Properties

Label 8208.2.a.br.1.4
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-2,0,2,0,0,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.10273.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5x^{2} + x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.38266\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.67708 q^{5} +2.38266 q^{7} -1.93618 q^{11} +1.82915 q^{13} -7.67301 q^{17} +1.00000 q^{19} -2.53473 q^{23} -2.18739 q^{25} -5.44241 q^{29} -3.29035 q^{31} +3.99593 q^{35} +5.35798 q^{37} -2.23060 q^{41} +9.45713 q^{43} +2.78004 q^{47} -1.32292 q^{49} -0.407345 q^{53} -3.24714 q^{55} +0.202106 q^{59} -12.4963 q^{61} +3.06763 q^{65} +1.81261 q^{67} -11.8357 q^{71} -6.22653 q^{73} -4.61326 q^{77} -9.47748 q^{79} -7.58884 q^{83} -12.8683 q^{85} -16.3539 q^{89} +4.35824 q^{91} +1.67708 q^{95} -4.72619 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} + 2 q^{7} - 5 q^{11} - 5 q^{13} - 3 q^{17} + 4 q^{19} + q^{23} + 2 q^{25} + 2 q^{29} + 7 q^{31} - 3 q^{35} - q^{37} - 5 q^{41} + 11 q^{43} - 7 q^{47} - 14 q^{49} - 9 q^{53} + 14 q^{55} - 13 q^{59}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.67708 0.750015 0.375007 0.927022i \(-0.377640\pi\)
0.375007 + 0.927022i \(0.377640\pi\)
\(6\) 0 0
\(7\) 2.38266 0.900562 0.450281 0.892887i \(-0.351324\pi\)
0.450281 + 0.892887i \(0.351324\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.93618 −0.583780 −0.291890 0.956452i \(-0.594284\pi\)
−0.291890 + 0.956452i \(0.594284\pi\)
\(12\) 0 0
\(13\) 1.82915 0.507314 0.253657 0.967294i \(-0.418367\pi\)
0.253657 + 0.967294i \(0.418367\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.67301 −1.86098 −0.930489 0.366319i \(-0.880618\pi\)
−0.930489 + 0.366319i \(0.880618\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.53473 −0.528527 −0.264263 0.964451i \(-0.585129\pi\)
−0.264263 + 0.964451i \(0.585129\pi\)
\(24\) 0 0
\(25\) −2.18739 −0.437478
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.44241 −1.01063 −0.505315 0.862935i \(-0.668624\pi\)
−0.505315 + 0.862935i \(0.668624\pi\)
\(30\) 0 0
\(31\) −3.29035 −0.590964 −0.295482 0.955348i \(-0.595480\pi\)
−0.295482 + 0.955348i \(0.595480\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.99593 0.675435
\(36\) 0 0
\(37\) 5.35798 0.880847 0.440423 0.897790i \(-0.354828\pi\)
0.440423 + 0.897790i \(0.354828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.23060 −0.348361 −0.174181 0.984714i \(-0.555728\pi\)
−0.174181 + 0.984714i \(0.555728\pi\)
\(42\) 0 0
\(43\) 9.45713 1.44220 0.721099 0.692832i \(-0.243637\pi\)
0.721099 + 0.692832i \(0.243637\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.78004 0.405511 0.202756 0.979229i \(-0.435010\pi\)
0.202756 + 0.979229i \(0.435010\pi\)
\(48\) 0 0
\(49\) −1.32292 −0.188988
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.407345 −0.0559531 −0.0279766 0.999609i \(-0.508906\pi\)
−0.0279766 + 0.999609i \(0.508906\pi\)
\(54\) 0 0
\(55\) −3.24714 −0.437844
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.202106 0.0263119 0.0131560 0.999913i \(-0.495812\pi\)
0.0131560 + 0.999913i \(0.495812\pi\)
\(60\) 0 0
\(61\) −12.4963 −1.59998 −0.799991 0.600011i \(-0.795163\pi\)
−0.799991 + 0.600011i \(0.795163\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.06763 0.380493
\(66\) 0 0
\(67\) 1.81261 0.221446 0.110723 0.993851i \(-0.464683\pi\)
0.110723 + 0.993851i \(0.464683\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.8357 −1.40464 −0.702321 0.711861i \(-0.747853\pi\)
−0.702321 + 0.711861i \(0.747853\pi\)
\(72\) 0 0
\(73\) −6.22653 −0.728760 −0.364380 0.931250i \(-0.618719\pi\)
−0.364380 + 0.931250i \(0.618719\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.61326 −0.525730
\(78\) 0 0
\(79\) −9.47748 −1.06630 −0.533150 0.846021i \(-0.678992\pi\)
−0.533150 + 0.846021i \(0.678992\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.58884 −0.832984 −0.416492 0.909139i \(-0.636741\pi\)
