\) −25.6584 −1.38542
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.7071 −0.896883 −0.448441 0.893812i \(-0.648021\pi\)
−0.448441 + 0.893812i \(0.648021\pi\)
\(348\) 0 0
\(349\) −2.10778 −0.112827 −0.0564135 0.998407i \(-0.517967\pi\)
−0.0564135 + 0.998407i \(0.517967\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.92951 −0.155922 −0.0779611 0.996956i \(-0.524841\pi\)
−0.0779611 + 0.996956i \(0.524841\pi\)
\(354\) 0 0
\(355\) −11.4429 −0.607324
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 34.4953 1.82059 0.910297 0.413955i \(-0.135853\pi\)
0.910297 + 0.413955i \(0.135853\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.5950 −0.763936
\(366\) 0 0
\(367\) −4.94719 −0.258241 −0.129121 0.991629i \(-0.541215\pi\)
−0.129121 + 0.991629i \(0.541215\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 46.6283 2.42082
\(372\) 0 0
\(373\) 13.1681 0.681816 0.340908 0.940097i \(-0.389266\pi\)
0.340908 + 0.940097i \(0.389266\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.4271 1.00055
\(378\) 0 0
\(379\) −1.55389 −0.0798179 −0.0399090 0.999203i \(-0.512707\pi\)
−0.0399090 + 0.999203i \(0.512707\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.5415 0.896328 0.448164 0.893951i \(-0.352078\pi\)
0.448164 + 0.893951i \(0.352078\pi\)
\(384\) 0 0
\(385\) 6.76499 0.344776
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.53459 0.128509 0.0642545 0.997934i \(-0.479533\pi\)
0.0642545 + 0.997934i \(0.479533\pi\)
\(390\) 0 0
\(391\) 6.45880 0.326635
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 33.5762 1.68940
\(396\) 0 0
\(397\) 30.7430 1.54295 0.771473 0.636262i \(-0.219520\pi\)
0.771473 + 0.636262i \(0.219520\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.8265 0.890212 0.445106 0.895478i \(-0.353166\pi\)
0.445106 + 0.895478i \(0.353166\pi\)
\(402\) 0 0
\(403\) 27.1675 1.35331
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.55682 −0.225873
\(408\) 0 0
\(409\) −31.8944 −1.57708 −0.788539 0.614985i \(-0.789162\pi\)
−0.788539 + 0.614985i \(0.789162\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −52.7755 −2.59691
\(414\) 0 0
\(415\) 17.6435 0.866085
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7.73689 −0.377972 −0.188986 0.981980i \(-0.560520\pi\)
−0.188986 + 0.981980i \(0.560520\pi\)
\(420\) 0 0
\(421\) −25.0326 −1.22001 −0.610006 0.792397i \(-0.708833\pi\)
−0.610006 + 0.792397i \(0.708833\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.521753 −0.0253088
\(426\) 0 0
\(427\) 3.38845 0.163979
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.7224 −0.757320 −0.378660 0.925536i \(-0.623615\pi\)
−0.378660 + 0.925536i \(0.623615\pi\)
\(432\) 0 0
\(433\) 15.1478 0.727955 0.363977 0.931408i \(-0.381419\pi\)
0.363977 + 0.931408i \(0.381419\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.10424 0.148496
\(438\) 0 0
\(439\) −32.0476 −1.52955 −0.764775 0.644298i \(-0.777150\pi\)
−0.764775 + 0.644298i \(0.777150\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −25.3626 −1.20501 −0.602506 0.798114i \(-0.705831\pi\)
−0.602506 + 0.798114i \(0.705831\pi\)
\(444\) 0 0
\(445\) 36.4955 1.73005
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.5037 1.53394 0.766972 0.641680i \(-0.221762\pi\)
0.766972 + 0.641680i \(0.221762\pi\)
\(450\) 0 0
\(451\) −5.59591 −0.263501
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −34.9741 −1.63961
\(456\) 0 0
\(457\) −14.4992 −0.678245 −0.339122 0.940742i \(-0.610130\pi\)
−0.339122 + 0.940742i \(0.610130\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.0547 0.980616 0.490308 0.871549i \(-0.336884\pi\)
0.490308 + 0.871549i \(0.336884\pi\)
\(462\) 0 0
\(463\) 31.6539 1.47108 0.735540 0.677481i \(-0.236928\pi\)
0.735540 + 0.677481i \(0.236928\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.0803 −0.929204 −0.464602 0.885520i \(-0.653803\pi\)
−0.464602 + 0.885520i \(0.653803\pi\)
\(468\) 0 0
