Properties

Label 8208.2.a.bl.1.3
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,2,0,2,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.90321 q^{5} -1.52543 q^{7} +4.73975 q^{11} -1.37778 q^{13} -5.05086 q^{17} +1.00000 q^{19} -2.90321 q^{23} +3.42864 q^{25} -5.49532 q^{29} +5.70964 q^{31} -4.42864 q^{35} -10.7096 q^{37} -12.3985 q^{41} -6.47457 q^{43} -3.02074 q^{47} -4.67307 q^{49} -2.45875 q^{53} +13.7605 q^{55} +4.66815 q^{59} +8.13828 q^{61} -4.00000 q^{65} -1.28100 q^{67} -14.8573 q^{71} -5.90321 q^{73} -7.23014 q^{77} +0.244431 q^{79} +8.07160 q^{83} -14.6637 q^{85} -9.92396 q^{89} +2.10171 q^{91} +2.90321 q^{95} -9.03657 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{5} + 2 q^{7} + q^{11} - 4 q^{13} - 2 q^{17} + 3 q^{19} - 2 q^{23} - 3 q^{25} - 3 q^{29} - 3 q^{31} - 12 q^{37} - 17 q^{41} - 26 q^{43} + 11 q^{47} - q^{49} - q^{53} + 8 q^{55} + 34 q^{59}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.90321 1.29836 0.649178 0.760637i \(-0.275113\pi\)
0.649178 + 0.760637i \(0.275113\pi\)
\(6\) 0 0
\(7\) −1.52543 −0.576557 −0.288279 0.957547i \(-0.593083\pi\)
−0.288279 + 0.957547i \(0.593083\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.73975 1.42909 0.714544 0.699591i \(-0.246634\pi\)
0.714544 + 0.699591i \(0.246634\pi\)
\(12\) 0 0
\(13\) −1.37778 −0.382129 −0.191064 0.981578i \(-0.561194\pi\)
−0.191064 + 0.981578i \(0.561194\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.05086 −1.22501 −0.612506 0.790466i \(-0.709839\pi\)
−0.612506 + 0.790466i \(0.709839\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.90321 −0.605362 −0.302681 0.953092i \(-0.597882\pi\)
−0.302681 + 0.953092i \(0.597882\pi\)
\(24\) 0 0
\(25\) 3.42864 0.685728
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.49532 −1.02045 −0.510227 0.860040i \(-0.670439\pi\)
−0.510227 + 0.860040i \(0.670439\pi\)
\(30\) 0 0
\(31\) 5.70964 1.02548 0.512740 0.858544i \(-0.328630\pi\)
0.512740 + 0.858544i \(0.328630\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.42864 −0.748577
\(36\) 0 0
\(37\) −10.7096 −1.76065 −0.880327 0.474368i \(-0.842677\pi\)
−0.880327 + 0.474368i \(0.842677\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −12.3985 −1.93632 −0.968162 0.250323i \(-0.919463\pi\)
−0.968162 + 0.250323i \(0.919463\pi\)
\(42\) 0 0
\(43\) −6.47457 −0.987363 −0.493682 0.869643i \(-0.664349\pi\)
−0.493682 + 0.869643i \(0.664349\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.02074 −0.440621 −0.220310 0.975430i \(-0.570707\pi\)
−0.220310 + 0.975430i \(0.570707\pi\)
\(48\) 0 0
\(49\) −4.67307 −0.667582
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.45875 −0.337735 −0.168868 0.985639i \(-0.554011\pi\)
−0.168868 + 0.985639i \(0.554011\pi\)
\(54\) 0 0
\(55\) 13.7605 1.85546
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.66815 0.607741 0.303871 0.952713i \(-0.401721\pi\)
0.303871 + 0.952713i \(0.401721\pi\)
\(60\) 0 0
\(61\) 8.13828 1.04200 0.521000 0.853557i \(-0.325559\pi\)
0.521000 + 0.853557i \(0.325559\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −1.28100 −0.156499 −0.0782493 0.996934i \(-0.524933\pi\)
−0.0782493 + 0.996934i \(0.524933\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.8573 −1.76323 −0.881617 0.471965i \(-0.843545\pi\)
−0.881617 + 0.471965i \(0.843545\pi\)
\(72\) 0 0
\(73\) −5.90321 −0.690919 −0.345459 0.938434i \(-0.612277\pi\)
−0.345459 + 0.938434i \(0.612277\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.23014 −0.823951
\(78\) 0 0
\(79\) 0.244431 0.0275007 0.0137503 0.999905i \(-0.495623\pi\)
0.0137503 + 0.999905i \(0.495623\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.07160 0.885973 0.442987 0.896528i \(-0.353919\pi\)
0.442987 + 0.896528i \(0.353919\pi\)
\(84\) 0 0
\(85\) −14.6637 −1.59050
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.92396 −1.05194 −0.525969 0.850504i \(-0.676297\pi\)