−0.416492 + 0.909139i \(0.636741\pi\)
\(84\) 0 0
\(85\) −12.8683 −1.39576
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −16.3539 −1.73351 −0.866755 0.498733i \(-0.833799\pi\)
−0.866755 + 0.498733i \(0.833799\pi\)
\(90\) 0 0
\(91\) 4.35824 0.456868
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.67708 0.172065
\(96\) 0 0
\(97\) −4.72619 −0.479872 −0.239936 0.970789i \(-0.577126\pi\)
−0.239936 + 0.970789i \(0.577126\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.12738 −0.410690 −0.205345 0.978690i \(-0.565832\pi\)
−0.205345 + 0.978690i \(0.565832\pi\)
\(102\) 0 0
\(103\) −1.85477 −0.182756 −0.0913779 0.995816i \(-0.529127\pi\)
−0.0913779 + 0.995816i \(0.529127\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.42769 0.234694 0.117347 0.993091i \(-0.462561\pi\)
0.117347 + 0.993091i \(0.462561\pi\)
\(108\) 0 0
\(109\) −13.2431 −1.26846 −0.634228 0.773146i \(-0.718682\pi\)
−0.634228 + 0.773146i \(0.718682\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 19.7393 1.85692 0.928460 0.371432i \(-0.121133\pi\)
0.928460 + 0.371432i \(0.121133\pi\)
\(114\) 0 0
\(115\) −4.25095 −0.396403
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −18.2822 −1.67593
\(120\) 0 0
\(121\) −7.25121 −0.659201
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.0539 −1.07813
\(126\) 0 0
\(127\) 2.10703 0.186969 0.0934844 0.995621i \(-0.470199\pi\)
0.0934844 + 0.995621i \(0.470199\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.59266 −0.663373 −0.331687 0.943390i \(-0.607618\pi\)
−0.331687 + 0.943390i \(0.607618\pi\)
\(132\) 0 0
\(133\) 2.38266 0.206603
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19.1752 1.63825 0.819123 0.573618i \(-0.194461\pi\)
0.819123 + 0.573618i \(0.194461\pi\)
\(138\) 0 0
\(139\) 8.87010 0.752352 0.376176 0.926548i \(-0.377239\pi\)
0.376176 + 0.926548i \(0.377239\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.54156 −0.296160
\(144\) 0 0
\(145\) −9.12738 −0.757988
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.04910 −0.331715 −0.165858 0.986150i \(-0.553039\pi\)
−0.165858 + 0.986150i \(0.553039\pi\)
\(150\) 0 0
\(151\) 16.1586 1.31497 0.657485 0.753467i \(-0.271620\pi\)
0.657485 + 0.753467i \(0.271620\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.51819 −0.443232
\(156\) 0 0
\(157\) −1.27695 −0.101911 −0.0509557 0.998701i \(-0.516227\pi\)
−0.0509557 + 0.998701i \(0.516227\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.03940 −0.475971
\(162\) 0 0
\(163\) 19.8660 1.55603 0.778014 0.628247i \(-0.216227\pi\)
0.778014 + 0.628247i \(0.216227\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.0081 1.47089 0.735447 0.677583i \(-0.236972\pi\)
0.735447 + 0.677583i \(0.236972\pi\)
\(168\) 0 0
\(169\) −9.65422 −0.742632
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.05975 0.232628 0.116314 0.993212i \(-0.462892\pi\)
0.116314 + 0.993212i \(0.462892\pi\)
\(174\) 0 0
\(175\) −5.21181 −0.393976
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.78793 0.208380 0.104190 0.994557i \(-0.466775\pi\)
0.104190 + 0.994557i \(0.466775\pi\)
\(180\) 0 0
\(181\) −7.73909 −0.575242 −0.287621 0.957744i \(-0.592864\pi\)
−0.287621 + 0.957744i \(0.592864\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.98579 0.660648
\(186\) 0 0
\(187\) 14.8563 1.08640
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.41210 0.102176 0.0510879 0.998694i \(-0.483731\pi\)
0.0510879 + 0.998694i \(0.483731\pi\)
\(192\) 0 0
\(193\) 13.9052 1.00092 0.500458 0.865761i \(-0.333165\pi\)
0.500458 + 0.865761i \(0.333165\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.95365 0.139192 0.0695961 0.997575i \(-0.477829\pi\)
0.0695961 + 0.997575i \(0.477829\pi\)
\(198\) 0 0
\(199\) 8.55533 0.606472 0.303236 0.952916i \(-0.401933\pi\)
0.303236 + 0.952916i \(0.401933\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.9674 −0.910135
\(204\) 0 0
\(205\) −3.74090 −0.261276
