Properties

Label 8208.2.a.ca.1.4
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,-3,0,-1,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.7986588.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 16x^{3} + 23x^{2} + 24x - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.37470\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.59676 q^{5} +1.07564 q^{7} +0.137382 q^{11} -6.04711 q^{13} +5.68766 q^{17} +1.00000 q^{19} -3.37470 q^{23} -2.45034 q^{25} +0.161676 q^{29} -8.61202 q^{31} +1.71755 q^{35} +5.51208 q^{37} -6.86883 q^{41} -4.03185 q^{43} +7.19083 q^{47} -5.84299 q^{49} -2.17558 q^{53} +0.219367 q^{55} -11.9250 q^{59} +9.67376 q^{61} -9.65581 q^{65} -10.4503 q^{67} -8.48854 q^{71} +16.3136 q^{73} +0.147774 q^{77} -8.80420 q^{79} -0.617611 q^{83} +9.08186 q^{85} -3.11789 q^{89} -6.50452 q^{91} +1.59676 q^{95} +1.20681 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{5} - q^{7} - 4 q^{11} + 3 q^{13} - 5 q^{17} + 5 q^{19} - q^{23} + 10 q^{25} - 4 q^{29} - 16 q^{31} - 6 q^{35} + 7 q^{37} - 7 q^{41} - 3 q^{43} + 7 q^{47} + 18 q^{49} + 2 q^{53} - q^{55} - 15 q^{59}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.59676 0.714095 0.357047 0.934086i \(-0.383783\pi\)
0.357047 + 0.934086i \(0.383783\pi\)
\(6\) 0 0
\(7\) 1.07564 0.406555 0.203277 0.979121i \(-0.434841\pi\)
0.203277 + 0.979121i \(0.434841\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.137382 0.0414223 0.0207111 0.999786i \(-0.493407\pi\)
0.0207111 + 0.999786i \(0.493407\pi\)
\(12\) 0 0
\(13\) −6.04711 −1.67717 −0.838583 0.544774i \(-0.816615\pi\)
−0.838583 + 0.544774i \(0.816615\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.68766 1.37946 0.689730 0.724067i \(-0.257729\pi\)
0.689730 + 0.724067i \(0.257729\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.37470 −0.703674 −0.351837 0.936061i \(-0.614443\pi\)
−0.351837 + 0.936061i \(0.614443\pi\)
\(24\) 0 0
\(25\) −2.45034 −0.490068
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.161676 0.0300225 0.0150112 0.999887i \(-0.495222\pi\)
0.0150112 + 0.999887i \(0.495222\pi\)
\(30\) 0 0
\(31\) −8.61202 −1.54676 −0.773382 0.633940i \(-0.781437\pi\)
−0.773382 + 0.633940i \(0.781437\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.71755 0.290318
\(36\) 0 0
\(37\) 5.51208 0.906181 0.453090 0.891465i \(-0.350321\pi\)
0.453090 + 0.891465i \(0.350321\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.86883 −1.07273 −0.536366 0.843986i \(-0.680203\pi\)
−0.536366 + 0.843986i \(0.680203\pi\)
\(42\) 0 0
\(43\) −4.03185 −0.614852 −0.307426 0.951572i \(-0.599468\pi\)
−0.307426 + 0.951572i \(0.599468\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.19083 1.04889 0.524445 0.851444i \(-0.324273\pi\)
0.524445 + 0.851444i \(0.324273\pi\)
\(48\) 0 0
\(49\) −5.84299 −0.834713
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.17558 −0.298839 −0.149419 0.988774i \(-0.547740\pi\)
−0.149419 + 0.988774i \(0.547740\pi\)
\(54\) 0 0
\(55\) 0.219367 0.0295794
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.9250 −1.55250 −0.776250 0.630425i \(-0.782881\pi\)
−0.776250 + 0.630425i \(0.782881\pi\)
\(60\) 0 0
\(61\) 9.67376 1.23860 0.619299 0.785155i \(-0.287417\pi\)
0.619299 + 0.785155i \(0.287417\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −9.65581 −1.19766
\(66\) 0 0
\(67\) −10.4503 −1.27671 −0.638356 0.769741i \(-0.720385\pi\)
−0.638356 + 0.769741i \(0.720385\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.48854 −1.00740 −0.503702 0.863877i \(-0.668029\pi\)
−0.503702 + 0.863877i \(0.668029\pi\)
\(72\) 0 0
\(73\) 16.3136 1.90936 0.954680 0.297634i \(-0.0961974\pi\)
0.954680 + 0.297634i \(0.0961974\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.147774 0.0168404
\(78\) 0 0
\(79\) −8.80420 −0.990549 −0.495275 0.868736i \(-0.664933\pi\)
−0.495275 + 0.868736i \(0.664933\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.617611 −0.0677916 −0.0338958 0.999425i \(-0.510791\pi\)