\(469\) −5.50437 −0.254168
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.390395 0.0179504
\(474\) 0 0
\(475\) −0.250766 −0.0115059
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −19.3940 −0.886136 −0.443068 0.896488i \(-0.646110\pi\)
−0.443068 + 0.896488i \(0.646110\pi\)
\(480\) 0 0
\(481\) 23.5582 1.07416
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.71001 0.123055
\(486\) 0 0
\(487\) −1.67643 −0.0759664 −0.0379832 0.999278i \(-0.512093\pi\)
−0.0379832 + 0.999278i \(0.512093\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −23.6681 −1.06812 −0.534062 0.845445i \(-0.679335\pi\)
−0.534062 + 0.845445i \(0.679335\pi\)
\(492\) 0 0
\(493\) −11.1990 −0.504378
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −23.3471 −1.04726
\(498\) 0 0
\(499\) −2.64766 −0.118526 −0.0592628 0.998242i \(-0.518875\pi\)
−0.0592628 + 0.998242i \(0.518875\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.38056 −0.150732 −0.0753659 0.997156i \(-0.524012\pi\)
−0.0753659 + 0.997156i \(0.524012\pi\)
\(504\) 0 0
\(505\) 17.3950 0.774066
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 42.8179 1.89787 0.948934 0.315474i \(-0.102163\pi\)
0.948934 + 0.315474i \(0.102163\pi\)
\(510\) 0 0
\(511\) −29.7784 −1.31732
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −36.5599 −1.61102
\(516\) 0 0
\(517\) −7.62787 −0.335473
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −26.3936 −1.15632 −0.578162 0.815922i \(-0.696230\pi\)
−0.578162 + 0.815922i \(0.696230\pi\)
\(522\) 0 0
\(523\) −20.1256 −0.880030 −0.440015 0.897990i \(-0.645027\pi\)
−0.440015 + 0.897990i \(0.645027\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.6611 −0.682207
\(528\) 0 0
\(529\) −13.3637 −0.581031
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 28.9301 1.25310
\(534\) 0 0
\(535\) 12.4636 0.538849
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8.91572 0.384027
\(540\) 0 0
\(541\) 25.5598 1.09890 0.549451 0.835526i \(-0.314837\pi\)
0.549451 + 0.835526i \(0.314837\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −17.8014 −0.762528
\(546\) 0 0
\(547\) 22.8128 0.975405 0.487702 0.873010i \(-0.337835\pi\)
0.487702 + 0.873010i \(0.337835\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.38249 −0.229302
\(552\) 0 0
\(553\) 68.5061 2.91318
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.46839 0.104589 0.0522945 0.998632i \(-0.483347\pi\)
0.0522945 + 0.998632i \(0.483347\pi\)
\(558\) 0 0
\(559\) −2.01829 −0.0853646
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −13.7211 −0.578275 −0.289137 0.957288i \(-0.593368\pi\)
−0.289137 + 0.957288i \(0.593368\pi\)
\(564\) 0 0
\(565\) 1.20431 0.0506659
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 40.3694 1.69237 0.846187 0.532886i \(-0.178892\pi\)
0.846187 + 0.532886i \(0.178892\pi\)
\(570\) 0 0
\(571\) −26.4839 −1.10832 −0.554158 0.832411i \(-0.686960\pi\)
−0.554158 + 0.832411i \(0.686960\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.778438 −0.0324631
\(576\) 0 0
\(577\) 20.9369 0.871613 0.435806 0.900040i \(-0.356463\pi\)
0.435806 + 0.900040i \(0.356463\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 35.9984 1.49346
\(582\) 0 0
\(583\) −7.32125 −0.303215
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.6683 −0.522876 −0.261438 0.965220i \(-0.584197\pi\)
−0.261438 + 0.965220i \(0.584197\pi\)
\(588\) 0 0
\(589\) −7.52705 −0.310147
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.96020 0.326886 0.163443 0.986553i \(-0.447740\pi\)
0.163443 + 0.986553i \(0.447740\pi\)
\(594\) 0 0
\(595\) 20.1613 0.826532
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −28.3614 −1.15881 −0.579407 0.815038i \(-0.696716\pi\)
−0.579407 + 0.815038i \(0.696716\pi\)
\(600\) 0 0
\(601\) −7.60140 −0.310067 −0.155034 0.987909i \(-0.549549\pi\)
−0.155034 + 0.987909i \(0.549549\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 22.9098 0.931417