−0.525969 + 0.850504i \(0.676297\pi\)
\(90\) 0 0
\(91\) 2.10171 0.220319
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.90321 0.297863
\(96\) 0 0
\(97\) −9.03657 −0.917524 −0.458762 0.888559i \(-0.651707\pi\)
−0.458762 + 0.888559i \(0.651707\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.668149 −0.0664833 −0.0332416 0.999447i \(-0.510583\pi\)
−0.0332416 + 0.999447i \(0.510583\pi\)
\(102\) 0 0
\(103\) 1.37778 0.135757 0.0678786 0.997694i \(-0.478377\pi\)
0.0678786 + 0.997694i \(0.478377\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.3319 1.09549 0.547746 0.836645i \(-0.315486\pi\)
0.547746 + 0.836645i \(0.315486\pi\)
\(108\) 0 0
\(109\) 20.0558 1.92100 0.960498 0.278288i \(-0.0897671\pi\)
0.960498 + 0.278288i \(0.0897671\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.68889 −0.347022 −0.173511 0.984832i \(-0.555511\pi\)
−0.173511 + 0.984832i \(0.555511\pi\)
\(114\) 0 0
\(115\) −8.42864 −0.785975
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.70471 0.706290
\(120\) 0 0
\(121\) 11.4652 1.04229
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.56199 −0.408037
\(126\) 0 0
\(127\) −8.29529 −0.736088 −0.368044 0.929808i \(-0.619972\pi\)
−0.368044 + 0.929808i \(0.619972\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.76049 −0.678037 −0.339019 0.940780i \(-0.610095\pi\)
−0.339019 + 0.940780i \(0.610095\pi\)
\(132\) 0 0
\(133\) −1.52543 −0.132271
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.1240 0.950386 0.475193 0.879882i \(-0.342378\pi\)
0.475193 + 0.879882i \(0.342378\pi\)
\(138\) 0 0
\(139\) −8.10171 −0.687178 −0.343589 0.939120i \(-0.611643\pi\)
−0.343589 + 0.939120i \(0.611643\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.53035 −0.546095
\(144\) 0 0
\(145\) −15.9541 −1.32491
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.28592 0.596886 0.298443 0.954428i \(-0.403533\pi\)
0.298443 + 0.954428i \(0.403533\pi\)
\(150\) 0 0
\(151\) −19.0415 −1.54957 −0.774787 0.632222i \(-0.782143\pi\)
−0.774787 + 0.632222i \(0.782143\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.5763 1.33144
\(156\) 0 0
\(157\) 14.9956 1.19678 0.598388 0.801207i \(-0.295808\pi\)
0.598388 + 0.801207i \(0.295808\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.42864 0.349026
\(162\) 0 0
\(163\) −8.08742 −0.633456 −0.316728 0.948516i \(-0.602584\pi\)
−0.316728 + 0.948516i \(0.602584\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.6731 1.05805 0.529027 0.848605i \(-0.322557\pi\)
0.529027 + 0.848605i \(0.322557\pi\)
\(168\) 0 0
\(169\) −11.1017 −0.853978
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.88739 0.219524 0.109762 0.993958i \(-0.464991\pi\)
0.109762 + 0.993958i \(0.464991\pi\)
\(174\) 0 0
\(175\) −5.23014 −0.395362
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.95407 0.146054 0.0730269 0.997330i \(-0.476734\pi\)
0.0730269 + 0.997330i \(0.476734\pi\)
\(180\) 0 0
\(181\) 25.6686 1.90793 0.953967 0.299912i \(-0.0969573\pi\)
0.953967 + 0.299912i \(0.0969573\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −31.0923 −2.28595
\(186\) 0 0
\(187\) −23.9398 −1.75065
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.46367 0.684767 0.342384 0.939560i \(-0.388766\pi\)
0.342384 + 0.939560i \(0.388766\pi\)
\(192\) 0 0
\(193\) −16.0415 −1.15469 −0.577346 0.816500i \(-0.695912\pi\)
−0.577346 + 0.816500i \(0.695912\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.1748 1.43740 0.718699 0.695321i \(-0.244738\pi\)
0.718699 + 0.695321i \(0.244738\pi\)
\(198\) 0 0
\(199\) −3.18421 −0.225723 −0.112861 0.993611i \(-0.536002\pi\)
−0.112861 + 0.993611i \(0.536002\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.38271 0.588351
\(204\) 0 0
\(205\) −35.9956 −2.51404
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.73975 0.327855
\(210\) 0 0
\(211\) −20.9224 −1.44036 −0.720180 0.693788i \(-0.755941\pi\)