−0.0338958 + 0.999425i \(0.510791\pi\)
\(84\) 0 0
\(85\) 9.08186 0.985066
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.11789 −0.330495 −0.165248 0.986252i \(-0.552842\pi\)
−0.165248 + 0.986252i \(0.552842\pi\)
\(90\) 0 0
\(91\) −6.50452 −0.681859
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.59676 0.163825
\(96\) 0 0
\(97\) 1.20681 0.122533 0.0612665 0.998121i \(-0.480486\pi\)
0.0612665 + 0.998121i \(0.480486\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.80285 0.776413 0.388206 0.921572i \(-0.373095\pi\)
0.388206 + 0.921572i \(0.373095\pi\)
\(102\) 0 0
\(103\) 13.3149 1.31196 0.655980 0.754779i \(-0.272256\pi\)
0.655980 + 0.754779i \(0.272256\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −17.9943 −1.73957 −0.869786 0.493429i \(-0.835743\pi\)
−0.869786 + 0.493429i \(0.835743\pi\)
\(108\) 0 0
\(109\) −10.8208 −1.03644 −0.518222 0.855246i \(-0.673406\pi\)
−0.518222 + 0.855246i \(0.673406\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.1622 1.33226 0.666132 0.745834i \(-0.267949\pi\)
0.666132 + 0.745834i \(0.267949\pi\)
\(114\) 0 0
\(115\) −5.38860 −0.502490
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.11789 0.560826
\(120\) 0 0
\(121\) −10.9811 −0.998284
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.8964 −1.06405
\(126\) 0 0
\(127\) −5.48368 −0.486598 −0.243299 0.969951i \(-0.578230\pi\)
−0.243299 + 0.969951i \(0.578230\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.82442 −0.159400 −0.0797002 0.996819i \(-0.525396\pi\)
−0.0797002 + 0.996819i \(0.525396\pi\)
\(132\) 0 0
\(133\) 1.07564 0.0932700
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −22.4869 −1.92118 −0.960591 0.277965i \(-0.910340\pi\)
−0.960591 + 0.277965i \(0.910340\pi\)
\(138\) 0 0
\(139\) −5.23886 −0.444354 −0.222177 0.975006i \(-0.571316\pi\)
−0.222177 + 0.975006i \(0.571316\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.830765 −0.0694720
\(144\) 0 0
\(145\) 0.258159 0.0214389
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −19.9193 −1.63185 −0.815925 0.578158i \(-0.803772\pi\)
−0.815925 + 0.578158i \(0.803772\pi\)
\(150\) 0 0
\(151\) −8.80420 −0.716475 −0.358238 0.933630i \(-0.616622\pi\)
−0.358238 + 0.933630i \(0.616622\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −13.7514 −1.10454
\(156\) 0 0
\(157\) 17.3948 1.38826 0.694129 0.719851i \(-0.255790\pi\)
0.694129 + 0.719851i \(0.255790\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.62997 −0.286082
\(162\) 0 0
\(163\) 12.1942 0.955120 0.477560 0.878599i \(-0.341521\pi\)
0.477560 + 0.878599i \(0.341521\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.9296 1.23267 0.616337 0.787483i \(-0.288616\pi\)
0.616337 + 0.787483i \(0.288616\pi\)
\(168\) 0 0
\(169\) 23.5675 1.81289
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.41787 −0.259856 −0.129928 0.991523i \(-0.541475\pi\)
−0.129928 + 0.991523i \(0.541475\pi\)
\(174\) 0 0
\(175\) −2.63569 −0.199240
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −17.6543 −1.31954 −0.659771 0.751467i \(-0.729347\pi\)
−0.659771 + 0.751467i \(0.729347\pi\)
\(180\) 0 0
\(181\) 19.3919 1.44139 0.720695 0.693252i \(-0.243823\pi\)
0.720695 + 0.693252i \(0.243823\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.80150 0.647099
\(186\) 0 0
\(187\) 0.781383 0.0571404
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.0381 1.08812 0.544058 0.839047i \(-0.316887\pi\)
0.544058 + 0.839047i \(0.316887\pi\)
\(192\) 0 0
\(193\) −6.29698 −0.453266 −0.226633 0.973980i \(-0.572772\pi\)
−0.226633 + 0.973980i \(0.572772\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.26167 0.446126 0.223063 0.974804i \(-0.428394\pi\)
0.223063 + 0.974804i \(0.428394\pi\)
\(198\) 0 0
\(199\) 1.74806 0.123916 0.0619582 0.998079i \(-0.480265\pi\)
0.0619582 + 0.998079i \(0.480265\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.173906 0.0122058
\(204\) 0 0
\(205\) −10.9679 −0.766032
