Properties

Label 8208.2.a.bg.1.3
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-3,0,1,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2052)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.46050\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.05408 q^{5} +2.46050 q^{7} -1.46050 q^{11} -3.64766 q^{13} -5.92101 q^{17} -1.00000 q^{19} +0.320233 q^{23} -0.780738 q^{25} -0.945916 q^{29} +7.19436 q^{31} +5.05408 q^{35} +2.59358 q^{37} -6.86693 q^{41} -5.78794 q^{43} +1.81284 q^{47} -0.945916 q^{49} -5.96790 q^{53} -3.00000 q^{55} +11.2484 q^{59} +2.83482 q^{61} -7.49261 q^{65} -6.62276 q^{67} -2.64766 q^{71} +3.81284 q^{73} -3.59358 q^{77} -7.24844 q^{79} +0.0789903 q^{83} -12.1623 q^{85} -12.7558 q^{89} -8.97509 q^{91} -2.05408 q^{95} -10.9823 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + q^{7} + 2 q^{11} + q^{13} - 5 q^{17} - 3 q^{19} - q^{23} + 6 q^{25} - 12 q^{29} + 8 q^{31} + 6 q^{35} + 5 q^{37} - 17 q^{41} - q^{43} + 11 q^{47} - 12 q^{49} - 4 q^{53} - 9 q^{55} + 11 q^{59}+ \cdots - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.05408 0.918614 0.459307 0.888277i \(-0.348098\pi\)
0.459307 + 0.888277i \(0.348098\pi\)
\(6\) 0 0
\(7\) 2.46050 0.929983 0.464992 0.885315i \(-0.346057\pi\)
0.464992 + 0.885315i \(0.346057\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.46050 −0.440359 −0.220179 0.975459i \(-0.570664\pi\)
−0.220179 + 0.975459i \(0.570664\pi\)
\(12\) 0 0
\(13\) −3.64766 −1.01168 −0.505840 0.862627i \(-0.668817\pi\)
−0.505840 + 0.862627i \(0.668817\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.92101 −1.43606 −0.718028 0.696014i \(-0.754955\pi\)
−0.718028 + 0.696014i \(0.754955\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.320233 0.0667732 0.0333866 0.999443i \(-0.489371\pi\)
0.0333866 + 0.999443i \(0.489371\pi\)
\(24\) 0 0
\(25\) −0.780738 −0.156148
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.945916 −0.175652 −0.0878261 0.996136i \(-0.527992\pi\)
−0.0878261 + 0.996136i \(0.527992\pi\)
\(30\) 0 0
\(31\) 7.19436 1.29214 0.646072 0.763276i \(-0.276410\pi\)
0.646072 + 0.763276i \(0.276410\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.05408 0.854296
\(36\) 0 0
\(37\) 2.59358 0.426382 0.213191 0.977011i \(-0.431614\pi\)
0.213191 + 0.977011i \(0.431614\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.86693 −1.07243 −0.536217 0.844080i \(-0.680147\pi\)
−0.536217 + 0.844080i \(0.680147\pi\)
\(42\) 0 0
\(43\) −5.78794 −0.882652 −0.441326 0.897347i \(-0.645492\pi\)
−0.441326 + 0.897347i \(0.645492\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.81284 0.264430 0.132215 0.991221i \(-0.457791\pi\)
0.132215 + 0.991221i \(0.457791\pi\)
\(48\) 0 0
\(49\) −0.945916 −0.135131
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.96790 −0.819754 −0.409877 0.912141i \(-0.634428\pi\)
−0.409877 + 0.912141i \(0.634428\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.2484 1.46442 0.732211 0.681078i \(-0.238488\pi\)
0.732211 + 0.681078i \(0.238488\pi\)
\(60\) 0 0
\(61\) 2.83482 0.362962 0.181481 0.983394i \(-0.441911\pi\)
0.181481 + 0.983394i \(0.441911\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.49261 −0.929344
\(66\) 0 0
\(67\) −6.62276 −0.809099 −0.404549 0.914516i \(-0.632572\pi\)
−0.404549 + 0.914516i \(0.632572\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.64766 −0.314220 −0.157110 0.987581i \(-0.550218\pi\)
−0.157110 + 0.987581i \(0.550218\pi\)
\(72\) 0 0
\(73\) 3.81284 0.446259 0.223130 0.974789i \(-0.428373\pi\)
0.223130 + 0.974789i \(0.428373\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.59358 −0.409526
\(78\) 0 0
\(79\) −7.24844 −0.815513 −0.407757 0.913091i \(-0.633689\pi\)
−0.407757 + 0.913091i \(0.633689\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.0789903 0.00867031 0.00433515 0.999991i \(-0.498620\pi\)
0.00433515 + 0.999991i \(0.498620\pi\)
\(84\) 0 0
\(85\) −12.1623 −1.31918