\(606\) 0 0
\(607\) 12.4610 0.505778 0.252889 0.967495i \(-0.418619\pi\)
0.252889 + 0.967495i \(0.418619\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 39.4351 1.59537
\(612\) 0 0
\(613\) −32.1606 −1.29895 −0.649476 0.760382i \(-0.725012\pi\)
−0.649476 + 0.760382i \(0.725012\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8.63957 −0.347816 −0.173908 0.984762i \(-0.555640\pi\)
−0.173908 + 0.984762i \(0.555640\pi\)
\(618\) 0 0
\(619\) 38.3717 1.54229 0.771144 0.636661i \(-0.219685\pi\)
0.771144 + 0.636661i \(0.219685\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 74.4625 2.98328
\(624\) 0 0
\(625\) −23.6833 −0.947331
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13.5804 −0.541487
\(630\) 0 0
\(631\) −9.78436 −0.389509 −0.194755 0.980852i \(-0.562391\pi\)
−0.194755 + 0.980852i \(0.562391\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −33.5640 −1.33195
\(636\) 0 0
\(637\) −46.0931 −1.82627
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −15.4965 −0.612074 −0.306037 0.952020i \(-0.599003\pi\)
−0.306037 + 0.952020i \(0.599003\pi\)
\(642\) 0 0
\(643\) −0.868603 −0.0342544 −0.0171272 0.999853i \(-0.505452\pi\)
−0.0171272 + 0.999853i \(0.505452\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.1489 −0.752819 −0.376409 0.926453i \(-0.622841\pi\)
−0.376409 + 0.926453i \(0.622841\pi\)
\(648\) 0 0
\(649\) 8.28643 0.325271
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −37.8026 −1.47933 −0.739665 0.672975i \(-0.765016\pi\)
−0.739665 + 0.672975i \(0.765016\pi\)
\(654\) 0 0
\(655\) 14.0250 0.548003
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.67264 0.0651568 0.0325784 0.999469i \(-0.489628\pi\)
0.0325784 + 0.999469i \(0.489628\pi\)
\(660\) 0 0
\(661\) −6.08318 −0.236608 −0.118304 0.992977i \(-0.537746\pi\)
−0.118304 + 0.992977i \(0.537746\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.68995 0.375760
\(666\) 0 0
\(667\) −16.7085 −0.646957
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.532031 −0.0205388
\(672\) 0 0
\(673\) −12.5462 −0.483619 −0.241810 0.970324i \(-0.577741\pi\)
−0.241810 + 0.970324i \(0.577741\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.9176 1.38043 0.690214 0.723606i \(-0.257517\pi\)
0.690214 + 0.723606i \(0.257517\pi\)
\(678\) 0 0
\(679\) 5.52928 0.212194
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.21569 0.276101 0.138050 0.990425i \(-0.455916\pi\)
0.138050 + 0.990425i \(0.455916\pi\)
\(684\) 0 0
\(685\) 22.7498 0.869227
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 37.8499 1.44197
\(690\) 0 0
\(691\) 38.6934 1.47197 0.735983 0.677000i \(-0.236720\pi\)
0.735983 + 0.677000i \(0.236720\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.74151 0.331585
\(696\) 0 0
\(697\) −16.6772 −0.631692
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11.1955 0.422847 0.211424 0.977395i \(-0.432190\pi\)
0.211424 + 0.977395i \(0.432190\pi\)
\(702\) 0 0
\(703\) −6.52705 −0.246172
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 35.4913 1.33479
\(708\) 0 0
\(709\) 27.5312 1.03396 0.516978 0.855999i \(-0.327057\pi\)
0.516978 + 0.855999i \(0.327057\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −23.3658 −0.875055
\(714\) 0 0
\(715\) 5.49138 0.205366
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −41.8647 −1.56129 −0.780645 0.624975i \(-0.785109\pi\)
−0.780645 + 0.624975i \(0.785109\pi\)
\(720\) 0 0
\(721\) −74.5939 −2.77802
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.34975 0.0501283
\(726\) 0 0
\(727\) −39.7391 −1.47384 −0.736920 0.675980i \(-0.763721\pi\)
−0.736920 + 0.675980i \(0.763721\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.16347 0.0430325
\(732\) 0 0
\(733\) −28.1825 −1.04094 −0.520472 0.853879i \(-0.674244\pi\)
−0.520472 + 0.853879i \(0.674244\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.864258 0.0318353
\(738\) 0 0