−0.720180 + 0.693788i \(0.755941\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −18.7971 −1.28195
\(216\) 0 0
\(217\) −8.70964 −0.591249
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.95899 0.468112
\(222\) 0 0
\(223\) −23.1432 −1.54978 −0.774892 0.632094i \(-0.782196\pi\)
−0.774892 + 0.632094i \(0.782196\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.9398 1.05796 0.528980 0.848634i \(-0.322575\pi\)
0.528980 + 0.848634i \(0.322575\pi\)
\(228\) 0 0
\(229\) −8.53972 −0.564320 −0.282160 0.959367i \(-0.591051\pi\)
−0.282160 + 0.959367i \(0.591051\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.0366 −0.723029 −0.361515 0.932366i \(-0.617740\pi\)
−0.361515 + 0.932366i \(0.617740\pi\)
\(234\) 0 0
\(235\) −8.76986 −0.572083
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.58274 −0.102379 −0.0511893 0.998689i \(-0.516301\pi\)
−0.0511893 + 0.998689i \(0.516301\pi\)
\(240\) 0 0
\(241\) 20.5575 1.32423 0.662114 0.749403i \(-0.269659\pi\)
0.662114 + 0.749403i \(0.269659\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −13.5669 −0.866758
\(246\) 0 0
\(247\) −1.37778 −0.0876663
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 30.9862 1.95583 0.977915 0.209001i \(-0.0670213\pi\)
0.977915 + 0.209001i \(0.0670213\pi\)
\(252\) 0 0
\(253\) −13.7605 −0.865115
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −23.9541 −1.49421 −0.747107 0.664704i \(-0.768558\pi\)
−0.747107 + 0.664704i \(0.768558\pi\)
\(258\) 0 0
\(259\) 16.3368 1.01512
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.98418 −0.245675 −0.122837 0.992427i \(-0.539199\pi\)
−0.122837 + 0.992427i \(0.539199\pi\)
\(264\) 0 0
\(265\) −7.13828 −0.438501
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.14764 0.374828 0.187414 0.982281i \(-0.439989\pi\)
0.187414 + 0.982281i \(0.439989\pi\)
\(270\) 0 0
\(271\) 12.9032 0.783814 0.391907 0.920005i \(-0.371815\pi\)
0.391907 + 0.920005i \(0.371815\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16.2509 0.979965
\(276\) 0 0
\(277\) 15.7971 0.949153 0.474577 0.880214i \(-0.342601\pi\)
0.474577 + 0.880214i \(0.342601\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.03657 0.0618363 0.0309181 0.999522i \(-0.490157\pi\)
0.0309181 + 0.999522i \(0.490157\pi\)
\(282\) 0 0
\(283\) 20.8988 1.24230 0.621151 0.783691i \(-0.286665\pi\)
0.621151 + 0.783691i \(0.286665\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 18.9131 1.11640
\(288\) 0 0
\(289\) 8.51114 0.500655
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −15.6987 −0.917130 −0.458565 0.888661i \(-0.651636\pi\)
−0.458565 + 0.888661i \(0.651636\pi\)
\(294\) 0 0
\(295\) 13.5526 0.789064
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) 9.87649 0.569271
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 23.6271 1.35289
\(306\) 0 0
\(307\) 25.3783 1.44841 0.724207 0.689583i \(-0.242206\pi\)
0.724207 + 0.689583i \(0.242206\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 29.3620 1.66496 0.832482 0.554052i \(-0.186919\pi\)
0.832482 + 0.554052i \(0.186919\pi\)
\(312\) 0 0
\(313\) −17.2494 −0.974991 −0.487496 0.873125i \(-0.662089\pi\)
−0.487496 + 0.873125i \(0.662089\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.3319 −0.748791 −0.374396 0.927269i \(-0.622150\pi\)
−0.374396 + 0.927269i \(0.622150\pi\)
\(318\) 0 0
\(319\) −26.0464 −1.45832
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.05086 −0.281037
\(324\) 0 0
\(325\) −4.72393 −0.262036
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.60793 0.254043
\(330\) 0 0
\(331\) 11.6543 0.640580 0.320290 0.947320i \(-0.396220\pi\)
0.320290 + 0.947320i \(0.396220\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.71900 −0.203191
\(336\) 0 0
\(337\) −3.23014 −0.175957 −0.0879785 0.996122i \(-0.528041\pi\)
−0.0879785 + 0.996122i \(0.528041\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 27.0622 1.46550