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.7558 −1.35212 −0.676058 0.736849i \(-0.736313\pi\)
−0.676058 + 0.736849i \(0.736313\pi\)
\(90\) 0 0
\(91\) −8.97509 −0.940845
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.05408 −0.210745
\(96\) 0 0
\(97\) −10.9823 −1.11508 −0.557541 0.830149i \(-0.688255\pi\)
−0.557541 + 0.830149i \(0.688255\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.194356 0.0193391 0.00966957 0.999953i \(-0.496922\pi\)
0.00966957 + 0.999953i \(0.496922\pi\)
\(102\) 0 0
\(103\) 1.32023 0.130086 0.0650432 0.997882i \(-0.479281\pi\)
0.0650432 + 0.997882i \(0.479281\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0833 −1.16813 −0.584067 0.811706i \(-0.698539\pi\)
−0.584067 + 0.811706i \(0.698539\pi\)
\(108\) 0 0
\(109\) 14.1623 1.35650 0.678249 0.734832i \(-0.262739\pi\)
0.678249 + 0.734832i \(0.262739\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.59358 −0.902488 −0.451244 0.892401i \(-0.649020\pi\)
−0.451244 + 0.892401i \(0.649020\pi\)
\(114\) 0 0
\(115\) 0.657786 0.0613389
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −14.5687 −1.33551
\(120\) 0 0
\(121\) −8.86693 −0.806084
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.8741 −1.06205
\(126\) 0 0
\(127\) 15.0584 1.33621 0.668107 0.744066i \(-0.267105\pi\)
0.668107 + 0.744066i \(0.267105\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.43560 0.824392 0.412196 0.911095i \(-0.364762\pi\)
0.412196 + 0.911095i \(0.364762\pi\)
\(132\) 0 0
\(133\) −2.46050 −0.213353
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.8348 −1.09655 −0.548276 0.836297i \(-0.684716\pi\)
−0.548276 + 0.836297i \(0.684716\pi\)
\(138\) 0 0
\(139\) −7.21634 −0.612082 −0.306041 0.952018i \(-0.599004\pi\)
−0.306041 + 0.952018i \(0.599004\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.32743 0.445502
\(144\) 0 0
\(145\) −1.94299 −0.161357
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.75583 0.307690 0.153845 0.988095i \(-0.450834\pi\)
0.153845 + 0.988095i \(0.450834\pi\)
\(150\) 0 0
\(151\) −7.24844 −0.589870 −0.294935 0.955517i \(-0.595298\pi\)
−0.294935 + 0.955517i \(0.595298\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.7778 1.18698
\(156\) 0 0
\(157\) −9.37432 −0.748152 −0.374076 0.927398i \(-0.622040\pi\)
−0.374076 + 0.927398i \(0.622040\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.787935 0.0620980
\(162\) 0 0
\(163\) −21.2704 −1.66603 −0.833014 0.553252i \(-0.813387\pi\)
−0.833014 + 0.553252i \(0.813387\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.21926 −0.326496 −0.163248 0.986585i \(-0.552197\pi\)
−0.163248 + 0.986585i \(0.552197\pi\)
\(168\) 0 0
\(169\) 0.305449 0.0234961
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.67257 −0.279220 −0.139610 0.990207i \(-0.544585\pi\)
−0.139610 + 0.990207i \(0.544585\pi\)
\(174\) 0 0
\(175\) −1.92101 −0.145215
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.7702 −1.25347 −0.626733 0.779234i \(-0.715608\pi\)
−0.626733 + 0.779234i \(0.715608\pi\)
\(180\) 0 0
\(181\) 20.6768 1.53690 0.768449 0.639911i \(-0.221029\pi\)
0.768449 + 0.639911i \(0.221029\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.32743 0.391680
\(186\) 0 0
\(187\) 8.64766 0.632380
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.0220 −1.23167 −0.615834 0.787876i \(-0.711181\pi\)
−0.615834 + 0.787876i \(0.711181\pi\)
\(192\) 0 0
\(193\) −7.27335 −0.523547 −0.261773 0.965129i \(-0.584307\pi\)
−0.261773 + 0.965129i \(0.584307\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −25.7381 −1.83377 −0.916883 0.399157i \(-0.869303\pi\)
−0.916883 + 0.399157i \(0.869303\pi\)
\(198\) 0 0
\(199\) 15.9253 1.12891 0.564457 0.825463i \(-0.309086\pi\)
0.564457 + 0.825463i \(0.309086\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.32743 −0.163354
\(204\) 0 0
\(205\) −14.1052 −0.985153
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.46050 0.101025