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.93618 −0.133928
\(210\) 0 0
\(211\) 9.23743 0.635931 0.317965 0.948102i \(-0.397000\pi\)
0.317965 + 0.948102i \(0.397000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 15.8604 1.08167
\(216\) 0 0
\(217\) −7.83979 −0.532200
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −14.0351 −0.944101
\(222\) 0 0
\(223\) −19.2064 −1.28616 −0.643079 0.765800i \(-0.722343\pi\)
−0.643079 + 0.765800i \(0.722343\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.6280 −1.03727 −0.518633 0.854997i \(-0.673559\pi\)
−0.518633 + 0.854997i \(0.673559\pi\)
\(228\) 0 0
\(229\) −13.7613 −0.909369 −0.454685 0.890653i \(-0.650248\pi\)
−0.454685 + 0.890653i \(0.650248\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.53854 0.166305 0.0831526 0.996537i \(-0.473501\pi\)
0.0831526 + 0.996537i \(0.473501\pi\)
\(234\) 0 0
\(235\) 4.66237 0.304139
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.6827 0.820377 0.410188 0.912001i \(-0.365463\pi\)
0.410188 + 0.912001i \(0.365463\pi\)
\(240\) 0 0
\(241\) 17.2202 1.10925 0.554625 0.832100i \(-0.312862\pi\)
0.554625 + 0.832100i \(0.312862\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.21864 −0.141744
\(246\) 0 0
\(247\) 1.82915 0.116386
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −15.7640 −0.995016 −0.497508 0.867460i \(-0.665751\pi\)
−0.497508 + 0.867460i \(0.665751\pi\)
\(252\) 0 0
\(253\) 4.90768 0.308543
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −22.2134 −1.38563 −0.692816 0.721114i \(-0.743630\pi\)
−0.692816 + 0.721114i \(0.743630\pi\)
\(258\) 0 0
\(259\) 12.7663 0.793257
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.50649 −0.0928942 −0.0464471 0.998921i \(-0.514790\pi\)
−0.0464471 + 0.998921i \(0.514790\pi\)
\(264\) 0 0
\(265\) −0.683152 −0.0419657
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.3257 −0.812481 −0.406240 0.913766i \(-0.633160\pi\)
−0.406240 + 0.913766i \(0.633160\pi\)
\(270\) 0 0
\(271\) 5.78819 0.351607 0.175804 0.984425i \(-0.443748\pi\)
0.175804 + 0.984425i \(0.443748\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.23518 0.255391
\(276\) 0 0
\(277\) 1.00501 0.0603853 0.0301927 0.999544i \(-0.490388\pi\)
0.0301927 + 0.999544i \(0.490388\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.63179 −0.0973447 −0.0486723 0.998815i \(-0.515499\pi\)
−0.0486723 + 0.998815i \(0.515499\pi\)
\(282\) 0 0
\(283\) −23.3654 −1.38893 −0.694465 0.719526i \(-0.744359\pi\)
−0.694465 + 0.719526i \(0.744359\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.31477 −0.313721
\(288\) 0 0
\(289\) 41.8751 2.46324
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −21.0299 −1.22858 −0.614291 0.789080i \(-0.710558\pi\)
−0.614291 + 0.789080i \(0.710558\pi\)
\(294\) 0 0
\(295\) 0.338948 0.0197343
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.63639 −0.268129
\(300\) 0 0
\(301\) 22.5332 1.29879
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −20.9573 −1.20001
\(306\) 0 0
\(307\) 28.7932 1.64331 0.821657 0.569982i \(-0.193050\pi\)
0.821657 + 0.569982i \(0.193050\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −30.5957 −1.73492 −0.867460 0.497507i \(-0.834249\pi\)
−0.867460 + 0.497507i \(0.834249\pi\)
\(312\) 0 0
\(313\) −23.6138 −1.33473 −0.667365 0.744731i \(-0.732578\pi\)
−0.667365 + 0.744731i \(0.732578\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.1408 0.625729 0.312864 0.949798i \(-0.398711\pi\)
0.312864 + 0.949798i \(0.398711\pi\)
\(318\) 0 0
\(319\) 10.5375 0.589986
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.67301 −0.426938
\(324\) 0 0
\(325\) −4.00106 −0.221939
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.62391 0.365188
\(330\) 0 0
\(331\) −6.88300 −0.378324 −0.189162 0.981946i \(-0.560577\pi\)
−0.189162 + 0.981946i \(0.560577\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.03990 0.166088
\(336\) 0 0