\(342\) 0 0
\(343\) 17.8064 0.961457
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.24935 −0.335483 −0.167741 0.985831i \(-0.553647\pi\)
−0.167741 + 0.985831i \(0.553647\pi\)
\(348\) 0 0
\(349\) −28.3876 −1.51955 −0.759777 0.650183i \(-0.774692\pi\)
−0.759777 + 0.650183i \(0.774692\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.7368 0.997261 0.498630 0.866815i \(-0.333836\pi\)
0.498630 + 0.866815i \(0.333836\pi\)
\(354\) 0 0
\(355\) −43.1338 −2.28931
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.5763 −1.08597 −0.542987 0.839741i \(-0.682707\pi\)
−0.542987 + 0.839741i \(0.682707\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −17.1383 −0.897058
\(366\) 0 0
\(367\) −18.3970 −0.960315 −0.480158 0.877182i \(-0.659421\pi\)
−0.480158 + 0.877182i \(0.659421\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.75065 0.194724
\(372\) 0 0
\(373\) −1.23014 −0.0636943 −0.0318471 0.999493i \(-0.510139\pi\)
−0.0318471 + 0.999493i \(0.510139\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.57136 0.389945
\(378\) 0 0
\(379\) −8.18421 −0.420395 −0.210197 0.977659i \(-0.567411\pi\)
−0.210197 + 0.977659i \(0.567411\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.12843 −0.0576601 −0.0288301 0.999584i \(-0.509178\pi\)
−0.0288301 + 0.999584i \(0.509178\pi\)
\(384\) 0 0
\(385\) −20.9906 −1.06978
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.7190 −0.695581 −0.347791 0.937572i \(-0.613068\pi\)
−0.347791 + 0.937572i \(0.613068\pi\)
\(390\) 0 0
\(391\) 14.6637 0.741575
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.709636 0.0357057
\(396\) 0 0
\(397\) −31.2766 −1.56973 −0.784863 0.619670i \(-0.787266\pi\)
−0.784863 + 0.619670i \(0.787266\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.2810 −0.713159 −0.356579 0.934265i \(-0.616057\pi\)
−0.356579 + 0.934265i \(0.616057\pi\)
\(402\) 0 0
\(403\) −7.86665 −0.391866
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −50.7610 −2.51613
\(408\) 0 0
\(409\) −7.00492 −0.346371 −0.173186 0.984889i \(-0.555406\pi\)
−0.173186 + 0.984889i \(0.555406\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.12092 −0.350398
\(414\) 0 0
\(415\) 23.4336 1.15031
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.3067 −0.894339 −0.447169 0.894449i \(-0.647568\pi\)
−0.447169 + 0.894449i \(0.647568\pi\)
\(420\) 0 0
\(421\) −16.2667 −0.792791 −0.396395 0.918080i \(-0.629739\pi\)
−0.396395 + 0.918080i \(0.629739\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −17.3176 −0.840025
\(426\) 0 0
\(427\) −12.4143 −0.600772
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.9224 0.863293 0.431646 0.902043i \(-0.357933\pi\)
0.431646 + 0.902043i \(0.357933\pi\)
\(432\) 0 0
\(433\) 13.4050 0.644202 0.322101 0.946705i \(-0.395611\pi\)
0.322101 + 0.946705i \(0.395611\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.90321 −0.138879
\(438\) 0 0
\(439\) 38.3689 1.83125 0.915624 0.402036i \(-0.131697\pi\)
0.915624 + 0.402036i \(0.131697\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 19.0622 0.905674 0.452837 0.891593i \(-0.350412\pi\)
0.452837 + 0.891593i \(0.350412\pi\)
\(444\) 0 0
\(445\) −28.8113 −1.36579
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 37.0306 1.74758 0.873791 0.486302i \(-0.161655\pi\)
0.873791 + 0.486302i \(0.161655\pi\)
\(450\) 0 0
\(451\) −58.7659 −2.76718
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.10171 0.286053
\(456\) 0 0
\(457\) −26.9670 −1.26146 −0.630731 0.776002i \(-0.717245\pi\)
−0.630731 + 0.776002i \(0.717245\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −0.847435 −0.0394690 −0.0197345 0.999805i \(-0.506282\pi\)
−0.0197345 + 0.999805i \(0.506282\pi\)
\(462\) 0 0
\(463\) 0.876015 0.0407119 0.0203559 0.999793i \(-0.493520\pi\)
0.0203559 + 0.999793i \(0.493520\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.1827 −0.887668 −0.443834 0.896109i \(-0.646382\pi\)