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.137382 0.00950292
\(210\) 0 0
\(211\) −24.6321 −1.69575 −0.847873 0.530199i \(-0.822117\pi\)
−0.847873 + 0.530199i \(0.822117\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.43792 −0.439063
\(216\) 0 0
\(217\) −9.26345 −0.628844
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −34.3939 −2.31358
\(222\) 0 0
\(223\) −5.39131 −0.361029 −0.180514 0.983572i \(-0.557776\pi\)
−0.180514 + 0.983572i \(0.557776\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.07430 −0.469538 −0.234769 0.972051i \(-0.575433\pi\)
−0.234769 + 0.972051i \(0.575433\pi\)
\(228\) 0 0
\(229\) −3.46228 −0.228794 −0.114397 0.993435i \(-0.536494\pi\)
−0.114397 + 0.993435i \(0.536494\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.24912 0.212857 0.106429 0.994320i \(-0.466058\pi\)
0.106429 + 0.994320i \(0.466058\pi\)
\(234\) 0 0
\(235\) 11.4821 0.749007
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.3308 1.18572 0.592860 0.805305i \(-0.297999\pi\)
0.592860 + 0.805305i \(0.297999\pi\)
\(240\) 0 0
\(241\) 17.0983 1.10140 0.550698 0.834705i \(-0.314362\pi\)
0.550698 + 0.834705i \(0.314362\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.32989 −0.596065
\(246\) 0 0
\(247\) −6.04711 −0.384768
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.3504 −0.716431 −0.358216 0.933639i \(-0.616615\pi\)
−0.358216 + 0.933639i \(0.616615\pi\)
\(252\) 0 0
\(253\) −0.463624 −0.0291478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.29906 −0.330546 −0.165273 0.986248i \(-0.552851\pi\)
−0.165273 + 0.986248i \(0.552851\pi\)
\(258\) 0 0
\(259\) 5.92903 0.368412
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −14.0533 −0.866565 −0.433282 0.901258i \(-0.642645\pi\)
−0.433282 + 0.901258i \(0.642645\pi\)
\(264\) 0 0
\(265\) −3.47389 −0.213399
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.18935 −0.560285 −0.280142 0.959958i \(-0.590382\pi\)
−0.280142 + 0.959958i \(0.590382\pi\)
\(270\) 0 0
\(271\) −30.1525 −1.83164 −0.915818 0.401594i \(-0.868456\pi\)
−0.915818 + 0.401594i \(0.868456\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.336633 −0.0202998
\(276\) 0 0
\(277\) −13.3620 −0.802847 −0.401424 0.915893i \(-0.631484\pi\)
−0.401424 + 0.915893i \(0.631484\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.11371 0.126093 0.0630467 0.998011i \(-0.479918\pi\)
0.0630467 + 0.998011i \(0.479918\pi\)
\(282\) 0 0
\(283\) 22.8124 1.35606 0.678028 0.735036i \(-0.262835\pi\)
0.678028 + 0.735036i \(0.262835\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.38840 −0.436124
\(288\) 0 0
\(289\) 15.3495 0.902911
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 30.0517 1.75564 0.877819 0.478993i \(-0.158998\pi\)
0.877819 + 0.478993i \(0.158998\pi\)
\(294\) 0 0
\(295\) −19.0414 −1.10863
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 20.4072 1.18018
\(300\) 0 0
\(301\) −4.33683 −0.249971
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 15.4467 0.884476
\(306\) 0 0
\(307\) −7.93462 −0.452853 −0.226426 0.974028i \(-0.572704\pi\)
−0.226426 + 0.974028i \(0.572704\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.17268 0.236611 0.118306 0.992977i \(-0.462254\pi\)
0.118306 + 0.992977i \(0.462254\pi\)
\(312\) 0 0
\(313\) 18.9734 1.07244 0.536221 0.844078i \(-0.319851\pi\)
0.536221 + 0.844078i \(0.319851\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.2372 −1.13663 −0.568317 0.822810i \(-0.692405\pi\)
−0.568317 + 0.822810i \(0.692405\pi\)
\(318\) 0 0
\(319\) 0.0222114 0.00124360
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.68766 0.316470
\(324\) 0 0
\(325\) 14.8175 0.821926
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.73476 0.426431
\(330\) 0 0
\(331\) −0.875174 −0.0481039 −0.0240520 0.999711i \(-0.507657\pi\)
−0.0240520 + 0.999711i \(0.507657\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −16.6867 −0.911694
\(336\) 0 0