\(210\) 0 0
\(211\) 8.07607 0.555979 0.277990 0.960584i \(-0.410332\pi\)
0.277990 + 0.960584i \(0.410332\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.8889 −0.810817
\(216\) 0 0
\(217\) 17.7017 1.20167
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 21.5979 1.45283
\(222\) 0 0
\(223\) 19.3566 1.29621 0.648107 0.761549i \(-0.275561\pi\)
0.648107 + 0.761549i \(0.275561\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.7161 1.17586 0.587931 0.808911i \(-0.299943\pi\)
0.587931 + 0.808911i \(0.299943\pi\)
\(228\) 0 0
\(229\) 9.73812 0.643513 0.321757 0.946822i \(-0.395727\pi\)
0.321757 + 0.946822i \(0.395727\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.83482 0.644301 0.322150 0.946689i \(-0.395594\pi\)
0.322150 + 0.946689i \(0.395594\pi\)
\(234\) 0 0
\(235\) 3.72373 0.242909
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.67257 −0.625667 −0.312833 0.949808i \(-0.601278\pi\)
−0.312833 + 0.949808i \(0.601278\pi\)
\(240\) 0 0
\(241\) −13.0043 −0.837679 −0.418839 0.908060i \(-0.637563\pi\)
−0.418839 + 0.908060i \(0.637563\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.94299 −0.124133
\(246\) 0 0
\(247\) 3.64766 0.232095
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.9282 0.879141 0.439570 0.898208i \(-0.355131\pi\)
0.439570 + 0.898208i \(0.355131\pi\)
\(252\) 0 0
\(253\) −0.467702 −0.0294042
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.3274 −0.893721 −0.446860 0.894604i \(-0.647458\pi\)
−0.446860 + 0.894604i \(0.647458\pi\)
\(258\) 0 0
\(259\) 6.38151 0.396528
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 25.5801 1.57734 0.788670 0.614817i \(-0.210770\pi\)
0.788670 + 0.614817i \(0.210770\pi\)
\(264\) 0 0
\(265\) −12.2586 −0.753038
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.6270 1.56251 0.781254 0.624214i \(-0.214580\pi\)
0.781254 + 0.624214i \(0.214580\pi\)
\(270\) 0 0
\(271\) −17.5615 −1.06678 −0.533392 0.845868i \(-0.679083\pi\)
−0.533392 + 0.845868i \(0.679083\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.14027 0.0687610
\(276\) 0 0
\(277\) 4.80992 0.289000 0.144500 0.989505i \(-0.453843\pi\)
0.144500 + 0.989505i \(0.453843\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.4035 0.739931 0.369965 0.929046i \(-0.379370\pi\)
0.369965 + 0.929046i \(0.379370\pi\)
\(282\) 0 0
\(283\) 20.4969 1.21841 0.609207 0.793012i \(-0.291488\pi\)
0.609207 + 0.793012i \(0.291488\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −16.8961 −0.997345
\(288\) 0 0
\(289\) 18.0584 1.06226
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.9679 −0.874434 −0.437217 0.899356i \(-0.644036\pi\)
−0.437217 + 0.899356i \(0.644036\pi\)
\(294\) 0 0
\(295\) 23.1052 1.34524
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.16810 −0.0675531
\(300\) 0 0
\(301\) −14.2412 −0.820852
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.82296 0.333422
\(306\) 0 0
\(307\) −4.29533 −0.245147 −0.122574 0.992459i \(-0.539115\pi\)
−0.122574 + 0.992459i \(0.539115\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.67977 −0.492184 −0.246092 0.969246i \(-0.579147\pi\)
−0.246092 + 0.969246i \(0.579147\pi\)
\(312\) 0 0
\(313\) 28.6198 1.61769 0.808844 0.588023i \(-0.200094\pi\)
0.808844 + 0.588023i \(0.200094\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.65486 −0.0929462 −0.0464731 0.998920i \(-0.514798\pi\)
−0.0464731 + 0.998920i \(0.514798\pi\)
\(318\) 0 0
\(319\) 1.38151 0.0773500
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.92101 0.329454
\(324\) 0 0
\(325\) 2.84787 0.157971
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.46050 0.245916
\(330\) 0 0
\(331\) 11.4284 0.628162 0.314081 0.949396i \(-0.398304\pi\)
0.314081 + 0.949396i \(0.398304\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −13.6037 −0.743250
\(336\) 0 0
\(337\) 12.4179 0.676446 0.338223 0.941066i \(-0.390174\pi\)
0.338223 + 0.941066i \(0.390174\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.5074 −0.569007