−0.443834 + 0.896109i \(0.646382\pi\)
\(468\) 0 0
\(469\) 1.95407 0.0902304
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −30.6878 −1.41103
\(474\) 0 0
\(475\) 3.42864 0.157317
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.4050 1.16078 0.580392 0.814338i \(-0.302899\pi\)
0.580392 + 0.814338i \(0.302899\pi\)
\(480\) 0 0
\(481\) 14.7556 0.672796
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −26.2351 −1.19127
\(486\) 0 0
\(487\) −44.0178 −1.99464 −0.997319 0.0731750i \(-0.976687\pi\)
−0.997319 + 0.0731750i \(0.976687\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 25.0020 1.12832 0.564162 0.825664i \(-0.309199\pi\)
0.564162 + 0.825664i \(0.309199\pi\)
\(492\) 0 0
\(493\) 27.7560 1.25007
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.6637 1.01661
\(498\) 0 0
\(499\) 9.19405 0.411582 0.205791 0.978596i \(-0.434023\pi\)
0.205791 + 0.978596i \(0.434023\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20.8415 −0.929275 −0.464637 0.885501i \(-0.653815\pi\)
−0.464637 + 0.885501i \(0.653815\pi\)
\(504\) 0 0
\(505\) −1.93978 −0.0863189
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −36.1417 −1.60195 −0.800976 0.598697i \(-0.795685\pi\)
−0.800976 + 0.598697i \(0.795685\pi\)
\(510\) 0 0
\(511\) 9.00492 0.398354
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.00000 0.176261
\(516\) 0 0
\(517\) −14.3176 −0.629686
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.8716 1.17726 0.588632 0.808401i \(-0.299667\pi\)
0.588632 + 0.808401i \(0.299667\pi\)
\(522\) 0 0
\(523\) −15.9032 −0.695399 −0.347699 0.937606i \(-0.613037\pi\)
−0.347699 + 0.937606i \(0.613037\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −28.8385 −1.25623
\(528\) 0 0
\(529\) −14.5714 −0.633537
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.0825 0.739925
\(534\) 0 0
\(535\) 32.8988 1.42234
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −22.1492 −0.954032
\(540\) 0 0
\(541\) 6.39207 0.274817 0.137408 0.990514i \(-0.456123\pi\)
0.137408 + 0.990514i \(0.456123\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 58.2262 2.49414
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.49532 −0.234108
\(552\) 0 0
\(553\) −0.372862 −0.0158557
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.2395 0.772833 0.386416 0.922324i \(-0.373713\pi\)
0.386416 + 0.922324i \(0.373713\pi\)
\(558\) 0 0
\(559\) 8.92056 0.377300
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.37286 0.100004 0.0500021 0.998749i \(-0.484077\pi\)
0.0500021 + 0.998749i \(0.484077\pi\)
\(564\) 0 0
\(565\) −10.7096 −0.450558
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.45230 0.228572 0.114286 0.993448i \(-0.463542\pi\)
0.114286 + 0.993448i \(0.463542\pi\)
\(570\) 0 0
\(571\) 36.7926 1.53972 0.769861 0.638211i \(-0.220325\pi\)
0.769861 + 0.638211i \(0.220325\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −9.95407 −0.415113
\(576\) 0 0
\(577\) 40.4514 1.68401 0.842007 0.539467i \(-0.181374\pi\)
0.842007 + 0.539467i \(0.181374\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.3126 −0.510814
\(582\) 0 0
\(583\) −11.6539 −0.482654
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.3827 −0.758735 −0.379368 0.925246i \(-0.623858\pi\)
−0.379368 + 0.925246i \(0.623858\pi\)
\(588\) 0 0
\(589\) 5.70964 0.235261
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.9857 0.902845 0.451422 0.892310i \(-0.350917\pi\)
0.451422 + 0.892310i \(0.350917\pi\)
\(594\) 0 0
\(595\) 22.3684 0.917016
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.207866 −0.00849318 −0.00424659 0.999991i \(-0.501352\pi\)
−0.00424659 + 0.999991i \(0.501352\pi\)
\(600\) 0 0
\(601\) −15.4652 −0.630839 −0.315419 0.948952i \(-0.602145\pi\)
−0.315419 + 0.948952i \(0.602145\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 33.2859 1.35327
\(606\) 0 0