\(337\) −6.69362 −0.364625 −0.182312 0.983241i \(-0.558358\pi\)
−0.182312 + 0.983241i \(0.558358\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.37070 0.344993
\(342\) 0 0
\(343\) −19.8307 −1.07076
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −24.7796 −1.33024 −0.665120 0.746737i \(-0.731619\pi\)
−0.665120 + 0.746737i \(0.731619\pi\)
\(348\) 0 0
\(349\) 16.8957 0.904407 0.452204 0.891915i \(-0.350638\pi\)
0.452204 + 0.891915i \(0.350638\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.5184 1.73078 0.865391 0.501098i \(-0.167070\pi\)
0.865391 + 0.501098i \(0.167070\pi\)
\(354\) 0 0
\(355\) −19.8495 −1.05350
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.79778 0.305995 0.152998 0.988227i \(-0.451107\pi\)
0.152998 + 0.988227i \(0.451107\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.4424 −0.546581
\(366\) 0 0
\(367\) 36.5712 1.90900 0.954501 0.298206i \(-0.0963883\pi\)
0.954501 + 0.298206i \(0.0963883\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.970566 −0.0503893
\(372\) 0 0
\(373\) −26.3476 −1.36423 −0.682113 0.731247i \(-0.738939\pi\)
−0.682113 + 0.731247i \(0.738939\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9.95497 −0.512707
\(378\) 0 0
\(379\) 5.31477 0.273001 0.136501 0.990640i \(-0.456414\pi\)
0.136501 + 0.990640i \(0.456414\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.1526 0.723162 0.361581 0.932341i \(-0.382237\pi\)
0.361581 + 0.932341i \(0.382237\pi\)
\(384\) 0 0
\(385\) −7.73683 −0.394305
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.91150 −0.0969168 −0.0484584 0.998825i \(-0.515431\pi\)
−0.0484584 + 0.998825i \(0.515431\pi\)
\(390\) 0 0
\(391\) 19.4490 0.983577
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −15.8945 −0.799740
\(396\) 0 0
\(397\) 1.92935 0.0968312 0.0484156 0.998827i \(-0.484583\pi\)
0.0484156 + 0.998827i \(0.484583\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11.0215 −0.550390 −0.275195 0.961388i \(-0.588742\pi\)
−0.275195 + 0.961388i \(0.588742\pi\)
\(402\) 0 0
\(403\) −6.01853 −0.299804
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −10.3740 −0.514221
\(408\) 0 0
\(409\) −34.6473 −1.71320 −0.856599 0.515983i \(-0.827427\pi\)
−0.856599 + 0.515983i \(0.827427\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.481550 0.0236955
\(414\) 0 0
\(415\) −12.7271 −0.624750
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.7622 0.672327 0.336164 0.941804i \(-0.390871\pi\)
0.336164 + 0.941804i \(0.390871\pi\)
\(420\) 0 0
\(421\) 14.6845 0.715680 0.357840 0.933783i \(-0.383513\pi\)
0.357840 + 0.933783i \(0.383513\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 16.7839 0.814137
\(426\) 0 0
\(427\) −29.7744 −1.44088
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.11492 0.101872 0.0509360 0.998702i \(-0.483780\pi\)
0.0509360 + 0.998702i \(0.483780\pi\)
\(432\) 0 0
\(433\) 40.0421 1.92430 0.962151 0.272516i \(-0.0878558\pi\)
0.962151 + 0.272516i \(0.0878558\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.53473 −0.121252
\(438\) 0 0
\(439\) 27.9907 1.33592 0.667961 0.744197i \(-0.267167\pi\)
0.667961 + 0.744197i \(0.267167\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −19.5985 −0.931155 −0.465578 0.885007i \(-0.654153\pi\)
−0.465578 + 0.885007i \(0.654153\pi\)
\(444\) 0 0
\(445\) −27.4269 −1.30016
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.8645 −0.607112 −0.303556 0.952814i \(-0.598174\pi\)
−0.303556 + 0.952814i \(0.598174\pi\)
\(450\) 0 0
\(451\) 4.31884 0.203366
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.30914 0.342658
\(456\) 0 0
\(457\) 6.15915 0.288113 0.144057 0.989569i \(-0.453985\pi\)
0.144057 + 0.989569i \(0.453985\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8.20272 −0.382039 −0.191019 0.981586i \(-0.561179\pi\)
−0.191019 + 0.981586i \(0.561179\pi\)
\(462\) 0 0
\(463\) −3.92779 −0.182540 −0.0912699 0.995826i \(-0.529093\pi\)