\(342\) 0 0
\(343\) −19.5510 −1.05565
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.1331 −0.919752 −0.459876 0.887983i \(-0.652106\pi\)
−0.459876 + 0.887983i \(0.652106\pi\)
\(348\) 0 0
\(349\) 32.6811 1.74938 0.874690 0.484683i \(-0.161065\pi\)
0.874690 + 0.484683i \(0.161065\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −20.9253 −1.11374 −0.556870 0.830600i \(-0.687998\pi\)
−0.556870 + 0.830600i \(0.687998\pi\)
\(354\) 0 0
\(355\) −5.43852 −0.288647
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.0541 −1.53342 −0.766708 0.641996i \(-0.778107\pi\)
−0.766708 + 0.641996i \(0.778107\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.83190 0.409940
\(366\) 0 0
\(367\) 0.165178 0.00862221 0.00431110 0.999991i \(-0.498628\pi\)
0.00431110 + 0.999991i \(0.498628\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −14.6840 −0.762357
\(372\) 0 0
\(373\) −14.7807 −0.765318 −0.382659 0.923890i \(-0.624992\pi\)
−0.382659 + 0.923890i \(0.624992\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.45038 0.177704
\(378\) 0 0
\(379\) −25.3786 −1.30361 −0.651805 0.758386i \(-0.725988\pi\)
−0.651805 + 0.758386i \(0.725988\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.29533 0.270579 0.135289 0.990806i \(-0.456804\pi\)
0.135289 + 0.990806i \(0.456804\pi\)
\(384\) 0 0
\(385\) −7.38151 −0.376197
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.14027 0.362026 0.181013 0.983481i \(-0.442062\pi\)
0.181013 + 0.983481i \(0.442062\pi\)
\(390\) 0 0
\(391\) −1.89610 −0.0958901
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −14.8889 −0.749142
\(396\) 0 0
\(397\) 6.74863 0.338704 0.169352 0.985556i \(-0.445832\pi\)
0.169352 + 0.985556i \(0.445832\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.3609 −1.36634 −0.683169 0.730261i \(-0.739399\pi\)
−0.683169 + 0.730261i \(0.739399\pi\)
\(402\) 0 0
\(403\) −26.2426 −1.30724
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.78794 −0.187761
\(408\) 0 0
\(409\) 4.45758 0.220413 0.110207 0.993909i \(-0.464849\pi\)
0.110207 + 0.993909i \(0.464849\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 27.6768 1.36189
\(414\) 0 0
\(415\) 0.162253 0.00796467
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −36.4356 −1.78000 −0.889998 0.455965i \(-0.849294\pi\)
−0.889998 + 0.455965i \(0.849294\pi\)
\(420\) 0 0
\(421\) 11.2091 0.546300 0.273150 0.961971i \(-0.411934\pi\)
0.273150 + 0.961971i \(0.411934\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.62276 0.224237
\(426\) 0 0
\(427\) 6.97509 0.337548
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.77023 0.229774 0.114887 0.993379i \(-0.463349\pi\)
0.114887 + 0.993379i \(0.463349\pi\)
\(432\) 0 0
\(433\) −20.7381 −0.996611 −0.498305 0.867002i \(-0.666044\pi\)
−0.498305 + 0.867002i \(0.666044\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.320233 −0.0153188
\(438\) 0 0
\(439\) −2.46770 −0.117777 −0.0588885 0.998265i \(-0.518756\pi\)
−0.0588885 + 0.998265i \(0.518756\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −27.7601 −1.31892 −0.659461 0.751739i \(-0.729216\pi\)
−0.659461 + 0.751739i \(0.729216\pi\)
\(444\) 0 0
\(445\) −26.2016 −1.24207
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0512 1.41820 0.709101 0.705107i \(-0.249101\pi\)
0.709101 + 0.705107i \(0.249101\pi\)
\(450\) 0 0
\(451\) 10.0292 0.472256
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −18.4356 −0.864274
\(456\) 0 0
\(457\) 37.4150 1.75020 0.875099 0.483944i \(-0.160796\pi\)
0.875099 + 0.483944i \(0.160796\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.3815 1.04241 0.521206 0.853431i \(-0.325482\pi\)
0.521206 + 0.853431i \(0.325482\pi\)
\(462\) 0 0
\(463\) 15.5729 0.723736 0.361868 0.932229i \(-0.382139\pi\)
0.361868 + 0.932229i \(0.382139\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.6870 −0.633357 −0.316679 0.948533i \(-0.602568\pi\)