\(337\) −2.44554 −0.133217 −0.0666086 0.997779i \(-0.521218\pi\)
−0.0666086 + 0.997779i \(0.521218\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.18314 −0.0640705
\(342\) 0 0
\(343\) −13.8145 −0.745911
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −35.3274 −1.89647 −0.948236 0.317567i \(-0.897134\pi\)
−0.948236 + 0.317567i \(0.897134\pi\)
\(348\) 0 0
\(349\) 4.06328 0.217503 0.108751 0.994069i \(-0.465315\pi\)
0.108751 + 0.994069i \(0.465315\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −29.6410 −1.57763 −0.788815 0.614630i \(-0.789305\pi\)
−0.788815 + 0.614630i \(0.789305\pi\)
\(354\) 0 0
\(355\) −13.5542 −0.719382
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.78023 0.0939569 0.0469785 0.998896i \(-0.485041\pi\)
0.0469785 + 0.998896i \(0.485041\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 26.0490 1.36346
\(366\) 0 0
\(367\) 30.0178 1.56692 0.783459 0.621443i \(-0.213453\pi\)
0.783459 + 0.621443i \(0.213453\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.34014 −0.121494
\(372\) 0 0
\(373\) 19.9907 1.03508 0.517539 0.855660i \(-0.326848\pi\)
0.517539 + 0.855660i \(0.326848\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.977673 −0.0503527
\(378\) 0 0
\(379\) 9.52457 0.489244 0.244622 0.969618i \(-0.421336\pi\)
0.244622 + 0.969618i \(0.421336\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −19.5930 −1.00116 −0.500578 0.865691i \(-0.666879\pi\)
−0.500578 + 0.865691i \(0.666879\pi\)
\(384\) 0 0
\(385\) 0.235960 0.0120257
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.5492 0.585569 0.292785 0.956178i \(-0.405418\pi\)
0.292785 + 0.956178i \(0.405418\pi\)
\(390\) 0 0
\(391\) −19.1942 −0.970690
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −14.0582 −0.707346
\(396\) 0 0
\(397\) −34.2938 −1.72116 −0.860579 0.509317i \(-0.829898\pi\)
−0.860579 + 0.509317i \(0.829898\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 29.2673 1.46154 0.730770 0.682623i \(-0.239161\pi\)
0.730770 + 0.682623i \(0.239161\pi\)
\(402\) 0 0
\(403\) 52.0778 2.59418
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.757262 0.0375361
\(408\) 0 0
\(409\) 29.1844 1.44307 0.721537 0.692376i \(-0.243436\pi\)
0.721537 + 0.692376i \(0.243436\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −12.8270 −0.631176
\(414\) 0 0
\(415\) −0.986180 −0.0484097
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.3440 1.04272 0.521360 0.853337i \(-0.325425\pi\)
0.521360 + 0.853337i \(0.325425\pi\)
\(420\) 0 0
\(421\) 12.6633 0.617172 0.308586 0.951197i \(-0.400144\pi\)
0.308586 + 0.951197i \(0.400144\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13.9367 −0.676030
\(426\) 0 0
\(427\) 10.4055 0.503558
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.8690 −0.523539 −0.261770 0.965130i \(-0.584306\pi\)
−0.261770 + 0.965130i \(0.584306\pi\)
\(432\) 0 0
\(433\) 6.80568 0.327060 0.163530 0.986538i \(-0.447712\pi\)
0.163530 + 0.986538i \(0.447712\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.37470 −0.161434
\(438\) 0 0
\(439\) 20.2397 0.965989 0.482994 0.875623i \(-0.339549\pi\)
0.482994 + 0.875623i \(0.339549\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 35.8867 1.70503 0.852514 0.522705i \(-0.175077\pi\)
0.852514 + 0.522705i \(0.175077\pi\)
\(444\) 0 0
\(445\) −4.97853 −0.236005
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.7680 0.602558 0.301279 0.953536i \(-0.402586\pi\)
0.301279 + 0.953536i \(0.402586\pi\)
\(450\) 0 0
\(451\) −0.943655 −0.0444350
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −10.3862 −0.486912
\(456\) 0 0
\(457\) −11.5626 −0.540877 −0.270439 0.962737i \(-0.587169\pi\)
−0.270439 + 0.962737i \(0.587169\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −39.7582 −1.85172 −0.925862 0.377862i \(-0.876659\pi\)
−0.925862 + 0.377862i \(0.876659\pi\)
\(462\) 0 0
\(463\) −5.16782 −0.240169 −0.120085 0.992764i \(-0.538317\pi\)