\(607\) 39.5861 1.60675 0.803376 0.595473i \(-0.203035\pi\)
0.803376 + 0.595473i \(0.203035\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.16193 0.168374
\(612\) 0 0
\(613\) 10.2252 0.412993 0.206496 0.978447i \(-0.433794\pi\)
0.206496 + 0.978447i \(0.433794\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −21.9857 −0.885111 −0.442556 0.896741i \(-0.645928\pi\)
−0.442556 + 0.896741i \(0.645928\pi\)
\(618\) 0 0
\(619\) −47.8578 −1.92357 −0.961783 0.273814i \(-0.911715\pi\)
−0.961783 + 0.273814i \(0.911715\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 15.1383 0.606502
\(624\) 0 0
\(625\) −30.3876 −1.21551
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 54.0928 2.15682
\(630\) 0 0
\(631\) 12.8760 0.512586 0.256293 0.966599i \(-0.417499\pi\)
0.256293 + 0.966599i \(0.417499\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −24.0830 −0.955704
\(636\) 0 0
\(637\) 6.43848 0.255102
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9.89538 −0.390844 −0.195422 0.980719i \(-0.562608\pi\)
−0.195422 + 0.980719i \(0.562608\pi\)
\(642\) 0 0
\(643\) −46.7195 −1.84244 −0.921218 0.389046i \(-0.872805\pi\)
−0.921218 + 0.389046i \(0.872805\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 29.3990 1.15579 0.577897 0.816110i \(-0.303874\pi\)
0.577897 + 0.816110i \(0.303874\pi\)
\(648\) 0 0
\(649\) 22.1258 0.868515
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 36.5402 1.42993 0.714964 0.699161i \(-0.246443\pi\)
0.714964 + 0.699161i \(0.246443\pi\)
\(654\) 0 0
\(655\) −22.5303 −0.880334
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9.98571 −0.388988 −0.194494 0.980904i \(-0.562306\pi\)
−0.194494 + 0.980904i \(0.562306\pi\)
\(660\) 0 0
\(661\) 26.0415 1.01290 0.506448 0.862270i \(-0.330958\pi\)
0.506448 + 0.862270i \(0.330958\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.42864 −0.171735
\(666\) 0 0
\(667\) 15.9541 0.617744
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 38.5734 1.48911
\(672\) 0 0
\(673\) −34.7239 −1.33851 −0.669254 0.743033i \(-0.733386\pi\)
−0.669254 + 0.743033i \(0.733386\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −50.1802 −1.92858 −0.964292 0.264843i \(-0.914680\pi\)
−0.964292 + 0.264843i \(0.914680\pi\)
\(678\) 0 0
\(679\) 13.7846 0.529005
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30.8430 −1.18017 −0.590087 0.807340i \(-0.700907\pi\)
−0.590087 + 0.807340i \(0.700907\pi\)
\(684\) 0 0
\(685\) 32.2953 1.23394
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.38763 0.129058
\(690\) 0 0
\(691\) −40.0874 −1.52500 −0.762499 0.646990i \(-0.776028\pi\)
−0.762499 + 0.646990i \(0.776028\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −23.5210 −0.892202
\(696\) 0 0
\(697\) 62.6232 2.37202
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.96343 0.111927 0.0559637 0.998433i \(-0.482177\pi\)
0.0559637 + 0.998433i \(0.482177\pi\)
\(702\) 0 0
\(703\) −10.7096 −0.403922
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.01921 0.0383314
\(708\) 0 0
\(709\) 11.1240 0.417770 0.208885 0.977940i \(-0.433017\pi\)
0.208885 + 0.977940i \(0.433017\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.5763 −0.620787
\(714\) 0 0
\(715\) −18.9590 −0.709026
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.8143 −0.776241 −0.388120 0.921609i \(-0.626876\pi\)
−0.388120 + 0.921609i \(0.626876\pi\)
\(720\) 0 0
\(721\) −2.10171 −0.0782718
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −18.8415 −0.699754
\(726\) 0 0
\(727\) −43.6356 −1.61835 −0.809177 0.587564i \(-0.800087\pi\)
−0.809177 + 0.587564i \(0.800087\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 32.7021 1.20953
\(732\) 0 0
\(733\) −12.5955 −0.465225 −0.232613 0.972569i \(-0.574727\pi\)
−0.232613 + 0.972569i \(0.574727\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.07160 −0.223650
\(738\) 0 0
\(739\) −23.3002 −0.857112 −0.428556 0.903515i \(-0.640978\pi\)
