Properties

Label 820.2.d
Level $820$
Weight $2$
Character orbit 820.d
Rep. character $\chi_{820}(329,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $2$
Sturm bound $252$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(252\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(820, [\chi])\).

Total New Old
Modular forms 132 20 112
Cusp forms 120 20 100
Eisenstein series 12 0 12

Trace form

\( 20 q - 20 q^{9} + 4 q^{11} - 2 q^{15} - 12 q^{19} + 12 q^{21} + 12 q^{25} - 16 q^{29} - 4 q^{31} + 2 q^{35} - 12 q^{39} + 8 q^{41} + 12 q^{45} - 16 q^{49} + 14 q^{55} - 4 q^{59} - 8 q^{61} + 16 q^{65} - 28 q^{69}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(820, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
820.2.d.a 820.d 5.b $6$ $6.548$ 6.0.839056.1 None 820.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}+(\beta _{1}-\beta _{4})q^{5}-\beta _{4}q^{7}+(-\beta _{1}+\cdots)q^{9}+\cdots\)
820.2.d.b 820.d 5.b $14$ $6.548$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 820.2.d.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+\beta _{5}q^{5}+\beta _{11}q^{7}+(-2+\beta _{2}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(820, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(820, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(205, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(410, [\chi])\)\(^{\oplus 2}\)