−0.120085 + 0.992764i \(0.538317\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −32.0172 −1.48158 −0.740790 0.671736i \(-0.765549\pi\)
−0.740790 + 0.671736i \(0.765549\pi\)
\(468\) 0 0
\(469\) −11.2408 −0.519053
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.553905 −0.0254686
\(474\) 0 0
\(475\) −2.45034 −0.112429
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.6819 1.26482 0.632409 0.774635i \(-0.282066\pi\)
0.632409 + 0.774635i \(0.282066\pi\)
\(480\) 0 0
\(481\) −33.3322 −1.51982
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.92699 0.0875002
\(486\) 0 0
\(487\) −2.16249 −0.0979917 −0.0489959 0.998799i \(-0.515602\pi\)
−0.0489959 + 0.998799i \(0.515602\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −26.2401 −1.18420 −0.592100 0.805865i \(-0.701701\pi\)
−0.592100 + 0.805865i \(0.701701\pi\)
\(492\) 0 0
\(493\) 0.919559 0.0414148
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.13063 −0.409565
\(498\) 0 0
\(499\) −3.89878 −0.174533 −0.0872666 0.996185i \(-0.527813\pi\)
−0.0872666 + 0.996185i \(0.527813\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.97915 −0.222009 −0.111005 0.993820i \(-0.535407\pi\)
−0.111005 + 0.993820i \(0.535407\pi\)
\(504\) 0 0
\(505\) 12.4593 0.554432
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20.9115 −0.926886 −0.463443 0.886127i \(-0.653386\pi\)
−0.463443 + 0.886127i \(0.653386\pi\)
\(510\) 0 0
\(511\) 17.5476 0.776259
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 21.2608 0.936863
\(516\) 0 0
\(517\) 0.987892 0.0434474
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.01174 0.0443250 0.0221625 0.999754i \(-0.492945\pi\)
0.0221625 + 0.999754i \(0.492945\pi\)
\(522\) 0 0
\(523\) 13.0132 0.569027 0.284513 0.958672i \(-0.408168\pi\)
0.284513 + 0.958672i \(0.408168\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −48.9822 −2.13370
\(528\) 0 0
\(529\) −11.6114 −0.504843
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 41.5366 1.79915
\(534\) 0 0
\(535\) −28.7326 −1.24222
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.802723 −0.0345757
\(540\) 0 0
\(541\) −6.08511 −0.261619 −0.130810 0.991407i \(-0.541758\pi\)
−0.130810 + 0.991407i \(0.541758\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −17.2783 −0.740120
\(546\) 0 0
\(547\) 36.8872 1.57718 0.788592 0.614917i \(-0.210810\pi\)
0.788592 + 0.614917i \(0.210810\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.161676 0.00688763
\(552\) 0 0
\(553\) −9.47016 −0.402712
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.312954 0.0132603 0.00663015 0.999978i \(-0.497890\pi\)
0.00663015 + 0.999978i \(0.497890\pi\)
\(558\) 0 0
\(559\) 24.3810 1.03121
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.42672 −0.270854 −0.135427 0.990787i \(-0.543241\pi\)
−0.135427 + 0.990787i \(0.543241\pi\)
\(564\) 0 0
\(565\) 22.6137 0.951363
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −28.1809 −1.18140 −0.590702 0.806890i \(-0.701149\pi\)
−0.590702 + 0.806890i \(0.701149\pi\)
\(570\) 0 0
\(571\) −2.54616 −0.106553 −0.0532767 0.998580i \(-0.516967\pi\)
−0.0532767 + 0.998580i \(0.516967\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.26917 0.344848
\(576\) 0 0
\(577\) −5.47255 −0.227825 −0.113913 0.993491i \(-0.536338\pi\)
−0.113913 + 0.993491i \(0.536338\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.664329 −0.0275610
\(582\) 0 0
\(583\) −0.298886 −0.0123786
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −39.2274 −1.61909 −0.809544 0.587060i \(-0.800285\pi\)
−0.809544 + 0.587060i \(0.800285\pi\)
\(588\) 0 0
\(589\) −8.61202 −0.354852
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −37.2124 −1.52813 −0.764065 0.645139i \(-0.776800\pi\)
−0.764065 + 0.645139i \(0.776800\pi\)
\(594\) 0 0
\(595\) 9.76883 0.400483
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 23.9261 0.977596 0.488798 0.872397i \(-0.337436\pi\)
0.488798 + 0.872397i \(0.337436\pi\)
\(600\) 0 0
\(601\) −11.5113 −0.469555 −0.234778 0.972049i \(-0.575436\pi\)