−0.316679 + 0.948533i \(0.602568\pi\)
\(468\) 0 0
\(469\) −16.2953 −0.752448
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.45331 0.388683
\(474\) 0 0
\(475\) 0.780738 0.0358227
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −26.7630 −1.22283 −0.611417 0.791309i \(-0.709400\pi\)
−0.611417 + 0.791309i \(0.709400\pi\)
\(480\) 0 0
\(481\) −9.46050 −0.431362
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −22.5586 −1.02433
\(486\) 0 0
\(487\) −17.8200 −0.807503 −0.403752 0.914869i \(-0.632294\pi\)
−0.403752 + 0.914869i \(0.632294\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.90662 0.221432 0.110716 0.993852i \(-0.464686\pi\)
0.110716 + 0.993852i \(0.464686\pi\)
\(492\) 0 0
\(493\) 5.60078 0.252246
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.51459 −0.292219
\(498\) 0 0
\(499\) 29.8023 1.33414 0.667068 0.744997i \(-0.267549\pi\)
0.667068 + 0.744997i \(0.267549\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.67977 −0.119485 −0.0597424 0.998214i \(-0.519028\pi\)
−0.0597424 + 0.998214i \(0.519028\pi\)
\(504\) 0 0
\(505\) 0.399223 0.0177652
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.99280 0.442923 0.221462 0.975169i \(-0.428917\pi\)
0.221462 + 0.975169i \(0.428917\pi\)
\(510\) 0 0
\(511\) 9.38151 0.415014
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.71187 0.119499
\(516\) 0 0
\(517\) −2.64766 −0.116444
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −35.6840 −1.56335 −0.781673 0.623688i \(-0.785633\pi\)
−0.781673 + 0.623688i \(0.785633\pi\)
\(522\) 0 0
\(523\) −1.10097 −0.0481421 −0.0240711 0.999710i \(-0.507663\pi\)
−0.0240711 + 0.999710i \(0.507663\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −42.5979 −1.85559
\(528\) 0 0
\(529\) −22.8975 −0.995541
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 25.0482 1.08496
\(534\) 0 0
\(535\) −24.8200 −1.07306
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.38151 0.0595060
\(540\) 0 0
\(541\) 37.9105 1.62990 0.814950 0.579532i \(-0.196764\pi\)
0.814950 + 0.579532i \(0.196764\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 29.0905 1.24610
\(546\) 0 0
\(547\) 22.4504 0.959909 0.479955 0.877293i \(-0.340653\pi\)
0.479955 + 0.877293i \(0.340653\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.945916 0.0402974
\(552\) 0 0
\(553\) −17.8348 −0.758414
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −41.6241 −1.76367 −0.881835 0.471558i \(-0.843692\pi\)
−0.881835 + 0.471558i \(0.843692\pi\)
\(558\) 0 0
\(559\) 21.1124 0.892961
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.0335 0.928599 0.464300 0.885678i \(-0.346306\pi\)
0.464300 + 0.885678i \(0.346306\pi\)
\(564\) 0 0
\(565\) −19.7060 −0.829038
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.72665 −0.114307 −0.0571536 0.998365i \(-0.518202\pi\)
−0.0571536 + 0.998365i \(0.518202\pi\)
\(570\) 0 0
\(571\) −8.28813 −0.346847 −0.173424 0.984847i \(-0.555483\pi\)
−0.173424 + 0.984847i \(0.555483\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.250018 −0.0104265
\(576\) 0 0
\(577\) −9.69455 −0.403589 −0.201795 0.979428i \(-0.564677\pi\)
−0.201795 + 0.979428i \(0.564677\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.194356 0.00806324
\(582\) 0 0
\(583\) 8.71614 0.360986
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.9827 −0.494578 −0.247289 0.968942i \(-0.579540\pi\)
−0.247289 + 0.968942i \(0.579540\pi\)
\(588\) 0 0
\(589\) −7.19436 −0.296438
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14.6113 −0.600014 −0.300007 0.953937i \(-0.596989\pi\)
−0.300007 + 0.953937i \(0.596989\pi\)
\(594\) 0 0
\(595\) −29.9253 −1.22682
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 22.2599 0.909515 0.454758 0.890615i \(-0.349726\pi\)
0.454758 + 0.890615i \(0.349726\pi\)
\(600\) 0 0
\(601\) 40.0947 1.63550 0.817749 0.575575i \(-0.195222\pi\)
0.817749 + 0.575575i \(0.195222\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −18.2134 −0.740480