−0.428556 + 0.903515i \(0.640978\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.9906 0.549953 0.274976 0.961451i \(-0.411330\pi\)
0.274976 + 0.961451i \(0.411330\pi\)
\(744\) 0 0
\(745\) 21.1526 0.774970
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −17.2859 −0.631614
\(750\) 0 0
\(751\) 4.54909 0.165998 0.0829992 0.996550i \(-0.473550\pi\)
0.0829992 + 0.996550i \(0.473550\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −55.2815 −2.01190
\(756\) 0 0
\(757\) 18.4509 0.670610 0.335305 0.942110i \(-0.391161\pi\)
0.335305 + 0.942110i \(0.391161\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.35551 0.230387 0.115194 0.993343i \(-0.463251\pi\)
0.115194 + 0.993343i \(0.463251\pi\)
\(762\) 0 0
\(763\) −30.5936 −1.10756
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.43170 −0.232235
\(768\) 0 0
\(769\) −15.2159 −0.548698 −0.274349 0.961630i \(-0.588462\pi\)
−0.274349 + 0.961630i \(0.588462\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 18.7126 0.673044 0.336522 0.941676i \(-0.390749\pi\)
0.336522 + 0.941676i \(0.390749\pi\)
\(774\) 0 0
\(775\) 19.5763 0.703201
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.3985 −0.444223
\(780\) 0 0
\(781\) −70.4197 −2.51982
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 43.5353 1.55384
\(786\) 0 0
\(787\) 1.38271 0.0492882 0.0246441 0.999696i \(-0.492155\pi\)
0.0246441 + 0.999696i \(0.492155\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.62714 0.200078
\(792\) 0 0
\(793\) −11.2128 −0.398178
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.30619 0.187955 0.0939774 0.995574i \(-0.470042\pi\)
0.0939774 + 0.995574i \(0.470042\pi\)
\(798\) 0 0
\(799\) 15.2573 0.539766
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −27.9797 −0.987383
\(804\) 0 0
\(805\) 12.8573 0.453160
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 8.90321 0.313020 0.156510 0.987676i \(-0.449976\pi\)
0.156510 + 0.987676i \(0.449976\pi\)
\(810\) 0 0
\(811\) 7.02858 0.246807 0.123403 0.992357i \(-0.460619\pi\)
0.123403 + 0.992357i \(0.460619\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −23.4795 −0.822451
\(816\) 0 0
\(817\) −6.47457 −0.226517
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 34.6494 1.20927 0.604636 0.796502i \(-0.293318\pi\)
0.604636 + 0.796502i \(0.293318\pi\)
\(822\) 0 0
\(823\) 11.8840 0.414250 0.207125 0.978314i \(-0.433589\pi\)
0.207125 + 0.978314i \(0.433589\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.18913 −0.0761235 −0.0380618 0.999275i \(-0.512118\pi\)
−0.0380618 + 0.999275i \(0.512118\pi\)
\(828\) 0 0
\(829\) 0.161933 0.00562418 0.00281209 0.999996i \(-0.499105\pi\)
0.00281209 + 0.999996i \(0.499105\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 23.6030 0.817796
\(834\) 0 0
\(835\) 39.6958 1.37373
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 9.87649 0.340974 0.170487 0.985360i \(-0.445466\pi\)
0.170487 + 0.985360i \(0.445466\pi\)
\(840\) 0 0
\(841\) 1.19850 0.0413275
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −32.2306 −1.10877
\(846\) 0 0
\(847\) −17.4893 −0.600941
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 31.0923 1.06583
\(852\) 0 0
\(853\) −11.9906 −0.410551 −0.205276 0.978704i \(-0.565809\pi\)
−0.205276 + 0.978704i \(0.565809\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21.3205 −0.728294 −0.364147 0.931342i \(-0.618639\pi\)
−0.364147 + 0.931342i \(0.618639\pi\)
\(858\) 0 0
\(859\) 5.59994 0.191068 0.0955338 0.995426i \(-0.469544\pi\)
0.0955338 + 0.995426i \(0.469544\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −23.0825 −0.785737 −0.392869 0.919595i \(-0.628517\pi\)
−0.392869 + 0.919595i \(0.628517\pi\)
\(864\) 0 0
\(865\) 8.38271 0.285021
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.15854 0.0393009
\(870\) 0 0
\(871\) 1.76494 0.0598026
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.95899 0.235257