−0.234778 + 0.972049i \(0.575436\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −17.5343 −0.712870
\(606\) 0 0
\(607\) −25.2247 −1.02384 −0.511919 0.859034i \(-0.671065\pi\)
−0.511919 + 0.859034i \(0.671065\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −43.4837 −1.75916
\(612\) 0 0
\(613\) 9.16426 0.370141 0.185071 0.982725i \(-0.440749\pi\)
0.185071 + 0.982725i \(0.440749\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −44.8623 −1.80609 −0.903043 0.429549i \(-0.858672\pi\)
−0.903043 + 0.429549i \(0.858672\pi\)
\(618\) 0 0
\(619\) −38.0677 −1.53007 −0.765036 0.643988i \(-0.777279\pi\)
−0.765036 + 0.643988i \(0.777279\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.35373 −0.134364
\(624\) 0 0
\(625\) −6.74411 −0.269764
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 31.3509 1.25004
\(630\) 0 0
\(631\) 4.06667 0.161892 0.0809458 0.996719i \(-0.474206\pi\)
0.0809458 + 0.996719i \(0.474206\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.75614 −0.347477
\(636\) 0 0
\(637\) 35.3332 1.39995
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −42.4358 −1.67611 −0.838057 0.545583i \(-0.816308\pi\)
−0.838057 + 0.545583i \(0.816308\pi\)
\(642\) 0 0
\(643\) 36.7103 1.44771 0.723856 0.689951i \(-0.242368\pi\)
0.723856 + 0.689951i \(0.242368\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.5585 −0.768925 −0.384462 0.923141i \(-0.625613\pi\)
−0.384462 + 0.923141i \(0.625613\pi\)
\(648\) 0 0
\(649\) −1.63828 −0.0643081
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −10.3587 −0.405365 −0.202683 0.979244i \(-0.564966\pi\)
−0.202683 + 0.979244i \(0.564966\pi\)
\(654\) 0 0
\(655\) −2.91317 −0.113827
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.61527 0.101877 0.0509383 0.998702i \(-0.483779\pi\)
0.0509383 + 0.998702i \(0.483779\pi\)
\(660\) 0 0
\(661\) 26.7546 1.04063 0.520317 0.853973i \(-0.325814\pi\)
0.520317 + 0.853973i \(0.325814\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.71755 0.0666036
\(666\) 0 0
\(667\) −0.545608 −0.0211260
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.32900 0.0513055
\(672\) 0 0
\(673\) −0.601674 −0.0231928 −0.0115964 0.999933i \(-0.503691\pi\)
−0.0115964 + 0.999933i \(0.503691\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −31.4529 −1.20883 −0.604417 0.796668i \(-0.706594\pi\)
−0.604417 + 0.796668i \(0.706594\pi\)
\(678\) 0 0
\(679\) 1.29810 0.0498164
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 20.0877 0.768634 0.384317 0.923201i \(-0.374437\pi\)
0.384317 + 0.923201i \(0.374437\pi\)
\(684\) 0 0
\(685\) −35.9062 −1.37191
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 13.1560 0.501202
\(690\) 0 0
\(691\) −17.5735 −0.668528 −0.334264 0.942479i \(-0.608488\pi\)
−0.334264 + 0.942479i \(0.608488\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.36523 −0.317311
\(696\) 0 0
\(697\) −39.0676 −1.47979
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.2468 0.689172 0.344586 0.938755i \(-0.388019\pi\)
0.344586 + 0.938755i \(0.388019\pi\)
\(702\) 0 0
\(703\) 5.51208 0.207892
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.39307 0.315654
\(708\) 0 0
\(709\) 10.6778 0.401014 0.200507 0.979692i \(-0.435741\pi\)
0.200507 + 0.979692i \(0.435741\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 29.0630 1.08842
\(714\) 0 0
\(715\) −1.32654 −0.0496096
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.24925 −0.158470 −0.0792352 0.996856i \(-0.525248\pi\)
−0.0792352 + 0.996856i \(0.525248\pi\)
\(720\) 0 0
\(721\) 14.3221 0.533383
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.396162 −0.0147131
\(726\) 0 0
\(727\) −9.79017 −0.363097 −0.181549 0.983382i \(-0.558111\pi\)
−0.181549 + 0.983382i \(0.558111\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −22.9318 −0.848164
\(732\) 0 0
\(733\) −40.4117 −1.49264 −0.746320 0.665587i \(-0.768181\pi\)
−0.746320 + 0.665587i \(0.768181\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.43569 −0.0528843