−0.0912699 + 0.995826i \(0.529093\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.5404 0.626573 0.313287 0.949659i \(-0.398570\pi\)
0.313287 + 0.949659i \(0.398570\pi\)
\(468\) 0 0
\(469\) 4.31884 0.199426
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −18.3107 −0.841927
\(474\) 0 0
\(475\) −2.18739 −0.100364
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.00883 −0.0460944 −0.0230472 0.999734i \(-0.507337\pi\)
−0.0230472 + 0.999734i \(0.507337\pi\)
\(480\) 0 0
\(481\) 9.80054 0.446866
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.92621 −0.359911
\(486\) 0 0
\(487\) −16.8298 −0.762632 −0.381316 0.924445i \(-0.624529\pi\)
−0.381316 + 0.924445i \(0.624529\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.89139 0.356134 0.178067 0.984018i \(-0.443016\pi\)
0.178067 + 0.984018i \(0.443016\pi\)
\(492\) 0 0
\(493\) 41.7597 1.88076
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −28.2005 −1.26497
\(498\) 0 0
\(499\) 18.1437 0.812222 0.406111 0.913824i \(-0.366885\pi\)
0.406111 + 0.913824i \(0.366885\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 26.5037 1.18174 0.590871 0.806766i \(-0.298784\pi\)
0.590871 + 0.806766i \(0.298784\pi\)
\(504\) 0 0
\(505\) −6.92197 −0.308023
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.87867 0.171919 0.0859595 0.996299i \(-0.472604\pi\)
0.0859595 + 0.996299i \(0.472604\pi\)
\(510\) 0 0
\(511\) −14.8357 −0.656294
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.11060 −0.137070
\(516\) 0 0
\(517\) −5.38266 −0.236729
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.39175 −0.323838 −0.161919 0.986804i \(-0.551768\pi\)
−0.161919 + 0.986804i \(0.551768\pi\)
\(522\) 0 0
\(523\) −7.93686 −0.347055 −0.173527 0.984829i \(-0.555516\pi\)
−0.173527 + 0.984829i \(0.555516\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 25.2469 1.09977
\(528\) 0 0
\(529\) −16.5752 −0.720659
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.08010 −0.176729
\(534\) 0 0
\(535\) 4.07145 0.176024
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.56140 0.110327
\(540\) 0 0
\(541\) −23.0254 −0.989938 −0.494969 0.868911i \(-0.664821\pi\)
−0.494969 + 0.868911i \(0.664821\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −22.2097 −0.951360
\(546\) 0 0
\(547\) 16.3032 0.697076 0.348538 0.937295i \(-0.386678\pi\)
0.348538 + 0.937295i \(0.386678\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.44241 −0.231854
\(552\) 0 0
\(553\) −22.5816 −0.960269
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.48814 −0.274911 −0.137456 0.990508i \(-0.543892\pi\)
−0.137456 + 0.990508i \(0.543892\pi\)
\(558\) 0 0
\(559\) 17.2985 0.731648
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −45.5809 −1.92101 −0.960504 0.278267i \(-0.910240\pi\)
−0.960504 + 0.278267i \(0.910240\pi\)
\(564\) 0 0
\(565\) 33.1045 1.39272
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.0518 −0.924461 −0.462231 0.886760i \(-0.652951\pi\)
−0.462231 + 0.886760i \(0.652951\pi\)
\(570\) 0 0
\(571\) 12.7271 0.532613 0.266306 0.963888i \(-0.414197\pi\)
0.266306 + 0.963888i \(0.414197\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.54443 0.231219
\(576\) 0 0
\(577\) −32.6821 −1.36057 −0.680286 0.732946i \(-0.738145\pi\)
−0.680286 + 0.732946i \(0.738145\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −18.0817 −0.750153
\(582\) 0 0
\(583\) 0.788693 0.0326643
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.9891 −0.783764 −0.391882 0.920016i \(-0.628176\pi\)
−0.391882 + 0.920016i \(0.628176\pi\)
\(588\) 0 0
\(589\) −3.29035 −0.135576
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −18.8777 −0.775215 −0.387608 0.921824i \(-0.626698\pi\)
−0.387608 + 0.921824i \(0.626698\pi\)
\(594\) 0 0
\(595\) −30.6608 −1.25697
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.0679 −0.860810 −0.430405 0.902636i \(-0.641629\pi\)
−0.430405 + 0.902636i \(0.641629\pi\)
\(600\) 0 0
\(601\) 33.3513 1.36043 0.680214 0.733014i \(-0.261887\pi\)
