Properties

Label 820.2.n
Level $820$
Weight $2$
Character orbit 820.n
Rep. character $\chi_{820}(9,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $44$
Newform subspaces $1$
Sturm bound $252$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.n (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 205 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(252\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(820, [\chi])\).

Total New Old
Modular forms 264 44 220
Cusp forms 240 44 196
Eisenstein series 24 0 24

Trace form

\( 44 q - 4 q^{11} - 10 q^{15} + 4 q^{19} - 12 q^{25} + 12 q^{29} + 8 q^{31} + 6 q^{35} - 28 q^{41} + 4 q^{45} + 32 q^{51} + 10 q^{55} - 32 q^{59} + 20 q^{65} + 28 q^{69} - 32 q^{71} + 28 q^{75} + 32 q^{79}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(820, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
820.2.n.a 820.n 205.j $44$ $6.548$ None 820.2.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(820, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(820, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(205, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(410, [\chi])\)\(^{\oplus 2}\)