\(876\) 0 0
\(877\) −39.1481 −1.32194 −0.660969 0.750413i \(-0.729855\pi\)
−0.660969 + 0.750413i \(0.729855\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −51.7057 −1.74201 −0.871004 0.491276i \(-0.836531\pi\)
−0.871004 + 0.491276i \(0.836531\pi\)
\(882\) 0 0
\(883\) 47.9166 1.61252 0.806261 0.591560i \(-0.201488\pi\)
0.806261 + 0.591560i \(0.201488\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 31.7418 1.06578 0.532892 0.846183i \(-0.321105\pi\)
0.532892 + 0.846183i \(0.321105\pi\)
\(888\) 0 0
\(889\) 12.6539 0.424397
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3.02074 −0.101085
\(894\) 0 0
\(895\) 5.67307 0.189630
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −31.3763 −1.04646
\(900\) 0 0
\(901\) 12.4188 0.413730
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 74.5215 2.47718
\(906\) 0 0
\(907\) 36.1530 1.20044 0.600221 0.799834i \(-0.295079\pi\)
0.600221 + 0.799834i \(0.295079\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −27.5669 −0.913333 −0.456666 0.889638i \(-0.650957\pi\)
−0.456666 + 0.889638i \(0.650957\pi\)
\(912\) 0 0
\(913\) 38.2573 1.26613
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11.8381 0.390927
\(918\) 0 0
\(919\) −23.7101 −0.782124 −0.391062 0.920364i \(-0.627892\pi\)
−0.391062 + 0.920364i \(0.627892\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 20.4701 0.673782
\(924\) 0 0
\(925\) −36.7195 −1.20733
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.54770 0.214823 0.107412 0.994215i \(-0.465744\pi\)
0.107412 + 0.994215i \(0.465744\pi\)
\(930\) 0 0
\(931\) −4.67307 −0.153154
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −69.5022 −2.27297
\(936\) 0 0
\(937\) −52.4390 −1.71311 −0.856553 0.516059i \(-0.827399\pi\)
−0.856553 + 0.516059i \(0.827399\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.16992 0.298931 0.149465 0.988767i \(-0.452245\pi\)
0.149465 + 0.988767i \(0.452245\pi\)
\(942\) 0 0
\(943\) 35.9956 1.17218
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19.0983 −0.620612 −0.310306 0.950637i \(-0.600432\pi\)
−0.310306 + 0.950637i \(0.600432\pi\)
\(948\) 0 0
\(949\) 8.13335 0.264020
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −54.4815 −1.76483 −0.882414 0.470473i \(-0.844083\pi\)
−0.882414 + 0.470473i \(0.844083\pi\)
\(954\) 0 0
\(955\) 27.4750 0.889072
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.9688 −0.547952
\(960\) 0 0
\(961\) 1.59994 0.0516110
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −46.5718 −1.49920
\(966\) 0 0
\(967\) −31.9037 −1.02595 −0.512977 0.858403i \(-0.671457\pi\)
−0.512977 + 0.858403i \(0.671457\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 41.5526 1.33349 0.666744 0.745287i \(-0.267688\pi\)
0.666744 + 0.745287i \(0.267688\pi\)
\(972\) 0 0
\(973\) 12.3586 0.396198
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.54125 −0.113295 −0.0566473 0.998394i \(-0.518041\pi\)
−0.0566473 + 0.998394i \(0.518041\pi\)
\(978\) 0 0
\(979\) −47.0370 −1.50331
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −26.3511 −0.840468 −0.420234 0.907416i \(-0.638052\pi\)
−0.420234 + 0.907416i \(0.638052\pi\)
\(984\) 0 0
\(985\) 58.5718 1.86625
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.7971 0.597712
\(990\) 0 0
\(991\) 13.8983 0.441494 0.220747 0.975331i \(-0.429151\pi\)
0.220747 + 0.975331i \(0.429151\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.24443 −0.293068
\(996\) 0 0
\(997\) 37.4005 1.18449 0.592243 0.805759i \(-0.298242\pi\)
0.592243 + 0.805759i \(0.298242\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.bl.1.3 3
3.2 odd 2 8208.2.a.bi.1.1 3
4.3 odd 2 4104.2.a.h.1.3 yes 3
12.11 even 2 4104.2.a.e.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.e.1.1 3 12.11 even 2
4104.2.a.h.1.3 yes 3 4.3 odd 2
8208.2.a.bi.1.1 3 3.2 odd 2
8208.2.a.bl.1.3 3 1.1 even 1 trivial