\(606\) 0 0
\(607\) −9.25564 −0.375675 −0.187837 0.982200i \(-0.560148\pi\)
−0.187837 + 0.982200i \(0.560148\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.61264 −0.267519
\(612\) 0 0
\(613\) 16.4385 0.663946 0.331973 0.943289i \(-0.392286\pi\)
0.331973 + 0.943289i \(0.392286\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −39.4868 −1.58968 −0.794839 0.606821i \(-0.792444\pi\)
−0.794839 + 0.606821i \(0.792444\pi\)
\(618\) 0 0
\(619\) 20.6228 0.828899 0.414449 0.910072i \(-0.363974\pi\)
0.414449 + 0.910072i \(0.363974\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −31.3858 −1.25744
\(624\) 0 0
\(625\) −20.4868 −0.819470
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.3566 −0.612308
\(630\) 0 0
\(631\) 26.6549 1.06111 0.530557 0.847649i \(-0.321983\pi\)
0.530557 + 0.847649i \(0.321983\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 30.9311 1.22746
\(636\) 0 0
\(637\) 3.45038 0.136709
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.31304 0.288848 0.144424 0.989516i \(-0.453867\pi\)
0.144424 + 0.989516i \(0.453867\pi\)
\(642\) 0 0
\(643\) −28.0115 −1.10466 −0.552332 0.833624i \(-0.686262\pi\)
−0.552332 + 0.833624i \(0.686262\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.1288 −0.673403 −0.336701 0.941611i \(-0.609311\pi\)
−0.336701 + 0.941611i \(0.609311\pi\)
\(648\) 0 0
\(649\) −16.4284 −0.644871
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.43560 0.134445 0.0672227 0.997738i \(-0.478586\pi\)
0.0672227 + 0.997738i \(0.478586\pi\)
\(654\) 0 0
\(655\) 19.3815 0.757298
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −29.6562 −1.15524 −0.577621 0.816305i \(-0.696019\pi\)
−0.577621 + 0.816305i \(0.696019\pi\)
\(660\) 0 0
\(661\) −26.8214 −1.04323 −0.521615 0.853181i \(-0.674670\pi\)
−0.521615 + 0.853181i \(0.674670\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.05408 −0.195989
\(666\) 0 0
\(667\) −0.302914 −0.0117289
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.14027 −0.159833
\(672\) 0 0
\(673\) −2.54377 −0.0980550 −0.0490275 0.998797i \(-0.515612\pi\)
−0.0490275 + 0.998797i \(0.515612\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.9224 −1.18844 −0.594221 0.804302i \(-0.702540\pi\)
−0.594221 + 0.804302i \(0.702540\pi\)
\(678\) 0 0
\(679\) −27.0220 −1.03701
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 28.6549 1.09645 0.548224 0.836332i \(-0.315304\pi\)
0.548224 + 0.836332i \(0.315304\pi\)
\(684\) 0 0
\(685\) −26.3638 −1.00731
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 21.7689 0.829328
\(690\) 0 0
\(691\) −18.0292 −0.685862 −0.342931 0.939361i \(-0.611420\pi\)
−0.342931 + 0.939361i \(0.611420\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14.8230 −0.562267
\(696\) 0 0
\(697\) 40.6591 1.54007
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 14.5175 0.548319 0.274159 0.961684i \(-0.411600\pi\)
0.274159 + 0.961684i \(0.411600\pi\)
\(702\) 0 0
\(703\) −2.59358 −0.0978187
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.478214 0.0179851
\(708\) 0 0
\(709\) −39.6883 −1.49053 −0.745263 0.666771i \(-0.767676\pi\)
−0.745263 + 0.666771i \(0.767676\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.30387 0.0862807
\(714\) 0 0
\(715\) 10.9430 0.409245
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.33463 −0.0497732 −0.0248866 0.999690i \(-0.507922\pi\)
−0.0248866 + 0.999690i \(0.507922\pi\)
\(720\) 0 0
\(721\) 3.24844 0.120978
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.738512 0.0274277
\(726\) 0 0
\(727\) 9.17996 0.340466 0.170233 0.985404i \(-0.445548\pi\)
0.170233 + 0.985404i \(0.445548\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 34.2704 1.26754
\(732\) 0 0
\(733\) 1.97217 0.0728437 0.0364219 0.999337i \(-0.488404\pi\)
0.0364219 + 0.999337i \(0.488404\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.67257 0.356294
\(738\) 0 0