\(738\) 0 0
\(739\) −48.5858 −1.78726 −0.893628 0.448808i \(-0.851849\pi\)
−0.893628 + 0.448808i \(0.851849\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −29.7109 −1.08999 −0.544994 0.838440i \(-0.683468\pi\)
−0.544994 + 0.838440i \(0.683468\pi\)
\(744\) 0 0
\(745\) −31.8064 −1.16530
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −19.3554 −0.707231
\(750\) 0 0
\(751\) −1.77879 −0.0649089 −0.0324545 0.999473i \(-0.510332\pi\)
−0.0324545 + 0.999473i \(0.510332\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −14.0582 −0.511631
\(756\) 0 0
\(757\) −31.9188 −1.16011 −0.580055 0.814577i \(-0.696969\pi\)
−0.580055 + 0.814577i \(0.696969\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.36782 −0.0495834 −0.0247917 0.999693i \(-0.507892\pi\)
−0.0247917 + 0.999693i \(0.507892\pi\)
\(762\) 0 0
\(763\) −11.6393 −0.421371
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 72.1116 2.60380
\(768\) 0 0
\(769\) 7.67093 0.276621 0.138310 0.990389i \(-0.455833\pi\)
0.138310 + 0.990389i \(0.455833\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.39561 0.0501966 0.0250983 0.999685i \(-0.492010\pi\)
0.0250983 + 0.999685i \(0.492010\pi\)
\(774\) 0 0
\(775\) 21.1024 0.758020
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.86883 −0.246101
\(780\) 0 0
\(781\) −1.16617 −0.0417290
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 27.7754 0.991348
\(786\) 0 0
\(787\) −37.2778 −1.32881 −0.664405 0.747373i \(-0.731315\pi\)
−0.664405 + 0.747373i \(0.731315\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.2334 0.541638
\(792\) 0 0
\(793\) −58.4983 −2.07733
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −27.8925 −0.988003 −0.494001 0.869461i \(-0.664466\pi\)
−0.494001 + 0.869461i \(0.664466\pi\)
\(798\) 0 0
\(799\) 40.8990 1.44690
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.24119 0.0790900
\(804\) 0 0
\(805\) −5.79621 −0.204289
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 45.3933 1.59594 0.797972 0.602694i \(-0.205906\pi\)
0.797972 + 0.602694i \(0.205906\pi\)
\(810\) 0 0
\(811\) 28.9081 1.01510 0.507551 0.861622i \(-0.330551\pi\)
0.507551 + 0.861622i \(0.330551\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 19.4712 0.682046
\(816\) 0 0
\(817\) −4.03185 −0.141057
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 30.3202 1.05818 0.529091 0.848565i \(-0.322533\pi\)
0.529091 + 0.848565i \(0.322533\pi\)
\(822\) 0 0
\(823\) 15.7062 0.547482 0.273741 0.961803i \(-0.411739\pi\)
0.273741 + 0.961803i \(0.411739\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.3271 1.19367 0.596835 0.802364i \(-0.296425\pi\)
0.596835 + 0.802364i \(0.296425\pi\)
\(828\) 0 0
\(829\) 8.53916 0.296577 0.148289 0.988944i \(-0.452624\pi\)
0.148289 + 0.988944i \(0.452624\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −33.2330 −1.15145
\(834\) 0 0
\(835\) 25.4359 0.880246
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8.34634 0.288148 0.144074 0.989567i \(-0.453980\pi\)
0.144074 + 0.989567i \(0.453980\pi\)
\(840\) 0 0
\(841\) −28.9739 −0.999099
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 37.6318 1.29457
\(846\) 0 0
\(847\) −11.8118 −0.405857
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −18.6016 −0.637656
\(852\) 0 0
\(853\) −20.2084 −0.691922 −0.345961 0.938249i \(-0.612447\pi\)
−0.345961 + 0.938249i \(0.612447\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −38.9708 −1.33122 −0.665608 0.746302i \(-0.731828\pi\)
−0.665608 + 0.746302i \(0.731828\pi\)
\(858\) 0 0
\(859\) 6.42450 0.219201 0.109601 0.993976i \(-0.465043\pi\)
0.109601 + 0.993976i \(0.465043\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22.2874 0.758672 0.379336 0.925259i \(-0.376152\pi\)
0.379336 + 0.925259i \(0.376152\pi\)
\(864\) 0 0
\(865\) −5.45753 −0.185562
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.20954 −0.0410308
\(870\) 0 0
\(871\) 63.1943 2.14126