\(739\) 3.80866 0.140104 0.0700519 0.997543i \(-0.477684\pi\)
0.0700519 + 0.997543i \(0.477684\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.75597 −0.321225 −0.160613 0.987017i \(-0.551347\pi\)
−0.160613 + 0.987017i \(0.551347\pi\)
\(744\) 0 0
\(745\) −30.5112 −1.11784
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 25.4297 0.929182
\(750\) 0 0
\(751\) −21.7050 −0.792027 −0.396014 0.918245i \(-0.629607\pi\)
−0.396014 + 0.918245i \(0.629607\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.52207 −0.310150
\(756\) 0 0
\(757\) 12.5910 0.457629 0.228814 0.973470i \(-0.426515\pi\)
0.228814 + 0.973470i \(0.426515\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −44.1239 −1.59949 −0.799745 0.600340i \(-0.795032\pi\)
−0.799745 + 0.600340i \(0.795032\pi\)
\(762\) 0 0
\(763\) −36.3205 −1.31489
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −42.8398 −1.54685
\(768\) 0 0
\(769\) 4.62876 0.166918 0.0834588 0.996511i \(-0.473403\pi\)
0.0834588 + 0.996511i \(0.473403\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −36.8840 −1.32663 −0.663314 0.748342i \(-0.730850\pi\)
−0.663314 + 0.748342i \(0.730850\pi\)
\(774\) 0 0
\(775\) 1.88753 0.0678020
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.01541 −0.287182
\(780\) 0 0
\(781\) 3.66579 0.131172
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 25.3677 0.905412
\(786\) 0 0
\(787\) 22.1118 0.788199 0.394100 0.919068i \(-0.371057\pi\)
0.394100 + 0.919068i \(0.371057\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.45718 0.0873674
\(792\) 0 0
\(793\) 2.75053 0.0976742
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.4175 −0.546114 −0.273057 0.961998i \(-0.588035\pi\)
−0.273057 + 0.961998i \(0.588035\pi\)
\(798\) 0 0
\(799\) −22.7329 −0.804231
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.67560 0.164998
\(804\) 0 0
\(805\) 30.0799 1.06018
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −33.5881 −1.18089 −0.590447 0.807077i \(-0.701048\pi\)
−0.590447 + 0.807077i \(0.701048\pi\)
\(810\) 0 0
\(811\) −9.28393 −0.326003 −0.163001 0.986626i \(-0.552118\pi\)
−0.163001 + 0.986626i \(0.552118\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −44.7669 −1.56812
\(816\) 0 0
\(817\) 0.559190 0.0195636
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33.2864 1.16170 0.580852 0.814009i \(-0.302719\pi\)
0.580852 + 0.814009i \(0.302719\pi\)
\(822\) 0 0
\(823\) 54.6005 1.90325 0.951627 0.307256i \(-0.0994109\pi\)
0.951627 + 0.307256i \(0.0994109\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.47986 0.0514598 0.0257299 0.999669i \(-0.491809\pi\)
0.0257299 + 0.999669i \(0.491809\pi\)
\(828\) 0 0
\(829\) 26.6522 0.925669 0.462835 0.886445i \(-0.346832\pi\)
0.462835 + 0.886445i \(0.346832\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 26.5710 0.920629
\(834\) 0 0
\(835\) −18.9157 −0.654604
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.3810 −0.772676 −0.386338 0.922357i \(-0.626260\pi\)
−0.386338 + 0.922357i \(0.626260\pi\)
\(840\) 0 0
\(841\) −0.0287695 −0.000992052 0
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.0591540 −0.00203496
\(846\) 0 0
\(847\) 46.7433 1.60612
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −20.2615 −0.694556
\(852\) 0 0
\(853\) 33.4603 1.14566 0.572829 0.819675i \(-0.305846\pi\)
0.572829 + 0.819675i \(0.305846\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −46.3861 −1.58452 −0.792260 0.610183i \(-0.791096\pi\)
−0.792260 + 0.610183i \(0.791096\pi\)
\(858\) 0 0
\(859\) −8.09184 −0.276090 −0.138045 0.990426i \(-0.544082\pi\)
−0.138045 + 0.990426i \(0.544082\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −21.5692 −0.734224 −0.367112 0.930177i \(-0.619653\pi\)
−0.367112 + 0.930177i \(0.619653\pi\)
\(864\) 0 0
\(865\) −34.5777 −1.17568
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −10.7563 −0.364884
\(870\) 0 0
\(871\) −4.46810 −0.151396