0.680214 + 0.733014i \(0.261887\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −12.1609 −0.494410
\(606\) 0 0
\(607\) −17.7200 −0.719234 −0.359617 0.933100i \(-0.617093\pi\)
−0.359617 + 0.933100i \(0.617093\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.08511 0.205721
\(612\) 0 0
\(613\) −22.0326 −0.889886 −0.444943 0.895559i \(-0.646776\pi\)
−0.444943 + 0.895559i \(0.646776\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.0150 0.966806 0.483403 0.875398i \(-0.339401\pi\)
0.483403 + 0.875398i \(0.339401\pi\)
\(618\) 0 0
\(619\) 16.9309 0.680511 0.340255 0.940333i \(-0.389487\pi\)
0.340255 + 0.940333i \(0.389487\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −38.9659 −1.56113
\(624\) 0 0
\(625\) −9.27839 −0.371136
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −41.1119 −1.63924
\(630\) 0 0
\(631\) −24.7788 −0.986430 −0.493215 0.869907i \(-0.664178\pi\)
−0.493215 + 0.869907i \(0.664178\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.53367 0.140229
\(636\) 0 0
\(637\) −2.41981 −0.0958763
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.57099 0.220041 0.110020 0.993929i \(-0.464908\pi\)
0.110020 + 0.993929i \(0.464908\pi\)
\(642\) 0 0
\(643\) −29.7603 −1.17363 −0.586816 0.809720i \(-0.699619\pi\)
−0.586816 + 0.809720i \(0.699619\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.13579 0.319851 0.159925 0.987129i \(-0.448875\pi\)
0.159925 + 0.987129i \(0.448875\pi\)
\(648\) 0 0
\(649\) −0.391313 −0.0153604
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.7771 1.20440 0.602200 0.798345i \(-0.294291\pi\)
0.602200 + 0.798345i \(0.294291\pi\)
\(654\) 0 0
\(655\) −12.7335 −0.497540
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −30.2017 −1.17649 −0.588245 0.808683i \(-0.700181\pi\)
−0.588245 + 0.808683i \(0.700181\pi\)
\(660\) 0 0
\(661\) 15.4162 0.599619 0.299809 0.953999i \(-0.403077\pi\)
0.299809 + 0.953999i \(0.403077\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.99593 0.154955
\(666\) 0 0
\(667\) 13.7950 0.534145
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 24.1950 0.934038
\(672\) 0 0
\(673\) 39.7875 1.53370 0.766848 0.641829i \(-0.221824\pi\)
0.766848 + 0.641829i \(0.221824\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.2548 1.54712 0.773559 0.633724i \(-0.218474\pi\)
0.773559 + 0.633724i \(0.218474\pi\)
\(678\) 0 0
\(679\) −11.2609 −0.432154
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14.7160 −0.563091 −0.281545 0.959548i \(-0.590847\pi\)
−0.281545 + 0.959548i \(0.590847\pi\)
\(684\) 0 0
\(685\) 32.1584 1.22871
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.745094 −0.0283858
\(690\) 0 0
\(691\) −36.7769 −1.39906 −0.699529 0.714604i \(-0.746607\pi\)
−0.699529 + 0.714604i \(0.746607\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.8759 0.564276
\(696\) 0 0
\(697\) 17.1154 0.648293
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21.7861 0.822849 0.411425 0.911444i \(-0.365031\pi\)
0.411425 + 0.911444i \(0.365031\pi\)
\(702\) 0 0
\(703\) 5.35798 0.202080
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.83416 −0.369852
\(708\) 0 0
\(709\) 9.31634 0.349883 0.174941 0.984579i \(-0.444026\pi\)
0.174941 + 0.984579i \(0.444026\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.34013 0.312340
\(714\) 0 0
\(715\) −5.93949 −0.222124
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −47.5963 −1.77504 −0.887522 0.460766i \(-0.847575\pi\)
−0.887522 + 0.460766i \(0.847575\pi\)
\(720\) 0 0
\(721\) −4.41929 −0.164583
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11.9047 0.442128
\(726\) 0 0
\(727\) 26.9899 1.00100 0.500499 0.865737i \(-0.333150\pi\)
0.500499 + 0.865737i \(0.333150\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −72.5646 −2.68390
\(732\) 0 0
\(733\) −5.37797 −0.198640 −0.0993199 0.995056i \(-0.531667\pi\)
−0.0993199 + 0.995056i \(0.531667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.50954 −0.129276