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −12.7963 −0.432594
\(876\) 0 0
\(877\) −49.5580 −1.67345 −0.836727 0.547621i \(-0.815534\pi\)
−0.836727 + 0.547621i \(0.815534\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17.5988 0.592918 0.296459 0.955046i \(-0.404194\pi\)
0.296459 + 0.955046i \(0.404194\pi\)
\(882\) 0 0
\(883\) −25.9531 −0.873393 −0.436697 0.899609i \(-0.643852\pi\)
−0.436697 + 0.899609i \(0.643852\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 19.6966 0.661347 0.330673 0.943745i \(-0.392724\pi\)
0.330673 + 0.943745i \(0.392724\pi\)
\(888\) 0 0
\(889\) −5.89847 −0.197828
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.19083 0.240632
\(894\) 0 0
\(895\) −28.1897 −0.942278
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.39236 −0.0464377
\(900\) 0 0
\(901\) −12.3740 −0.412236
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 30.9643 1.02929
\(906\) 0 0
\(907\) 32.8390 1.09040 0.545201 0.838305i \(-0.316453\pi\)
0.545201 + 0.838305i \(0.316453\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 55.6644 1.84425 0.922123 0.386898i \(-0.126453\pi\)
0.922123 + 0.386898i \(0.126453\pi\)
\(912\) 0 0
\(913\) −0.0848488 −0.00280808
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.96242 −0.0648050
\(918\) 0 0
\(919\) 2.36714 0.0780848 0.0390424 0.999238i \(-0.487569\pi\)
0.0390424 + 0.999238i \(0.487569\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 51.3311 1.68958
\(924\) 0 0
\(925\) −13.5065 −0.444091
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 25.7194 0.843826 0.421913 0.906636i \(-0.361359\pi\)
0.421913 + 0.906636i \(0.361359\pi\)
\(930\) 0 0
\(931\) −5.84299 −0.191496
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.24768 0.0408037
\(936\) 0 0
\(937\) 45.8335 1.49731 0.748657 0.662957i \(-0.230699\pi\)
0.748657 + 0.662957i \(0.230699\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −24.5255 −0.799508 −0.399754 0.916622i \(-0.630904\pi\)
−0.399754 + 0.916622i \(0.630904\pi\)
\(942\) 0 0
\(943\) 23.1802 0.754853
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.41372 0.240913 0.120457 0.992719i \(-0.461564\pi\)
0.120457 + 0.992719i \(0.461564\pi\)
\(948\) 0 0
\(949\) −98.6500 −3.20231
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.75290 −0.186355 −0.0931773 0.995650i \(-0.529702\pi\)
−0.0931773 + 0.995650i \(0.529702\pi\)
\(954\) 0 0
\(955\) 24.0123 0.777018
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −24.1878 −0.781065
\(960\) 0 0
\(961\) 43.1669 1.39248
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −10.0548 −0.323675
\(966\) 0 0
\(967\) 15.8014 0.508140 0.254070 0.967186i \(-0.418231\pi\)
0.254070 + 0.967186i \(0.418231\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.6731 −0.406700 −0.203350 0.979106i \(-0.565183\pi\)
−0.203350 + 0.979106i \(0.565183\pi\)
\(972\) 0 0
\(973\) −5.63514 −0.180654
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 29.3577 0.939236 0.469618 0.882870i \(-0.344392\pi\)
0.469618 + 0.882870i \(0.344392\pi\)
\(978\) 0 0
\(979\) −0.428342 −0.0136899
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 33.3620 1.06408 0.532042 0.846718i \(-0.321425\pi\)
0.532042 + 0.846718i \(0.321425\pi\)
\(984\) 0 0
\(985\) 9.99842 0.318576
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 13.6063 0.432655
\(990\) 0 0
\(991\) 61.1987 1.94404 0.972020 0.234900i \(-0.0754762\pi\)
0.972020 + 0.234900i \(0.0754762\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.79123 0.0884880
\(996\) 0 0
\(997\) 30.4016 0.962827 0.481413 0.876494i \(-0.340124\pi\)
0.481413 + 0.876494i \(0.340124\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.ca.1.4 5
3.2 odd 2 8208.2.a.cd.1.2 5
4.3 odd 2 4104.2.a.p.1.4 5
12.11 even 2 4104.2.a.q.1.2 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.p.1.4 5 4.3 odd 2
4104.2.a.q.1.2 yes 5 12.11 even 2
8208.2.a.ca.1.4 5 1.1 even 1 trivial
8208.2.a.cd.1.2 5 3.2 odd 2