\(739\) 12.5471 0.461552 0.230776 0.973007i \(-0.425874\pi\)
0.230776 + 0.973007i \(0.425874\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.61849 0.169436 0.0847179 0.996405i \(-0.473001\pi\)
0.0847179 + 0.996405i \(0.473001\pi\)
\(744\) 0 0
\(745\) 7.71480 0.282648
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −29.7309 −1.08634
\(750\) 0 0
\(751\) −19.7951 −0.722335 −0.361167 0.932501i \(-0.617622\pi\)
−0.361167 + 0.932501i \(0.617622\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −14.8889 −0.541863
\(756\) 0 0
\(757\) 2.08950 0.0759442 0.0379721 0.999279i \(-0.487910\pi\)
0.0379721 + 0.999279i \(0.487910\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.6021 −1.10933 −0.554663 0.832075i \(-0.687153\pi\)
−0.554663 + 0.832075i \(0.687153\pi\)
\(762\) 0 0
\(763\) 34.8463 1.26152
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −41.0305 −1.48153
\(768\) 0 0
\(769\) 3.65913 0.131952 0.0659759 0.997821i \(-0.478984\pi\)
0.0659759 + 0.997821i \(0.478984\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 31.5801 1.13586 0.567929 0.823077i \(-0.307745\pi\)
0.567929 + 0.823077i \(0.307745\pi\)
\(774\) 0 0
\(775\) −5.61691 −0.201765
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.86693 0.246033
\(780\) 0 0
\(781\) 3.86693 0.138369
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −19.2556 −0.687263
\(786\) 0 0
\(787\) −14.9780 −0.533909 −0.266954 0.963709i \(-0.586017\pi\)
−0.266954 + 0.963709i \(0.586017\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −23.6050 −0.839299
\(792\) 0 0
\(793\) −10.3405 −0.367201
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −23.5175 −0.833033 −0.416517 0.909128i \(-0.636749\pi\)
−0.416517 + 0.909128i \(0.636749\pi\)
\(798\) 0 0
\(799\) −10.7339 −0.379736
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.56867 −0.196514
\(804\) 0 0
\(805\) 1.61849 0.0570441
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 25.1593 0.884555 0.442277 0.896878i \(-0.354171\pi\)
0.442277 + 0.896878i \(0.354171\pi\)
\(810\) 0 0
\(811\) 4.49300 0.157770 0.0788852 0.996884i \(-0.474864\pi\)
0.0788852 + 0.996884i \(0.474864\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −43.6912 −1.53044
\(816\) 0 0
\(817\) 5.78794 0.202494
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −45.5831 −1.59086 −0.795430 0.606045i \(-0.792755\pi\)
−0.795430 + 0.606045i \(0.792755\pi\)
\(822\) 0 0
\(823\) −33.2130 −1.15773 −0.578867 0.815422i \(-0.696505\pi\)
−0.578867 + 0.815422i \(0.696505\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 42.0364 1.46175 0.730874 0.682512i \(-0.239113\pi\)
0.730874 + 0.682512i \(0.239113\pi\)
\(828\) 0 0
\(829\) −19.1838 −0.666282 −0.333141 0.942877i \(-0.608109\pi\)
−0.333141 + 0.942877i \(0.608109\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.60078 0.194055
\(834\) 0 0
\(835\) −8.66672 −0.299924
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 40.3432 1.39280 0.696400 0.717653i \(-0.254784\pi\)
0.696400 + 0.717653i \(0.254784\pi\)
\(840\) 0 0
\(841\) −28.1052 −0.969146
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.627419 0.0215839
\(846\) 0 0
\(847\) −21.8171 −0.749645
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.830550 0.0284709
\(852\) 0 0
\(853\) 41.4251 1.41837 0.709184 0.705023i \(-0.249064\pi\)
0.709184 + 0.705023i \(0.249064\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25.4543 0.869501 0.434751 0.900551i \(-0.356837\pi\)
0.434751 + 0.900551i \(0.356837\pi\)
\(858\) 0 0
\(859\) −43.0410 −1.46854 −0.734271 0.678857i \(-0.762476\pi\)
−0.734271 + 0.678857i \(0.762476\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 53.6050 1.82474 0.912369 0.409370i \(-0.134251\pi\)
0.912369 + 0.409370i \(0.134251\pi\)
\(864\) 0 0
\(865\) −7.54377 −0.256496
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10.5864 0.359118
\(870\) 0 0
\(871\) 24.1576 0.818549