\(738\) 0 0
\(739\) −23.8301 −0.876604 −0.438302 0.898828i \(-0.644420\pi\)
−0.438302 + 0.898828i \(0.644420\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.48500 0.0911659 0.0455830 0.998961i \(-0.485485\pi\)
0.0455830 + 0.998961i \(0.485485\pi\)
\(744\) 0 0
\(745\) −6.79069 −0.248792
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.78438 0.211357
\(750\) 0 0
\(751\) 6.68497 0.243938 0.121969 0.992534i \(-0.461079\pi\)
0.121969 + 0.992534i \(0.461079\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 27.0994 0.986248
\(756\) 0 0
\(757\) 51.8293 1.88377 0.941884 0.335940i \(-0.109054\pi\)
0.941884 + 0.335940i \(0.109054\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.9844 0.869434 0.434717 0.900567i \(-0.356848\pi\)
0.434717 + 0.900567i \(0.356848\pi\)
\(762\) 0 0
\(763\) −31.5538 −1.14232
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.369681 0.0133484
\(768\) 0 0
\(769\) −22.3077 −0.804435 −0.402218 0.915544i \(-0.631761\pi\)
−0.402218 + 0.915544i \(0.631761\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.4796 0.376926 0.188463 0.982080i \(-0.439650\pi\)
0.188463 + 0.982080i \(0.439650\pi\)
\(774\) 0 0
\(775\) 7.19727 0.258534
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.23060 −0.0799196
\(780\) 0 0
\(781\) 22.9161 0.820002
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.14155 −0.0764351
\(786\) 0 0
\(787\) −34.8563 −1.24249 −0.621247 0.783615i \(-0.713374\pi\)
−0.621247 + 0.783615i \(0.713374\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 47.0322 1.67227
\(792\) 0 0
\(793\) −22.8575 −0.811694
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25.9584 −0.919494 −0.459747 0.888050i \(-0.652060\pi\)
−0.459747 + 0.888050i \(0.652060\pi\)
\(798\) 0 0
\(799\) −21.3313 −0.754647
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.0557 0.425436
\(804\) 0 0
\(805\) −10.1286 −0.356986
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 48.3691 1.70057 0.850284 0.526325i \(-0.176430\pi\)
0.850284 + 0.526325i \(0.176430\pi\)
\(810\) 0 0
\(811\) 4.66530 0.163821 0.0819104 0.996640i \(-0.473898\pi\)
0.0819104 + 0.996640i \(0.473898\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 33.3170 1.16704
\(816\) 0 0
\(817\) 9.45713 0.330863
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.0091 0.349319 0.174660 0.984629i \(-0.444117\pi\)
0.174660 + 0.984629i \(0.444117\pi\)
\(822\) 0 0
\(823\) −44.0152 −1.53427 −0.767137 0.641483i \(-0.778319\pi\)
−0.767137 + 0.641483i \(0.778319\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −25.4656 −0.885527 −0.442763 0.896638i \(-0.646002\pi\)
−0.442763 + 0.896638i \(0.646002\pi\)
\(828\) 0 0
\(829\) −34.4477 −1.19642 −0.598208 0.801341i \(-0.704121\pi\)
−0.598208 + 0.801341i \(0.704121\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 10.1507 0.351703
\(834\) 0 0
\(835\) 31.8782 1.10319
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −8.78186 −0.303184 −0.151592 0.988443i \(-0.548440\pi\)
−0.151592 + 0.988443i \(0.548440\pi\)
\(840\) 0 0
\(841\) 0.619835 0.0213736
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −16.1909 −0.556985
\(846\) 0 0
\(847\) −17.2772 −0.593651
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13.5810 −0.465551
\(852\) 0 0
\(853\) 55.6217 1.90445 0.952225 0.305399i \(-0.0987897\pi\)
0.952225 + 0.305399i \(0.0987897\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −30.0030 −1.02488 −0.512441 0.858722i \(-0.671259\pi\)
−0.512441 + 0.858722i \(0.671259\pi\)
\(858\) 0 0
\(859\) −17.5985 −0.600455 −0.300227 0.953868i \(-0.597063\pi\)
−0.300227 + 0.953868i \(0.597063\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 53.5133 1.82161 0.910807 0.412832i \(-0.135460\pi\)
0.910807 + 0.412832i \(0.135460\pi\)
\(864\) 0 0
\(865\) 5.13145 0.174475
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 18.3501 0.622484
\(870\) 0 0
