Defining parameters
Level: | \( N \) | \(=\) | \( 820 = 2^{2} \cdot 5 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 820.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(252\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(820, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 132 | 20 | 112 |
Cusp forms | 120 | 20 | 100 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(820, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
820.2.d.a | $6$ | $6.548$ | 6.0.839056.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}+(\beta _{1}-\beta _{4})q^{5}-\beta _{4}q^{7}+(-\beta _{1}+\cdots)q^{9}+\cdots\) |
820.2.d.b | $14$ | $6.548$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+\beta _{5}q^{5}+\beta _{11}q^{7}+(-2+\beta _{2}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(820, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(820, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(205, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(410, [\chi])\)\(^{\oplus 2}\)