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −29.2163 −0.987692
\(876\) 0 0
\(877\) 10.2311 0.345480 0.172740 0.984967i \(-0.444738\pi\)
0.172740 + 0.984967i \(0.444738\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −27.3393 −0.921084 −0.460542 0.887638i \(-0.652345\pi\)
−0.460542 + 0.887638i \(0.652345\pi\)
\(882\) 0 0
\(883\) 17.9899 0.605408 0.302704 0.953085i \(-0.402111\pi\)
0.302704 + 0.953085i \(0.402111\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 40.0187 1.34370 0.671848 0.740689i \(-0.265501\pi\)
0.671848 + 0.740689i \(0.265501\pi\)
\(888\) 0 0
\(889\) 37.0512 1.24266
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.81284 −0.0606644
\(894\) 0 0
\(895\) −34.4475 −1.15145
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.80525 −0.226968
\(900\) 0 0
\(901\) 35.3360 1.17721
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 42.4720 1.41182
\(906\) 0 0
\(907\) 3.69455 0.122676 0.0613378 0.998117i \(-0.480463\pi\)
0.0613378 + 0.998117i \(0.480463\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12.7021 0.420841 0.210420 0.977611i \(-0.432517\pi\)
0.210420 + 0.977611i \(0.432517\pi\)
\(912\) 0 0
\(913\) −0.115366 −0.00381805
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 23.2163 0.766671
\(918\) 0 0
\(919\) 41.9177 1.38274 0.691369 0.722502i \(-0.257008\pi\)
0.691369 + 0.722502i \(0.257008\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.65779 0.317890
\(924\) 0 0
\(925\) −2.02491 −0.0665785
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 59.8653 1.96412 0.982059 0.188573i \(-0.0603862\pi\)
0.982059 + 0.188573i \(0.0603862\pi\)
\(930\) 0 0
\(931\) 0.945916 0.0310011
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 17.7630 0.580913
\(936\) 0 0
\(937\) −0.194745 −0.00636205 −0.00318102 0.999995i \(-0.501013\pi\)
−0.00318102 + 0.999995i \(0.501013\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −9.73424 −0.317327 −0.158664 0.987333i \(-0.550719\pi\)
−0.158664 + 0.987333i \(0.550719\pi\)
\(942\) 0 0
\(943\) −2.19902 −0.0716099
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35.2780 1.14638 0.573191 0.819422i \(-0.305705\pi\)
0.573191 + 0.819422i \(0.305705\pi\)
\(948\) 0 0
\(949\) −13.9080 −0.451472
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.311689 −0.0100966 −0.00504830 0.999987i \(-0.501607\pi\)
−0.00504830 + 0.999987i \(0.501607\pi\)
\(954\) 0 0
\(955\) −34.9646 −1.13143
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −31.5801 −1.01978
\(960\) 0 0
\(961\) 20.7588 0.669637
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −14.9401 −0.480938
\(966\) 0 0
\(967\) −22.8204 −0.733855 −0.366928 0.930249i \(-0.619590\pi\)
−0.366928 + 0.930249i \(0.619590\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 53.1200 1.70470 0.852351 0.522969i \(-0.175176\pi\)
0.852351 + 0.522969i \(0.175176\pi\)
\(972\) 0 0
\(973\) −17.7558 −0.569226
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.7444 −0.439721 −0.219861 0.975531i \(-0.570560\pi\)
−0.219861 + 0.975531i \(0.570560\pi\)
\(978\) 0 0
\(979\) 18.6300 0.595416
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 35.7395 1.13991 0.569956 0.821675i \(-0.306960\pi\)
0.569956 + 0.821675i \(0.306960\pi\)
\(984\) 0 0
\(985\) −52.8683 −1.68452
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.85349 −0.0589375
\(990\) 0 0
\(991\) 39.0220 1.23957 0.619787 0.784770i \(-0.287219\pi\)
0.619787 + 0.784770i \(0.287219\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 32.7119 1.03704
\(996\) 0 0
\(997\) −10.1623 −0.321842 −0.160921 0.986967i \(-0.551446\pi\)
−0.160921 + 0.986967i \(0.551446\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.bg.1.3 3
3.2 odd 2 8208.2.a.bm.1.1 3
4.3 odd 2 2052.2.a.e.1.3 3
12.11 even 2 2052.2.a.f.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2052.2.a.e.1.3 3 4.3 odd 2
2052.2.a.f.1.1 yes 3 12.11 even 2
8208.2.a.bg.1.3 3 1.1 even 1 trivial
8208.2.a.bm.1.1 3 3.2 odd 2