\(871\) 3.31553 0.112343
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −28.7203 −0.970923
\(876\) 0 0
\(877\) 15.4020 0.520087 0.260044 0.965597i \(-0.416263\pi\)
0.260044 + 0.965597i \(0.416263\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −40.5213 −1.36520 −0.682599 0.730793i \(-0.739150\pi\)
−0.682599 + 0.730793i \(0.739150\pi\)
\(882\) 0 0
\(883\) 24.8520 0.836336 0.418168 0.908370i \(-0.362672\pi\)
0.418168 + 0.908370i \(0.362672\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −52.6022 −1.76621 −0.883105 0.469175i \(-0.844551\pi\)
−0.883105 + 0.469175i \(0.844551\pi\)
\(888\) 0 0
\(889\) 5.02035 0.168377
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.78004 0.0930306
\(894\) 0 0
\(895\) 4.67559 0.156288
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 17.9074 0.597246
\(900\) 0 0
\(901\) 3.12556 0.104128
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.9791 −0.431440
\(906\) 0 0
\(907\) −30.1644 −1.00159 −0.500796 0.865565i \(-0.666959\pi\)
−0.500796 + 0.865565i \(0.666959\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 22.1955 0.735371 0.367685 0.929950i \(-0.380150\pi\)
0.367685 + 0.929950i \(0.380150\pi\)
\(912\) 0 0
\(913\) 14.6934 0.486279
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −18.0907 −0.597409
\(918\) 0 0
\(919\) −15.2693 −0.503688 −0.251844 0.967768i \(-0.581037\pi\)
−0.251844 + 0.967768i \(0.581037\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −21.6493 −0.712594
\(924\) 0 0
\(925\) −11.7200 −0.385351
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −9.97350 −0.327220 −0.163610 0.986525i \(-0.552314\pi\)
−0.163610 + 0.986525i \(0.552314\pi\)
\(930\) 0 0
\(931\) −1.32292 −0.0433568
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 24.9153 0.814818
\(936\) 0 0
\(937\) 55.9900 1.82911 0.914557 0.404457i \(-0.132539\pi\)
0.914557 + 0.404457i \(0.132539\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −5.61377 −0.183004 −0.0915018 0.995805i \(-0.529167\pi\)
−0.0915018 + 0.995805i \(0.529167\pi\)
\(942\) 0 0
\(943\) 5.65396 0.184118
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −49.8458 −1.61977 −0.809886 0.586587i \(-0.800471\pi\)
−0.809886 + 0.586587i \(0.800471\pi\)
\(948\) 0 0
\(949\) −11.3892 −0.369710
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15.4947 0.501923 0.250961 0.967997i \(-0.419253\pi\)
0.250961 + 0.967997i \(0.419253\pi\)
\(954\) 0 0
\(955\) 2.36821 0.0766334
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 45.6880 1.47534
\(960\) 0 0
\(961\) −20.1736 −0.650762
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 23.3201 0.750702
\(966\) 0 0
\(967\) −33.9976 −1.09329 −0.546645 0.837364i \(-0.684095\pi\)
−0.546645 + 0.837364i \(0.684095\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 40.1912 1.28980 0.644898 0.764268i \(-0.276900\pi\)
0.644898 + 0.764268i \(0.276900\pi\)
\(972\) 0 0
\(973\) 21.1345 0.677540
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.9812 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(978\) 0 0
\(979\) 31.6641 1.01199
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.5963 0.656920 0.328460 0.944518i \(-0.393470\pi\)
0.328460 + 0.944518i \(0.393470\pi\)
\(984\) 0 0
\(985\) 3.27644 0.104396
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −23.9712 −0.762241
\(990\) 0 0
\(991\) −47.6854 −1.51478 −0.757388 0.652965i \(-0.773525\pi\)
−0.757388 + 0.652965i \(0.773525\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 14.3480 0.454863
\(996\) 0 0
\(997\) −20.5402 −0.650516 −0.325258 0.945625i \(-0.605451\pi\)
−0.325258 + 0.945625i \(0.605451\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.br.1.4 4
3.2 odd 2 8208.2.a.bz.1.1 4
4.3 odd 2 4104.2.a.i.1.4 4
12.11 even 2 4104.2.a.m.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.i.1.4 4 4.3 odd 2
4104.2.a.m.1.1 yes 4 12.11 even 2
8208.2.a.br.1.4 4 1.1 even 1 trivial
8208.2.a.bz.1.1 4 3.2 odd 2