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −50.8797 −1.72005
\(876\) 0 0
\(877\) 41.4847 1.40084 0.700420 0.713731i \(-0.252996\pi\)
0.700420 + 0.713731i \(0.252996\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −6.38614 −0.215155 −0.107577 0.994197i \(-0.534309\pi\)
−0.107577 + 0.994197i \(0.534309\pi\)
\(882\) 0 0
\(883\) 58.8554 1.98064 0.990320 0.138801i \(-0.0443248\pi\)
0.990320 + 0.138801i \(0.0443248\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 34.4410 1.15641 0.578207 0.815890i \(-0.303752\pi\)
0.578207 + 0.815890i \(0.303752\pi\)
\(888\) 0 0
\(889\) −68.4812 −2.29678
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −10.9259 −0.365622
\(894\) 0 0
\(895\) 19.8049 0.662005
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 40.5143 1.35123
\(900\) 0 0
\(901\) −21.8191 −0.726899
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −15.4971 −0.515143
\(906\) 0 0
\(907\) 39.2022 1.30169 0.650843 0.759212i \(-0.274416\pi\)
0.650843 + 0.759212i \(0.274416\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −29.1097 −0.964446 −0.482223 0.876049i \(-0.660170\pi\)
−0.482223 + 0.876049i \(0.660170\pi\)
\(912\) 0 0
\(913\) −5.65221 −0.187061
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 28.6155 0.944968
\(918\) 0 0
\(919\) −19.1577 −0.631955 −0.315977 0.948767i \(-0.602332\pi\)
−0.315977 + 0.948767i \(0.602332\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −18.9517 −0.623802
\(924\) 0 0
\(925\) 1.63676 0.0538164
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −12.7457 −0.418172 −0.209086 0.977897i \(-0.567049\pi\)
−0.209086 + 0.977897i \(0.567049\pi\)
\(930\) 0 0
\(931\) 12.7706 0.418539
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.16558 −0.103526
\(936\) 0 0
\(937\) −6.71149 −0.219255 −0.109627 0.993973i \(-0.534966\pi\)
−0.109627 + 0.993973i \(0.534966\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −20.3136 −0.662204 −0.331102 0.943595i \(-0.607420\pi\)
−0.331102 + 0.943595i \(0.607420\pi\)
\(942\) 0 0
\(943\) −24.8817 −0.810261
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −7.63757 −0.248188 −0.124094 0.992270i \(-0.539602\pi\)
−0.124094 + 0.992270i \(0.539602\pi\)
\(948\) 0 0
\(949\) −24.1722 −0.784663
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.6049 0.991391 0.495695 0.868496i \(-0.334913\pi\)
0.495695 + 0.868496i \(0.334913\pi\)
\(954\) 0 0
\(955\) −28.8813 −0.934577
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 46.4169 1.49888
\(960\) 0 0
\(961\) 25.6565 0.827629
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −38.4098 −1.23646
\(966\) 0 0
\(967\) −50.9289 −1.63776 −0.818882 0.573962i \(-0.805406\pi\)
−0.818882 + 0.573962i \(0.805406\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 17.9785 0.576956 0.288478 0.957486i \(-0.406851\pi\)
0.288478 + 0.957486i \(0.406851\pi\)
\(972\) 0 0
\(973\) 17.8355 0.571779
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.5245 0.688629 0.344314 0.938854i \(-0.388111\pi\)
0.344314 + 0.938854i \(0.388111\pi\)
\(978\) 0 0
\(979\) −11.6916 −0.373664
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −15.0333 −0.479488 −0.239744 0.970836i \(-0.577063\pi\)
−0.239744 + 0.970836i \(0.577063\pi\)
\(984\) 0 0
\(985\) 20.3014 0.646855
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.73586 0.0551971
\(990\) 0 0
\(991\) −36.7415 −1.16713 −0.583566 0.812065i \(-0.698343\pi\)
−0.583566 + 0.812065i \(0.698343\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.81438 0.152626
\(996\) 0 0
\(997\) 37.0081 1.17206 0.586029 0.810290i \(-0.300690\pi\)
0.586029 + 0.810290i \(0.300690\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.cb.1.2 5
3.2 odd 2 8208.2.a.cc.1.4 5
4.3 odd 2 4104.2.a.o.1.2 5
12.11 even 2 4104.2.a.r.1.4 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.o.1.2 5 4.3 odd 2
4104.2.a.r.1.4 yes 5 12.11 even 2
8208.2.a.cb.1.2 5 1.1 even 1 trivial
8208.2.a.cc.1.4 5 3.2 odd 2